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Low-Resolution Self-Attention for Semantic
Segmentation

Yu-Huan Wu, Shi-Chen Zhang, Yun Liu, Le Zhang, Xin Zhan, Daquan Zhou,
Jiashi Feng, Ming-Ming Cheng, and Liangli Zhen

Abstract—Semantic segmentation tasks naturally require high-resolution information for pixel-wise segmentation and global context
information for class prediction. While existing vision transformers demonstrate promising performance, they often utilize high-resolution
context modeling, resulting in a computational bottleneck. In this work, we challenge conventional wisdom and introduce the Low-
Resolution Self-Attention (LRSA) mechanism to capture global context at a significantly reduced computational cost. Our approach
involves computing self-attention in a fixed low-resolution space regardless of the input image’s resolution, with additional 3 × 3 depth-
wise convolutions to capture fine details in the high-resolution space. We demonstrate the effectiveness of our LRSA approach by
building the LRFormer, a vision transformer with an encoder-decoder structure. Extensive experiments on the ADE20K, COCO-Stuff,
and Cityscapes datasets demonstrate that LRFormer outperforms state-of-the-art models. The code will be made publicly available.

Index Terms—Low-Resolution Self-Attention, Semantic Segmentation, Vision Transformer

✦

1 INTRODUCTION

As a fundamental computer vision problem, semantic seg-
mentation [1]–[3] aims to assign a semantic label to each
image pixel. Semantic segmentation models [4], [5] usually
rely on pretrained backbone networks [6], [7] for feature ex-
traction, which is then followed by specific designs for pixel-
wise predictions. In the last decade, the progress in feature
extraction via various backbone networks has consistently
pushed forward state-of-the-art semantic segmentation [8]–
[10]. This paper improves the feature extraction for semantic
segmentation from a distinct perspective.

It is commonly believed that semantic segmentation, as
a dense prediction task, requires high-resolution features to
ensure accuracy. In contrast, image classification typically
infers predictions from a very small feature map, such
as 1/32 of the input resolution. Semantic segmentation
models with convolutional neural networks (CNNs) usually
decrease the strides of backbone networks to increase the
feature resolution [11]–[14], e.g., 1/8 of the input resolution.
This attribute is also well preserved in transformer-based
semantic segmentation, demonstrating that high-resolution
is still necessary for semantic segmentation.
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Fig. 1. Comparison of existing and our proposed paradigms for the
self-attention calculation in the vision transformer. Representatives
include (a) ViT [15], DeiT [16]; (b) Swin [17], CSwin [18]; (c) PVT [19],
SegFormer [9], P2T [20]; and (d) our LRFormer.

High-resolution features are powerful for capturing the
local details, while context information pertains to the
broader understanding of the scene. Contextual features dis-
cern the interrelations between various scene components
[21], mitigating the ambiguity inherent in local features.
Thus, considerable research efforts [1], [22] have been de-
voted to extending the receptive field of CNNs. Conversely,
vision transformers inherently facilitate the computation
of global relationships by introducing self-attention with a
global receptive field. Nonetheless, this comes at a signif-
icant computational cost, as vanilla attention mechanisms
exhibit quadratic complexity to input length. Intriguingly,
seminal studies [9], [20], [23] made a remarkable effort by
judiciously downsampling some of the features (i.e., key and
value) during the self-attention computation for reduced
computational complexities.
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Nevertheless, we observe that the computational over-
head of self-attention remains a non-negligible bottleneck
for existing vision transformers, as evidenced by Tab. 11.
Consequently, we aim to delve deeper into the downsam-
pling in the core component of the transformer, i.e., self-
attention. Diverging from prior works that only downsam-
ple the key and value features [9], [20], [23], we propose
to downsample all constituents—query, key, and value fea-
tures. In this way, the output of self-attention would be in a
low-resolution so that the mainstream of the transformer
would contain low-resolution. Furthermore, we adopt a
fixed downsampling size rather than a downsampling ratio
to attain a very low computational complexity for self-
attention. The proposed method is called Low-Resolution
Self-Attention (LRSA).

Fig. 1 depicts the differences between existing self-
attention approaches and our LRSA. Vanilla self-attention
[15] (Fig. 1(a)) directly computes the global feature rela-
tions in the original resolution, which is quite expensive.
Window-based methods [17], [18], [24], [25] (Fig. 1(b)) di-
vide the features into small windows and perform local
self-attention within each window. Downsampling-based
methods [9], [19], [20], [26], [27] (Fig. 1(c)) keep the size
of the query unchanged, and they downsample the key
and value features with a fixed pooling ratio. The lengths
of key and value features increase linearly with the input
resolution. In contrast, our LRSA (Fig. 1(d)) downsamples
all query, key, and value to a small fixed size, leading to very
low complexity regardless of the input resolution. More
analysis of the computational complexity can refer to §3.1.

While LRSA significantly boosts efficiency in capturing
global context, we recognize that maintaining fine-grained
details is another critical aspect for optimal performance in
semantic segmentation. To address this duality, we employ
LRSA to capture global context information in a purely low-
resolution domain, while simultaneously integrating small
kernel (3×3) depth-wise convolution to capture local details
in the high-resolution space. Based on these foundational
principles, we build a new backbone network for feature
extraction and a simple decoder to aggregate the extracted
multi-level features for semantic segmentation. This new
model is dubbed as Low-Resolution Transformer (LR-
Former). We evaluate LRFormer on popular benchmarks,
including ADE20K [28], COCO-Stuff [29], and Cityscapes
[30]. Experimental results (e.g., Fig. 2) demonstrate the su-
periority of LRFormer over state-of-the-art models. Besides,
LRFormer also achieves competitive performance for image
classification on the ImageNet dataset [31], compared with
recent strong baselines.

2 RELATED WORK

2.1 Semantic Segmentation
Semantic segmentation is a fundamental task in computer
vision. It is challenging due to the numerous variations like
object sizes, textures, and lighting conditions in practical
scenarios. FCN [32], the pioneering work in this area, pro-
posed the adaptation of CNNs for semantic segmentation in
an end-to-end manner. Since then, numerous studies have
been built upon FCN [32], with major efforts focused on
enriching multi-scale representations [4], [5], [33], enhancing
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Fig. 2. Experimental comparisons on ADE20K [28] dataset.

boundary perception [34]–[37], contextual representations
[21], [38] and introducing visual attention [2], [3], [8], [11],
[14]. These studies deeply explored the semantic head de-
sign upon FCN [32] and achieved great progress. Among
these, many approaches [1]–[5], [8], [11]–[14] are greatly
benefited from the high-resolution features, performing pre-
diction in the 1/8 of the input resolution to ensure high
accuracy.

More recently, many works [9], [10], [39]–[41] showed
that vision transformers [15] can largely improve the perfor-
mance of semantic segmentation. This is mainly attributed
to the strong global capability of vision transformers, which
happens to be a crucial property required for semantic
segmentation. For example, SETR [39] first adapted ViT
as an encoder followed by multi-level feature aggregation.
SegFormer [9] introduced a novel pyramid vision trans-
former encoder with an MLP mask decoder. MaskFormer
[40] revolutionized mask decoders with transformer-based
mask classification. More discussions on vision transformers
can refer to §2.3.

