
IEEE Wireless Communications • December 2021 131536-1284/21/$25.00 © 2021 IEEE

Abstract
Wireless networks (e.g., 5G networks) enable 

distributed energy infrastructures to be connect-
ed even when they are geometrically isolated. 
Intelligent monitoring from remote sites there-
fore becomes possible, allowing decision mak-
ers to examine the status of distributed energy 
infrastructures from a central location. The major 
challenge is when local devices cannot perform 
the monitoring independently; transmitting every 
signal back to the central server triggers enor-
mous amounts of wireless communication. To 
address this, we propose a two-tier AI system 
by offloading computations to multiple devices. 
Specifically, we build lightweight AI models for 
deployment on edge clients (i.e., edge sensors) 
and a large-scale AI model for the central server. 
These two types of AI models are trained with 
different criteria: the models on the edges act as 
the filtering tools to detect abnormal events and 
maximally avoid making false negative predic-
tions, whereas the server model is supposed to 
be an expert for accurate predictions. By validat-
ing on a power theft dataset, we show that such 
a cascading methodology could filter out suffi-
cient negative examples on the edge side while 
still being able to provide precise predictions on 
the second-round analysis.

Introduction
Energy infrastructures in many scenarios are natu-
rally distributed over multiple locations. For exam-
ple, distributed energy resources (DERs) provide 
electricity consumers commercially competitive 
alternatives to the conventional centralized grid. 
Infrastructures on the consumption side tend to 
be even more distributed: devices are generally 
located in different households, factories, or even 
districts. This geometric isolation brings some 
practical difficulties when performing monitoring 
or maintaining tasks. Manual maintenance and 
anomaly detection often need engineers to check 
the status of distributed infrastructures, compare 
abnormal meter readings with normal ones, or 
examine a bypassed power transmission line on 
site. This would require enormous human resourc-
es to be deployed, along with other issues such as 
time consumption and costs.

With the development of wireless communi-
cation techniques (e.g., 5G networks and Blue-
tooth), many of the monitoring tasks can now 
be assisted or even replaced by artificial intelli-
gence (AI) models, so limited human labor will 
be required [1–4]. Through a wireless network, 
energy devices can exchange their working status 
with their neighbors and/or report their sensor 
readings to the server. Moreover, these AI models 
could automatically perform 24/7 monitoring and 
support near-real-time warnings on site.

From the general view, the AI monitoring can 
be performed either locally, that is, purely relying 
on the local analysis, or with assistance from a 
remote center. The former is generally preferred 
in practice as it minimally triggers communica-
tion between edge devices and the central serv-
er, standing out as a communication-efficient 
approach. It can be applied to many situations 
where anomaly events can be classified easily by 
some simple AI models like linear regression, sup-
port vector machine, and shallow neural networks. 
Examples can be found in federated learning [5], 
where the edges process the data analysis first, and 
the server is only in charge of model aggregation.

In this article, we shall focus on the latter case, 
where local models cannot perform the moni-
toring task accurately alone, and assistance from 
the remote server is required. This applies to 
situations where precise AI models require suf-
ficient computation and memory resources, but 
the resources on the distributed energy edges 
are limited. For example, to detect a power usage 
anomaly, the AI-based approach in [6] contains 
a hybrid attention model with 51 million param-
eters, which is clearly beyond the computation 
abilities of most edge energy devices. Methodolo-
gies mostly relying on local analysis, like federated 
learning, cannot provide precise predictions in 
this case. A conventional solution in this scenar-
io would be transmitting all local readings to a 
central server that is assumed to have more com-
puting resources and more powerful AI capabil-
ities, and then conducting the data analysis on 
the server alone. However, considering the fact 
that a server may connect to thousands of poten-
tial edge devices and the monitoring task should 
be performed continuously, the major challenge 
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here is the massive bandwidth required for wire-
less communication between the edges and the 
server. Moreover, wireless communication is not 
utilized efficiently since the server would simply 
predict “normal” for edge requests in most cases.