2.2 Convolutional Neural Networks

Given that CNN-based semantic segmentation models rely
on CNN backbones for feature extraction, we discuss some
notable CNN architectures. Since the emergence of AlexNet
[42], many techniques have been developed to strengthen
the CNN representations and achieved great success. For
example, VGG [43], GoogleNet [44], ResNets [6] and
DenseNets [45] developed increasingly deep CNNs to learn
more powerful representations. ResNeXts [7], Res2Nets [46],
and ResNeSts [47] explored the cardinal design in ResNets
[6]. SENet [48] and SKNet [49] introduced different attention
architectures for selective feature learning. Very recently,
CNNs with large kernels are proven powerful in some
works [50]–[52]. To ensure the high-resolution of feature
maps for accurate semantic segmentation, semantic segmen-
tation models usually decrease the strides of these CNNs
and uses the dilated convolutions [22] to keep larger re-
ceptive field. Motivated by this, HRNet [53] was proposed
to directly learn high-resolution CNN features. Despite the
numerous successful stories, CNNs are limited in captur-
ing global and long-range relationships, which are of vital
importance for semantic segmentation.
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2.3 Vision Transformers

Transformers are initially proposed in natural language
processing (NLP) [54]. Through multi-head self-attention
(MHSA), transformers are capable of modeling global re-
lationships. Thanks to this characteristic, transformers may
also be powerful for computer vision tasks that require
global information for a whole understanding of the visual
scenarios. To bridge this gap, ViT [15] transformed an im-
age to tokens via a 16×16 pooling operation and adopts
the transformer to process these tokens, achieving better
performance than CNNs in image recognition. After that,
vision transformers are developed rapidly by leveraging
knowledge distillation [55], overlapping patch embedding
[56] or convolutions [57], [58]. Recently, pyramid vision
transformers [10], [17], [19], [20], [23], [26], [59], [60] are
proven to be powerful for image recognition tasks like se-
mantic segmentation. For example, PVT [19] and MViT [26]
proposed to build a pyramid vision transformer pipeline
via performing downsampling on key and value features.
Liu et al. [17] created a window-based vision transformer
with shifted windows. Yuan et al. [10] presented HRFormer
to learn high-resolution features for dense prediction using
the vision transformer. Xia et al. [61] proposed DAT with
deformable attention, conducting deformable sampling on
key and value features.

Despite their reported effectiveness, it is still commonly
believed that high-resolution features are crucial for self-
attention to effectively capture contextual information in
semantic segmentation. Window-based vision transformers
[17], [18], [24], [25] calculate self-attention within each lo-
cal windows to reduce the computational complexity so
that they can keep the high-resolution of feature maps.
Downsampling-based vision transformers [9], [19], [20],
[23], [26], [27] keep the size of the query while partially
conduct the downsampling on the key and value features
with a fixed pooling ratio. Such strategy greatly reduces
the complexity compared with vanilla attention so as to
keep high-resolution features, making themselves computa-
tionally non-negligible especially for high-resolution inputs
(Tab. 11). In contrast, we question the necessity of keeping
high-resolution for capturing context information via self-
attention. We study this question by proposing LRFormer
with LRSA. The good performance on several public bench-
marks suggest the superiority of our LRFormer for semantic
segmentation.

3 METHODOLOGY

In this section, we first introduce the Low-Resolution Self-
Attention (LRSA) mechanism in §3.1. Then, we build Low-
Resolution Transformer (LRFormer) using LRSA for se-
mantic segmentation in §3.2. The decoder of LRFormer is
presented in §3.3. Finally, we provide the implementation
details in §3.4.

3.1 Low-Resolution Self-Attention

Unlike existing vision transformers that aim to maintain
high-resolution feature maps during self-attention, our pro-
posed LRSA computes self-attention in a low-resolution
space, significantly reducing computational costs. Before

Scheme Global Spatial Corr. Complexity
Window-based [17] ✘ ✔ O(NC2)
Factorized [62] ✔ ✘ O(NC2)
Downsampling-based [9] ✔ ✔ O(N2C +NC2)
LRSA (Ours) ✔ ✔ O(NC + C2)

TABLE 1
Comparison of various self-attention schemes. N is the length of

the flattened features and C is the number of feature channels. “Spatial
Corr.” denotes the spatial correlation. We omit constant factors for
simplicity, like the window size in window-based methods and the

downsampled size of LRSA.

delving into our proposed LRSA, let us first revisit the vision
transformer architecture.

Revisiting self-attention in transformers. The vision
transformer [15] has been demonstrated to be very powerful
for computer vision [10], [17]–[20], [23]–[26]. It consists of
two main parts: the multi-head self-attention (MHSA) and
the feed-forward network (FFN). We continue by elaborat-
ing on MHSA. Given the input feature Fin, the query Q, key
K and value V are obtained with a linear transformation
from Fin. Then, we can calculate MHSA as

Attention(Fin) = Softmax(
QKT

√
dk

)V, (1)

where dk is the number of channels of Fin. We omit the
multi-head operation for simplicity. The overall computa-
tional cost of vanilla self-attention is O(N2C+C2N), where
N and C are the number of tokens and the number of chan-
nels of Fin ∈ RN×C , respectively. As the number of tokens
of natural images are usually very large, the computational
cost of vanilla self-attention is very high.

Previous solutions. To alleviate the computational
cost while keeping the high-resolution of feature maps,
downsampling-based vision transformers [9], [19], [20], [23],
[26], [27] change the self-attention computation to

Attention(Fin) = Softmax(
QKT

s√
dk

)Vs, (2)

in which Ks and Vs are the downsampled key K and value
V with a fixed downsampling ratio sr , respectively. The
1D ↔ 2D feature reshaping is omitted for convenience.
The length of Ks and Vs is 1/s2r of the original K and V . If
the original length of K and V is too large, the Ks and Vs

will also be long sequences, introducing considerable com-
putational cost in self-attention. Here, we only introduce
downsampling-based transformers because they are most
relevant to our method.

Our solution. Instead, we tackle the heavy computation
of vanilla self-attention from a new perspective: we do not
keep the high-resolution of feature maps but process the
features in a very low-resolution space. Specifically, the
proposed LRSA downsamples the input feature Fin to a
fixed size m. Then, multi-head self-attention is applied:

Attention(Fin) = Softmax(
QpK

T
p√

dk
)Vp, (3)

where Qp, Kp and Vp are obtained by a linear transforma-
tion from the downsampled Fin. Qp, Kp and Vp are with
a fixed size m, regardless of the resolution of the input
Fin. Compared with vanilla self-attention and previous
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Fig. 3. Pipeline of the proposed LRFormer. F2, F3 and F4 are fed into the decoder head for semantic segmentation.
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Fig. 4. Illustration of a basic block of our LRFormer. The symbol
“⊕” denotes the element-wise addition. We add a 3×3 depth-wise
convolution (DWConv) with a residual connection before LRSA, which
is also applied between the two linear layers of the FFN.

solutions, our LRSA has a much lower computational cost.
LRSA can also facilitate attention optimization due to the
much shorter token length. To fit the size of the original
Fin, we then perform a bilinear interpolation after the self-
attention calculation.

Complexity and characteristics. The computational com-
plexity of LRSA is much lower than existing self-attention
mechanisms for vision transformers. We summarize the
main characteristics and computational complexity of recent
popular self-attention mechanisms and our LRSA in Tab. 1.
Spatial correlation means that self-attention is carried out
in the spatial dimension, and some factorized transformers
[62] compute self-attention in the channel dimension for
reducing complexity. As can be observed from Tab. 1, other
methods often face trade-offs among complexity, global
receptive field, and spatial correlation. In contrast, our LRSA
offers advantages in all these aspects.

Let us continue by analyzing the computational com-
plexity of LRSA. For convenience, we do not include
the 1D↔2D feature reshaping. LRSA first downsamples
the input features Fin ∈ RN×C to a fixed size m × C
with a 2D pooling operation, whose computational cost is
O(NC). Then, LRSA performs linear transformations and
self-attention on the pooled features, which costs O(mC2).
The computation of self-attention costs O(m2C). The final
upsampling operation has the same computational cost as
downsampling. Overall, the computational complexity of
LRSA is O(NC +mC2 +m2C). As m is a constant number
(e.g., 162) regardless of the value of N , we can simplify the
complexity of LRSA to O(NC+C2), which is much smaller

than existing methods.

3.2 Low-Resolution Transformer

In this part, we build the LRFormer for semantic segmen-
tation by incorporating the proposed LRSA. The overall
architecture of LRFormer is illustrated in Fig. 3, with an
encoder-decoder architecture.

Encoder-decoder. Taking a natural image as input, the
encoder first downsamples it by a factor of 1/4, follow-
ing prevailing literature in this field [17], [19], [20], [23],
[26]. The encoder consists of four stages with a pyramid
structure, each comprising multiple stacked basic blocks. In
between every two stages, we include a patch embedding
operation to reduce the feature size by half. This results
in the extraction of multi-level features F1, F2, F3, F4 with
strides of 4, 8, 16, and 32, respectively. We resize F2, F3, F4

to the same size as F2 before concatenating and squeezing
them to smaller channels. The resulting features are then
fed into our decoder head, which performs further semantic
reasoning and outputs the final segmentation map via a
1 × 1 convolution layer. The details of our decoder head
are presented in §3.3.

Basic block. The basic block is illustrated in Fig. 4. Like
previous transformer blocks [17], [19], the basic block of
our LRFormer is composed of a self-attention module and
an FFN. The FFN is generally an MLP layer composed of
two linear layers with GELU [63] activation in between.
Differently, we renovate the self-attention module with our
proposed LRSA. As LRSA is computed in a very low-
resolution space, attaining a low complexity regardless of
the input resolution. However, the low-resolution space may
lose the spatial locality of the input features. Inspired by
recent works [20], [58], we further introduce depth-wise
convolution (DWConv) in both positional encoding and
FFN, assisting the feature extraction via capturing spatial
local details. That is, we insert a 3 × 3 DWConv layer
with short connection followed by our LRSA, providing
conditional positional encoding [58]. This strategy is also
applied between the two linear layers of the FFN. Therefore,
our basic block can be simply formulated as below:

F ′
in = Fin + DWConv(Fin),

Fatt = F ′
in + LRSA(LayerNorm(F ′

in)),

Fout = Fatt + FFN(LayerNorm(Fatt)),

(4)
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Stage Output Size LRFormer-T LRFormer-S LRFormer-B LRFormer-L

1 F1 : H
4

× W
4

C = 48, E = 8

Ch = 24, n1 = 2

C = 64, E = 8

Ch = 32, n1 = 3

C = 80, E = 8

Ch = 40, n1 = 4

C = 96, E = 8

Ch = 48, n1 = 4

2 F2 : H
8

× W
8

C = 96, E = 8

Ch = 24, n2 = 2

C = 128, E = 8

Ch = 32, n2 = 3

C = 160, E = 8

Ch = 40, n2 = 4

C = 192, E = 8

Ch = 48, n2 = 6

3 F3 : H
16

× W
16

C = 240, E = 4

Ch = 24, n3 = 6

C = 320, E = 4

Ch = 32, n3 = 12

C = 400, E = 4

Ch = 32, n3 = 15

C = 480, E = 4

Ch = 32, n3 = 18

4 F4 : H
32

× W
32

C = 384, E = 4

Ch = 24, n4 = 3

C = 512, E = 4

Ch = 32, n4 = 3

C = 512, E = 4

Ch = 40, n4 = 8

C = 640, E = 4

Ch = 48, n4 = 8

TABLE 2
Detailed settings of the encoders for different LRFormer variants. C, Ch, E, and ni denote the number of feature channels, channels of each

attention head, expansion ratio of FFN, and the number of basic blocks for the i-th stage, respectively.

where Fin, Fatt and Fout represent the input, output of
LRSA, and output of the basic block, respectively.

Architecture setting. To fit the budgets of different com-
putational resources, we design four variants of LRFormer,
namely LRFormer-T/S/B/L, stacking different numbers of
basic blocks for each stage in the encoder. We summarize
the detailed settings of their encoders in Tab. 2. In terms
of ImageNet pretraining [31], the computational cost of
LRFormer-T/S/B/L is similar to ResNet-18 [6] and Swin-
T/S/B [17], respectively.

3.3 Decoder Head
In semantic segmentation, it is suboptimal to predict the
results based solely on the final output of the encoder, as
multi-level information is useful in perceiving objects with
various scales and aspect ratios [9], [64]. Thus, we design
a simple decoder for LRFormer to aggregate multi-level
features efficiently and effectively. To this end, we note
that an MLP aggregation can achieve good performance in
the state-of-the-art work SegFormer [9]. However, it does
not consider the spatial correlation between the features
from different levels. Therefore, we encapsulate our LRSA
into our decoder for feature refinement, strengthening the
semantic reasoning of LRFormer.

As mentioned above, F2, F3, F4 are resized to the same
size as F2 and then concatenated together. We apply a
1 × 1 convolution on the concatenated feature to squeeze
the number of channels. Then, a basic block (LRSA + FFN)
is adopted to refine the squeezed feature. As we know, the
feature from the top of the encoder, i.e., F4, could be the most
semantic meaningful. To avoid the loss of semantic infor-
mation in the aggregation of high-level (F4) and low-level
(F2, F3) features, we concatenate the refined feature with F4

to enhance the semantics. After that, another basic block is
connected for further feature refinement. Finally, we infer
the segmentation prediction from the refined feature with a
simple 1×1 convolution. The experiments demonstrate that
our simple decoder with LRSA can do better than previous
state-of-the-art decoder heads for semantic segmentation, as
shown in Tab. 9.

3.4 Implementation Details
In LRFormer, We apply the overlapped patch embedding,
i.e., a 3 × 3 convolution with a stride of 2, to downsample
the features by half between each stage. To strengthen multi-
scale learning of LRSA with negligible cost, we use pyramid

pooling [20] to extract multi-scale features when computing
the key and value features in LRSA. The desired fixed
downsampling size m for generating the query, key and
value is 162 for semantic segmentation. Such size is changed
to 72 for ImageNet pretraining because m = 162 is too
large for image classification. For the number of channels
in the decoder, we set it to 256/384/512/640 for LRFormer-
T/S/B/L, respectively.

4 EXPERIMENTS

4.1 Experimental Setup

Datasets. We perform experiments on three well-
established datasets. ADE20K [28] is a very challenging
scene parsing dataset that contains 150 semantic classes
with diverse foreground and background, consisting of 20K,
2K, and 3.3K images for training, validation, and testing,
respectively. COCO-Stuff [29] labels both things and stuffs
with a total of 171 fine-grained semantic labels, with 164K,
5K, 20K, and 20K images for training, validation, test-dev,
and test challenge. Cityscapes [30] is a high-quality dataset
for street scene parsing that contains 3K, 0.5K, and 1.5K
driving images for training, validation, and testing. These
datasets cover a wide range of semantic categories and pose
different challenges for semantic segmentation models.

ImageNet pretraining. We adopt the popular timm pack-
age to implement our network. Following other networks,
we first pretrain the backbone encoder of LRFormer on the
ImageNet-1K dataset, which has 1.3M training and 50K val-
idation images with 1K object categories. During ImageNet
pretraining, the decoder head of LRFormer is omitted. To
regularize the training process, we follow the standard data
augmentation techniques and optimization strategy used in
previous works [9], [17], [55]. We use AdamW [65] as the
default optimizer with a learning rate of 0.001, weight decay
of 0.05, a cosine learning rate adjustment schedule, and a
batch size of 1024. No model EMA is applied. The backbone
encoder is pretrained for 300 epochs, and we apply layer
scale [66] to alleviate the overfitting of large networks, as
suggested by recent works [50], [66]. For LRFormer-L, we
follow [17], [50] additionally pretrain the network on the
full ImageNet-22K dataset for 90 epochs and then finetune
it on ImageNet-1K dataset for 30 epochs. In the finetuning,
the learning rate is set as 5e-5, and each mini-batch has 512
images.
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Method FLOPs ↓ #Params ↓ mIoU ↑
SegFormer [9] 16G 14M 42.2%
HRFormer-S [10] 109G 14M 44.0%
LRFormer-T 17G 13M 46.7%
Mask2Former [64] 74G 47M 47.7%
SegFormer-B2 [9] 62G 28M 46.5%
LRFormer-S 40G 32M 50.0%
HRFormer-B [10] 280G 56M 48.7%
SegFormer-B3 [9] 96G 47M 49.4%
LRFormer-B 75G 69M 51.0%
DPT-Hybrid [67] 308G 124M 49.0%
DAViT-B [68] 294G 121M 49.4%
MaskFormer [40] 195G 102M 51.3%
SegFormer-B5 [9] 183G 85M 51.0%
LRFormer-L 183G 113M 52.6%
SETR-MLA† [39] - 302M 48.6%
MaskFormer† [64] 195G 102M 53.1%
CSWin-B† [18] 463G 109M 51.8%
LRFormer-L† 183G 113M 54.2%

TABLE 3
Comparisons with recent transformer-based methods on the

ADE20K dataset [28]. The results of our method are marked as bold.
“†” indicates the result pretrained on ImageNet-22K.

Training for semantic segmentation. We use mmsegmen-
tation framework to train our network for semantic segmen-
tation. AdamW [65] is adopted as the default optimizer,
with learning of 0.00006, weight decay of 0.01, and poly
learning rate schedule with factor 1.0. Following [9], [17],
the weight decay of LayerNorm [69] layers is set as 0.
Regarding the data augmentation, we use the same strat-
egy as mentioned in [9], [17]. That is we construct the
pipeline of image resizing (0.5 ∼ 2×), random horizontal
flipping, followed by a random cropping of size 512×512,
512×512, and 1024×1024 for ADE20K, COCO-Stuff, and
Cityscapes datasets, respectively. Note that for our largest
model LRFormer-L in ADE20K, the cropped size remains
640×640, consistent with recent works. The mini-batch size
is set to 16, 16, and 8 images for ADE20K, COCO-Stuff, and
Cityscapes datasets, respectively. We train our network for
160K, 80K, and 160K iterations for ADE20K, COCO-Stuff,
and Cityscapes datasets, respectively. We only use the cross-
entropy loss for training and do not employ any extra losses
like the auxiliary loss [4] and OHEM [70].

Testing for semantic segmentation. During testing, we
maintain the original aspect ratio of the input image and
resize it to a shorter size of 512 and a longer size not
exceeding 2048 for the ADE20K and COCO-Stuff datasets.
We follow the suggestion of [9] and resize the input size
of LRFormer-L for the ADE20K dataset to a shorter size of
640 and a longer size not exceeding 2560. In the Cityscapes
dataset, we apply a crop size of 1024×1024 with sliding
window testing strategy following [9].

4.2 Comparisons

ADE20K. Results are shown in Tab. 3. LRFormer is com-
pared with several recent transformer-based methods in dif-
ferent complexity levels. We can observe that our LRFormer
exhibits strong superiority over other methods. For exam-
ple, LRFormer-T/S/B/L are 4.5%/3.5%/2.6%/1.6% better
than SegFormer-B1/B2/B4/B5 [9], [17]. LRFormer-T is 2.3%

Method FLOPs ↓ #Params ↓ mIoU ↑
HRFormer-S [10] 109G 14M 37.9%
SegFormer-B1 [9] 16G 14M 40.2%
LRFormer-T 17G 13M 43.9%
SegFormer-B2 [9] 62G 28M 44.6%
LRFormer-S 40G 32M 46.4%
HRFormer-B [10] 280G 56M 42.4%
SegFormer-B3 [9] 79G 47M 45.5%
SegFormer-B5 [9] 112G 85M 46.7%
LRFormer-B 75G 69M 47.2%
LRFormer-L 122G 113M 47.9%

TABLE 4
Comparisons with recent transformer-based methods on the full

COCO-Stuff dataset [29]. Results of our method are marked as bold.

Method FLOPs ↓ #Params ↓ mIoU ↑
HRFormer-S [10] 872G 14M 80.0%
SegFormer-B1 [9] 244G 14M 78.5%
LRFormer-T 122G 13M 80.7%
SegFormer-B2 [9] 717G 28M 81.0%
LRFormer-S 295G 32M 81.9%
HRFormer-B [10] 2240G 56M 81.9%
SegFormer-B3 [9] 963G 47M 81.7%
LRFormer-B 555G 67M 83.0%
SegFormer-B5 [9] 1460G 85M 82.4%
LRFormer-L 908G 111M 83.2%

TABLE 5
Comparisons with recent transformer-based methods on the

Cityscapes dataset [30]. Results of our method are marked as bold.
FLOPs are calculated for an input size of 1024× 2048.

better than Swin-T-based Mask2Former [64] with near half
FLOPs. With ImageNet-22K pretraining, LRFormer is 1.1%
and 2.4% better than the strongest Swin-B-based Mask-
Former [17], [40] and UperNet-based CSwin [18], [71] with
fewer FLOPs.

COCO-Stuff. We elaborate the results in Tab. 4. We evalu-
ated our method on different network scales and compared
it against recent popular methods. LRFormer achieved the
highest mIoU on all network scales, outperforming the other
methods. Specifically, our LRFormer-T model achieved a
mIoU of 43.9%, which is 3.7% higher than HRFormer-S and
3.7% higher than SegFormer-B1. Similarly, our LRFormer-S
and LRFormer-B models outperformed the corresponding
SegFormer models by 1.8% and 1.7%. Our LRFormer-L
model outperforms SegFormer-B5 by 1.2%. These exper-
imental comparisons demonstrate the superiority of LR-
Former on the COCO-Stuff dataset.

Cityscapes. Tab. 5 presents the experimental comparisons
between LRFormer and recent popular methods on the
Cityscapes dataset. LRFormer outperforms SegFormer and
HRFormer in all cases. We can observe that due to large
input size, FLOPs of other methods are much higher than
ours. For example, SegFormer-B2 costs 717G FLOPs while
our LRFormer-S only spends 41% FLOPs with 0.9% im-
provement. More complexity analysis can refer to Tab. 11.

ImageNet. Since we pretrained our backbone encoder
on ImageNet, we also evaluate our network on ImageNet
classification for reference. Results are shown in Tab. 6.
We divide them to five groups. The first four groups are
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Model FLOPs ↓ #Params ↓ Size Top-1 Acc. ↑
ResNet-18 [6] 1.8G 12M 2242 68.5%
PVTv2-B1 [23] 2.1G 13M 2242 78.7%
P2T-Tiny [20] 1.8G 12M 2242 79.8%
LRFormer-T 1.8G 13M 2242 80.8%
ResNet-50 [6] 4.1G 26M 2242 78.5%
Swin-T [17] 4.5G 28M 2242 81.5%
ConvNeXt-T [50] 4.5G 29M 2242 82.1%
MViTv2-T [27] 4.7G 24M 2242 82.3%
CSwin-T [18] 4.3G 23M 2242 82.7%
LRFormer-S 4.7G 30M 2242 83.5%
Swin-S [17] 8.7G 50M 2242 83.0%
ConvNeXt-S [50] 8.7G 50M 2242 83.1%
DAT-S [61] 9.0G 50M 2242 83.7%
P2T-Large [20] 9.8G 55M 2242 83.9%
LRFormer-B 9.3G 62M 2242 84.5%
DeiT-B [16] 17.5G 86M 2242 81.8%
RegNetY-16G [72] 16.0G 84M 2242 82.9%
RepLKNet-31B [51] 15.3G 79M 2242 83.5%
SwinT-B [17] 15.4G 88M 2242 83.5%
ConvNeXt-B [50] 15.4G 89M 2242 83.8%
FocalNet-B [73] 15.4G 89M 2242 83.9%
DAT-B [61] 15.8G 88M 2242 84.0%
CSwin-B [18] 15.0G 78M 2242 84.2%
LRFormer-L 15.7G 101M 2242 85.0%
Swin-B† [17] 15.4G 88M 2242 85.2%
ConvNeXt-B† [50] 15.4G 89M 2242 85.8%
LRFormer-L† 15.7G 101M 2242 86.4%
ConvNeXt-B† [50] 45.1G 89M 3842 86.8%
Swin-B† [17] 47.0G 88M 3842 86.4%
LRFormer-L† 46.3G 101M 3842 87.2%

TABLE 6
Classification results on ImageNet-1K [31] dataset. Results of our

method are marked as bold. Results marked with “†” are pretrained on
ImageNet-22K dataset.

Method Memory Top-1 Acc. ↑ mIoU ↑
LRFormer-S 14.5GB 81.6% 48.5%
w/o DWConv (bef. LRSA) 13.8GB 81.4% 48.0%
w/o DWConv (FFN) 11.7GB 81.1% 47.1%

TABLE 7
Ablation study on the spatial locality capturing. “Memory” is the

training memory in ImageNet pretraining.

divided by the FLOPs of approximate 2G, 4.5G, 9G, 16G,
respectively. The last group includes the results pretrained
on ImageNet-22K dataset. The backbone encoder of our
LRFormer outperformed recent state-of-the-art CNN-based
methods such as ConvNeXt [50] and RepLKNet [51], and
transformer-based methods like CSwin [18] and P2T [20].

4.3 Visualization analysis.
To visually illustrate the effectiveness of our method, we
pick segformer [9] as the model for intuitive comparison
from ADE20K val set and Cityscapes val set, as shown in
Fig. 5 and Fig. 6 respectively. The results indicate that LR-
Former is capable of generating more precise segmentation
maps, particularly in the areas highlighted by the red boxes.
We discover that LRFormer offers significant advantages
in terms of maintaining object segmentation integrity and
capturing intricate details.

Fig. 5. Qualitative Visualization on ADE20K val set. The figures
from left to right are input images, ground truth, segmentation maps
of SegFormer [9], segmentation maps of our LRFormer. Significant
improvements are indicated by red boxes on segmentation maps.

4.4 Ablation Study

In the following part, we conduct several ablation studies to
analyze our LRFormer. Except for specifically mentioning,
we use the following settings. LRFormer-S is set as the
baseline and trained using 8 GPUs for both classification
and semantic segmentation. For classification, our network
is trained for 100 epochs in the ImageNet-1K [31] dataset.
For semantic segmentation, our network is trained for 80K
iterations in the ADE20K [28] dataset. Other settings are
kept same as the setup in §4.1.

Locality capturing. Our LRSA only computes the atten-
tion in low-resolution space. Introducing spatial locality,
3×3 depth-wise convolution, to our network is beneficial for
getting fine-grained semantic maps. In Tab. 7, we analyzed
the effect of the two depth-wise convolution before LRSA
and in FFN. We can observe that the ADE20K performance
of our LRFormer is improved by 0.5% and 1.4% and when
adding the depth-wise convolution before LRSA in FFN,
with 5% and 24% training memory overhead. Therefore, we
add both of them in our LRFormer.

Fixed pooled size. We reported the results in Tab. 8. For
each basic block, the pooling operation will be omitted if
the feature map size is smaller than the desired pooled size.
Default fixed pooled size m is 162 for semantic segmenta-
tion. Results show larger pooled size (m ≥ 162) achieves
saturated performance. The default setting only introduces
5% training memory overhead and FLOPs compared with
the pooled size of 82 for semantic segmentation. When
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Fig. 6. Qualitative Visualization on Cityscapes val set. The figures from left to right are input images, ground truth, segmentation maps of
SegFormer [9], segmentation maps of our LRFormer. The significant improvements are indicated by red boxes on segmentation maps.

Pooled Size ↓ FLOPs ↓ Training Memory ↓ mIoU ↑
8× 8 38G (-5%) 4.0GB (-5%) 46.8%
16× 16 40G 4.2GB 48.5%
32× 32 52G (+30%) 5.3GB (+26%) 48.6%
48× 48 74G (+85%) 7.4GB (+76%) 48.7%
64× 64 108G (+170%) 10.9GB (+160%) 48.5%

TABLE 8
Experiments on the fixed pooled size settings of our LRSA. The
performance is saturated when pooled size is larger than 16× 16.

Decoder Head FLOPs ↓ #Params ↓ mIoU ↑
Ours 40G 32M 49.5%
w/ PPM [4] 82G 44M 48.4%
w/ DA [2] 94G 42M 48.9%
w/ CC [8] 84G 42M 48.6%
w/ OCR [21] 48G 34M 48.0%

TABLE 9
Comparisons of our decoder and other popular decoder heads.

increasing the pooled size to 322, 482, 642, we obtain a minor
improvement or even decreased performance on ADE20K
semantic segmentation. We also observe that the FLOPs and
training memory overhead are much more significant (26%
∼ 170%) when the pooled size is larger than 162. Consid-
ering the the performance, FLOPs and training memory, a
low-resolution setting in LRFormer is much more proper.

Comparions of different decoder heads. Our decoder
head aims to predict the semantic maps from multi-level
feature maps effectively and efficiently with LRSA. The
validate the LRSA of our decoder head, we compare it with
several popular decode heads. These popular decoder heads
are designed for CNNs, whose output feature maps are
usually 1/8 of the original image. However, the backbone

encoder of our LRFormer can output features of the 1/32
of the original image. To make a fair comparison, we first
upsample features of the last stages and concatenate them
together. Then, we feed them to the popular decoder heads.
Other processes keep unchanged in these popular decoder
heads. Tab. 9 summarized the results on ADE20K semantic
segmentation. The backbone is pretrained for 300 epochs on
ImageNet-1K. Compared with PPM [4], DA [2], and CC [8],
our LRFormer achieves 1.1%, 0.6%, and 0.9% improvement,
respectively, with only fewer than 50% FLOPs. Compared
with OCR [21], our LRFormer obtains 1.5% performance
gain, with 83% FLOPs. Therefore, our default setting is more
efficient and effective than other popular decoder heads.

Bilinear interpolation. Although the self-attention is
computed in a low-resolution manner, a bilinear interpo-
lation is needed to fit the size as requested by the residual
connection. However, we find that using LRFormer-S with
an input size of 5122, the bilinear interpolation only has a
latency of 0.1ms, constituting a negligible 0.8% of the overall
network’s latency.

Dimensions of the decoder head. To optimize the per-
formance and computational cost of the decoder head, we
employ a 1×1 convolution to reduce the dimension of the
concatenated multi-level features before feeding them into
the decoder. We conducted experiments with various di-
mension settings and compared their results in Tab. 10. The
backbone is pretrained for 300 epochs on ImageNet-1K. The
experiments show that a dimension setting of 512 achieves
the best performance. However, setting the dimension to
384 results in only a 0.1% drop in mIoU performance, while
saving 25% FLOPs. Therefore, we set the dimension of
the decoder head to 384 in our LRFormer-S, reflecting the
optimal trade-off between performance and computational
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Dimension FLOPs ↓ #Params ↓ mIoU ↑
128 27G 30M 47.8%
256 32G 31M 49.2%
384 40G 32M 49.5%
512 50G 37M 49.6%
768 79G 46M 49.2%
1024 117G 58M 49.2%

TABLE 10
Discussions on the dimensions of the decoder. When the

dimension of the decoder is larger than 384, the performance will be
saturated or even decreased.

Method Size, Batch Size Memory ↓ FLOPs ↓ Att. FLOPs ↓
LRFormer-S 512×512, 2 4.2GB 40G 0.4G
SegFormer-B2 512×512, 2 7.2GB 62G 3.9G
LRFormer-S 1024×1024, 1 5.7GB 145G 0.4G
SegFormer-B2 1024×1024, 1 18.8GB 291G 62G
LRFormer-L 1024×1024, 1 12.8GB 430G 2.0G
SegFormer-B5 1024×1024, 1 28.8GB 563G 162G

TABLE 11
Analysis of the memory usage and FLOPs for different input size.
“Att. FLOPs” indicates the FLOPs of MHSA operations. ”Memory” is the

training memory for semantic segmentation.

cost.

Memory and FLOPs. Our LRSA has a very low compu-
tational complexity of only O(C2 + CN). We numerically
analyze the efficiency of our LRFormer for different input
sizes, as well as the comparisons with the representative
method SegFormer [9]. The analyzed results on FLOPs,
attention FLOPs, and training memory are shown in Tab. 11.
Our LRFormer-S costs much less memory and FLOPs than
SegFormer-B2. Given input size of 1024 × 1024, the num-
ber of FLOPs of MHSA operations in our LRFormer is
dramatically lower than (0.4G vs. 62G) the self-attention in
SegFormer. The training memory SegFormer-B5 is close to
32GB, which is close to the memory limit of a 32GB V100
GPU. Instead, our LRFormer-L only costs 12.8GB memory.

5 CONCLUSION

In this paper, we presented a novel approach to seman-
tic segmentation via introducing the low-resolution self-
attention. LRSA computes the self-attention in a fixed low-
resolution space, regardless of the size of the input image,
making the self-attention highly efficient. Extensive exper-
iments on ADE20K [28], COCO-Stuff [29] and Cityscapes
[30] datasets show that LRFormer outperforms state-of-
the-art models, suggesting that LRSA is adequate to keep
global receptive field with negligible computational cost.
This study provides evidence for the effectiveness of LRSA
and opens a new direction for future research.

Acknowledgements. This work is funded by NSFC (NO.
62225604, 62176130), and the Fundamental Research Funds
for the Central Universities (Nankai Universitiy, 070-
63233089). Computation is supported by the Supercomput-
ing Center of Nankai University.

REFERENCES

[1] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Deeplab: Semantic image segmentation with deep convo-

lutional nets, atrous convolution, and fully connected crfs,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, 2017.

[2] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual
attention network for scene segmentation,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2019, pp. 3146–3154.

[3] Z. Zhu, M. Xu, S. Bai, T. Huang, and X. Bai, “Asymmetric non-local
neural networks for semantic segmentation,” in Int. Conf. Comput.
Vis., 2019, pp. 593–602.

[4] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in IEEE Conf. Comput. Vis. Pattern Recog., 2017, pp. 2881–
2890.

[5] M. Yang, K. Yu, C. Zhang, Z. Li, and K. Yang, “DenseASPP for
semantic segmentation in street scenes,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2018, pp. 3684–3692.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conf. Comput. Vis. Pattern Recog., 2016,
pp. 770–778.

[7] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated
residual transformations for deep neural networks,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2017, pp. 1492–1500.

[8] Z. Huang, X. Wang, Y. Wei, L. Huang, H. Shi, W. Liu, and
T. Huang, “CCNet: Criss-cross attention for semantic segmenta-
tion.” IEEE Trans. Pattern Anal. Mach. Intell., 2020.

[9] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and
P. Luo, “SegFormer: Simple and efficient design for semantic
segmentation with transformers,” Adv. Neural Inform. Process. Syst.,
vol. 34, 2021.

[10] Y. Yuan, R. Fu, L. Huang, W. Lin, C. Zhang, X. Chen, and J. Wang,
“Hrformer: High-resolution vision transformer for dense predict,”
Adv. Neural Inform. Process. Syst., vol. 34, 2021.

[11] H. Zhao, Y. Zhang, S. Liu, J. Shi, C. C. Loy, D. Lin, and J. Jia,
“PSANet: Point-wise spatial attention network for scene parsing,”
in Eur. Conf. Comput. Vis., 2018, pp. 267–283.

[12] H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and
A. Agrawal, “Context encoding for semantic segmentation,” in
IEEE Conf. Comput. Vis. Pattern Recog., 2018, pp. 7151–7160.

[13] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Learning
a discriminative feature network for semantic segmentation,” in
IEEE Conf. Comput. Vis. Pattern Recog., 2018, pp. 1857–1866.

[14] T. Takikawa, D. Acuna, V. Jampani, and S. Fidler, “Gated-scnn:
Gated shape cnns for semantic segmentation,” in Int. Conf. Comput.
Vis., 2019, pp. 5229–5238.

[15] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly
et al., “An image is worth 16x16 words: Transformers for image
recognition at scale,” in Int. Conf. Learn. Represent., 2021.

[16] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distilla-
tion through attention,” arXiv preprint arXiv:2012.12877, 2020.

[17] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin transformer: Hierarchical vision transformer using shifted
windows,” in Int. Conf. Comput. Vis., 2021.

[18] X. Dong, J. Bao, D. Chen, W. Zhang, N. Yu, L. Yuan, D. Chen,
and B. Guo, “Cswin transformer: A general vision transformer
backbone with cross-shaped windows,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2022, pp. 12 124–12 134.

[19] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo,
and L. Shao, “Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions,” in Int. Conf. Comput.
Vis., 2021.

[20] Y.-H. Wu, Y. Liu, X. Zhan, and M.-M. Cheng, “P2T: Pyramid
pooling transformer for scene understanding,” IEEE Trans. Pattern
Anal. Mach. Intell., 2022.

[21] Y. Yuan, X. Chen, and J. Wang, “Object-contextual representations
for semantic segmentation,” in Eur. Conf. Comput. Vis. Springer,
2020, pp. 173–190.

[22] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” in Int. Conf. Learn. Represent., 2016.

[23] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo,
and L. Shao, “PVT v2: Improved baselines with pyramid vision
transformer,” Computational Visual Media, vol. 8, no. 3, pp. 415–
424, 2022.

[24] Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao,
Z. Zhang, L. Dong et al., “Swin transformer v2: Scaling up capacity
and resolution,” in IEEE Conf. Comput. Vis. Pattern Recog., 2022, pp.
12 009–12 019.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

[25] J. Yang, C. Li, P. Zhang, X. Dai, B. Xiao, L. Yuan, and J. Gao, “Focal
self-attention for local-global interactions in vision transformers,”
2021.

[26] H. Fan, B. Xiong, K. Mangalam, Y. Li, Z. Yan, J. Malik, and
C. Feichtenhofer, “Multiscale vision transformers,” in Int. Conf.
Comput. Vis., 2021, pp. 6824–6835.

[27] Y. Li, C.-Y. Wu, H. Fan, K. Mangalam, B. Xiong, J. Malik, and C. Fe-
ichtenhofer, “MViTv2: Improved multiscale vision transformers
for classification and detection,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2022, pp. 4804–4814.

[28] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba,
“Scene parsing through ade20k dataset,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2017, pp. 633–641.

[29] H. Caesar, J. Uijlings, and V. Ferrari, “COCO-Stuff: Thing and stuff
classes in context,” in IEEE Conf. Comput. Vis. Pattern Recog., 2018,
pp. 1209–1218.

[30] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2016, pp. 3213–3223.

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “ImageNet
large scale visual recognition challenge,” Int. J. Comput. Vis., vol.
115, no. 3, pp. 211–252, 2015.

[32] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2015, pp. 3431–3440.

[33] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethink-
ing atrous convolution for semantic image segmentation,” arXiv
preprint arXiv:1706.05587, 2017.

[34] H. Ding, X. Jiang, A. Q. Liu, N. M. Thalmann, and G. Wang,
“Boundary-aware feature propagation for scene segmentation,” in
Int. Conf. Comput. Vis., 2019, pp. 6819–6829.

[35] X. Li, X. Li, L. Zhang, G. Cheng, J. Shi, Z. Lin, S. Tan, and Y. Tong,
“Improving semantic segmentation via decoupled body and edge
supervision,” in Eur. Conf. Comput. Vis. Springer, 2020, pp. 435–
452.

[36] Y. Yuan, J. Xie, X. Chen, and J. Wang, “Segfix: Model-agnostic
boundary refinement for segmentation,” in Eur. Conf. Comput. Vis.
Springer, 2020, pp. 489–506.

[37] M. Zhen, J. Wang, L. Zhou, S. Li, T. Shen, J. Shang, T. Fang, and
L. Quan, “Joint semantic segmentation and boundary detection
using iterative pyramid contexts,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2020, pp. 13 666–13 675.

[38] Y. Yuan, L. Huang, J. Guo, C. Zhang, X. Chen, and J. Wang,
“Ocnet: Object context network for scene parsing,” arXiv preprint
arXiv:1809.00916, 2018.

[39] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng,
T. Xiang, P. H. Torr et al., “Rethinking semantic segmentation from
a sequence-to-sequence perspective with transformers,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2021, pp. 6881–6890.

[40] B. Cheng, A. Schwing, and A. Kirillov, “Per-pixel classification is
not all you need for semantic segmentation,” Adv. Neural Inform.
Process. Syst., vol. 34, pp. 17 864–17 875, 2021.

[41] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar,
“Masked-attention mask transformer for universal image segmen-
tation,” in IEEE Conf. Comput. Vis. Pattern Recog., 2022, pp. 1290–
1299.

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” Adv. Neural
Inform. Process. Syst., vol. 25, pp. 1097–1105, 2012.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[44] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp.
1–9.

[45] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in IEEE Conf. Com-
put. Vis. Pattern Recog., 2017, pp. 4700–4708.

[46] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and
P. Torr, “Res2net: A new multi-scale backbone architecture,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 43, no. 2, pp. 652–662, 2019.

[47] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He,
J. Mueller, R. Manmatha et al., “Resnest: Split-attention networks,”
in IEEE Conf. Comput. Vis. Pattern Recog., 2022, pp. 2736–2746.

[48] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
IEEE Conf. Comput. Vis. Pattern Recog., 2018, pp. 7132–7141.

[49] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,”
in IEEE Conf. Comput. Vis. Pattern Recog., 2019, pp. 510–519.

[50] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie,
“A convnet for the 2020s,” in IEEE Conf. Comput. Vis. Pattern Recog.,
2022.

[51] X. Ding, X. Zhang, J. Han, and G. Ding, “Scaling up your kernels
to 31x31: Revisiting large kernel design in CNNs,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2022, pp. 11 963–11 975.

[52] S. Liu, T. Chen, X. Chen, X. Chen, Q. Xiao, B. Wu, M. Pech-
enizkiy, D. Mocanu, and Z. Wang, “More convnets in the 2020s:
Scaling up kernels beyond 51x51 using sparsity,” arXiv preprint
arXiv:2207.03620, 2022.

[53] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu,
Y. Mu, M. Tan, X. Wang et al., “Deep high-resolution representation
learning for visual recognition,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 43, no. 10, pp. 3349–3364, 2020.

[54] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Adv. Neural Inform. Process. Syst., 2017, pp. 5998–6008.

[55] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distilla-
tion through attention,” in Int. Conf. Mach. Learn. PMLR, 2021,
pp. 10 347–10 357.

[56] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, F. E. Tay, J. Feng, and
S. Yan, “Tokens-to-token ViT: Training vision transformers from
scratch on ImageNet,” in Int. Conf. Comput. Vis., 2021, pp. 558–567.

[57] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang,
“CvT: Introducing convolutions to vision transformers,” in Int.
Conf. Comput. Vis., 2021, pp. 22–31.

[58] X. Chu, Z. Tian, B. Zhang, X. Wang, X. Wei, H. Xia, and C. Shen,
“Conditional positional encodings for vision transformers,” in Int.
Conf. Learn. Represent., 2023.

[59] D. Zhou, Z. Yu, E. Xie, C. Xiao, A. Anandkumar, J. Feng, and J. M.
Alvarez, “Understanding the robustness in vision transformers,”
in Int. Conf. Mach. Learn. PMLR, 2022, pp. 27 378–27 394.

[60] W. Yu, M. Luo, P. Zhou, C. Si, Y. Zhou, X. Wang, J. Feng, and S. Yan,
“Metaformer is actually what you need for vision,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2022, pp. 10 819–10 829.

[61] Z. Xia, X. Pan, S. Song, L. E. Li, and G. Huang, “Vision transformer
with deformable attention,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2022, pp. 4794–4803.

[62] W. Xu, Y. Xu, T. Chang, and Z. Tu, “Co-scale conv-attentional
image transformers,” in Int. Conf. Comput. Vis., 2021, pp. 9981–
9990.

[63] D. Hendrycks and K. Gimpel, “Gaussian error linear units
(gelus),” 2020.

[64] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar,
“Masked-attention mask transformer for universal image segmen-
tation,” 2022.

[65] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” in Int. Conf. Learn. Represent., 2018.

[66] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou,
“Going deeper with image transformers,” in Int. Conf. Comput.
Vis., 2021, pp. 32–42.

[67] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers
for dense prediction,” in Int. Conf. Comput. Vis., 2021, pp. 12 179–
12 188.

[68] M. Ding, B. Xiao, N. Codella, P. Luo, J. Wang, and L. Yuan, “Davit:
Dual attention vision transformers,” in Eur. Conf. Comput. Vis.
Springer, 2022, pp. 74–92.

[69] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[70] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based
object detectors with online hard example mining,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2016, pp. 761–769.

[71] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Unified perceptual
parsing for scene understanding,” in Eur. Conf. Comput. Vis., 2018,
pp. 418–434.

[72] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár,
“Designing network design spaces,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2020, pp. 10 428–10 436.

[73] J. Yang, C. Li, and J. Gao, “Focal modulation networks,” arXiv
preprint arXiv:2203.11926, 2022.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Yu-Huan Wu received his Ph.D. degree from
Nankai University in 2022, advised by Prof.
Ming-Ming Cheng. Currently, he is a re-
search scientist at the Institute of High Per-
formance Computing (IHPC), Agency for Sci-
ence, Technology and Research (A*STAR), Sin-
gapore. He has published 10+ papers on top-
tier conferences and journals such as IEEE
TPAMI/TIP/CVPR/ICCV. His research interests
include computer vision, medical imaging and
autonomous driving.

Shi-Chen Zhang received his B.E. degree in
computer science from Nankai University in
2023. Currently, he is a Ph.D. student in Media
Computing Lab, Nankai University, supervised
by Prof. Ming-Ming Cheng. His research inter-
ests include object detection and semantic seg-
mentation.

Yun Liu received his B.E. and Ph.D. degrees
from Nankai University in 2016 and 2020, re-
spectively. Then, he worked with Prof. Luc Van
Gool for one and a half years as a postdoctoral
scholar at Computer Vision Lab, ETH Zurich.
Currently, he is a senior scientist at the Institute
for Infocomm Research (I2R), Agency for Sci-
ence, Technology and Research (A*STAR), Sin-
gapore. His research interests include computer
vision and machine learning.

Le Zhang received his M.Sc and Ph.D.degree
form Nanyang Technological University (NTU) in
2012 and 2016, respectively. Currently, he is a
professor at UESTC. He served as TPC member
in several conferences such as AAAI, IJCAI. He
has served as a Guest Editor for Pattern Recog-
nition and Neurocomputing; His current research
interests include deep learning and computer
vision.

Xin Zhan received his bachelor’s and doctoral
degrees from USTC in 2010 and 2015, respec-
tively. He works as a researcher of Udeer AI.
His research interests include perception for au-
tonomous driving.

Daquan Zhou received the PhD degree from
NUS, under the supervision of Prof. Jiashi Feng.
He is currently a research scientist at Bytedance.
His research interests include deep learning,
neural network compression, neural network
structure design, and AutoML.

Jiashi Feng received the PhD degree from
NUS, in 2014. He is currently a research lead
with ByteDance. Before joining ByteDance, he
was assistant professor with the Department of
Electrical and Computer Engineering, National
University of Singapore. His research areas in-
clude deep learning and their applications in
computer vision. He received the best technical
demo award from ACM MM 2012, best paper
award from TASK-CV ICCV 2015, best student
paper award from ACM MM 2018.

Ming-Ming Cheng received his Ph.D. degree
from Tsinghua University in 2012. Then, he did
two years research fellow with Prof. Philip Torr
in Oxford. He is now a professor at Nankai Uni-
versity, leading the Media Computing Lab. His
research interests include computer graphics,
computer vision, and image processing. He re-
ceived research awards, including ACM China
Rising Star Award, IBM Global SUR Award, and
CCF-Intel Young Faculty Researcher Program.
He is on the editorial boards of IEEE TPAMI/TIP.

Liangli Zhen received his Ph.D. degree in com-
puter science from Sichuan University in 2018.
He is a senior scientist and group manager at
the Institute of High Performance Computing
(IHPC), Agency for Science, Technology and
Research (A*STAR), Singapore. His current re-
search interests include machine learning and
computer vision. He has published more than
30 papers in top tier journals and conferences
including TPAMI/TNNLS/CVPR/ICCV.


	Introduction
	Related Work
	Semantic Segmentation
	Convolutional Neural Networks
	Vision Transformers

	Methodology
	Low-Resolution Self-Attention
	Low-Resolution Transformer
	Decoder Head
	Implementation Details

	Experiments
	Experimental Setup
	Comparisons
	Visualization analysis.
	Ablation Study

	Conclusion
	References
	Biographies
	Yu-Huan Wu
	Shi-Chen Zhang
	Yun Liu
	Le Zhang
	Xin Zhan
	Daquan Zhou
	Jiashi Feng
	Ming-Ming Cheng
	Liangli Zhen