The question now boils down to how to off-
load part of the computation to the distributed 
devices and use wireless communication more 
efficiently. To answer it, we need to review how 
humans conduct the monitoring task: an experi-
enced engineer would only examine suspicious 
conditions and ignore those events that can be 
confirmed as normal cases. In other words, there 
is a simple “pre-classifier” that allows the person 
to perform some estimations of on which case he 
needs to focus. This inspires us to design a simi-
lar approach for AI-based monitoring: the edge 
devices should ignore those normal signals and 
only contact the central server when they detect a 
potential sign of anomalies.

This article transforms such a fil-
ter-and-then-classify blueprint into a deployable 
AI-assisted monitoring system that requires lim-
ited wireless communication. Specifically, we 
build multiple lightweight AI models for the 
distributed clients (i.e., the edge sensors) and 
a large-scale AI model deployed on the central 
server. These models are trained with different 
criteria. The model on the client side acts as a 
filtering tool to detect abnormal events of edge 
energy devices and maximally avoids committing 
false negative predictions. In contrast, the model 
on the server acts as an expert to provide the 
most accurate prediction it can. Demonstration 
through a power theft use case illustrates that 
such a collaborative scheme can filter out suf-
ficient negative examples on the edge devices, 
while still providing precise analysis for anoma-
lous power usage on the server side.

Challenges
Deploying AI models to distributed devic-
es allows for sensing along the infrastructure 
deployment and reducing the human labor 
involved. Before moving forward, let us first high-
light some challenges that an AI system could 
encounter in practical design.

Hardware Constraints and AI Capability
The success of modern AI is accompanied by 
the increasing demand for hardware capabilities 
[7]. AI models (e.g., deep neural networks) often 
consist of millions of parameters that require 
numerous memories and computations to pro-
vide accurate predictions for their designated 
task. In contrast, the hardware on most edge 
infrastructures is assumed to have very limited 
computing resources, and we cannot expect 
them to have the same AI capabilities as most 
workstations do.

Therefore, before any training or validation, 
the underlying model should first fit the hardware 
constraints. A direct consequence is that we have 
to utilize simple models (e.g., shallow neural net-
works) in many situations, even though their per-
formance is inferior to their complex counterparts. 
Thus, the gap between expected good model per-
formance and the constrained hardware capabil-
ities becomes the first challenge when designing 
an AI system for edges.

Efficient Wireless Communication

In the sense that local AI capabilities are constrained, 
sending all the signals back to a “powerful” server 
would nevertheless be a straightforward approach. 
The main issue here is the frequent wireless com-
munication between the edge infrastructures and 
the central server. Moreover, communication for 
this approach is not utilized efficiently since most 
of the signals tend to be normal, while abnormal 
events in general are rare [8]. Thus, most of the 
time, the central server would simply reply to each 
edge infrastructure with “boring health.”

When edges cannot process the monitoring 
task alone, wireless communication between dis-
tributed infrastructures and a center is inevitable. 
Still, it should be utilized in a wiser way: edge 
devices should only trigger communication when 
necessary. As a canonical example, when the ratio 
of normal/abnormal signals is 100, the strategy of 
only reporting the abnormal events would require 
99.01 percent less communication than the naive 
approach. Of course, such a number represents 
the ideal situation, and an AI model could com-
mit mistakes when classifying signals from normal 
events and abnormal events. But the principle of 
efficiently utilizing wireless communication should 
be well addressed for practical AI deployment.

Data Imbalance
The different frequencies of normal/abnormal 
signals bring the challenges of data imbalance 
and the corresponding model training difficulties. 
When the number of normal cases dominates 
the abnormal cases, the machine learning model 
often tends to simply predict every sample to be 
a normal case to achieve the highest accuracy 
(see the example in [9]). Although there are some 
special techniques like training with the area 
under curve (AUC) maximization [10] or sam-
pling techniques [11], they do not com for free: 
for example, emphasizing abnormal signals by 
extra sampling leads to more internal epochs and 
additional computation costs.

Instead, the data imbalance issue could be 
solved or alleviated from its origin: the system 
may only pass some of the normal samples to the 
server. Instead of burying itself with numerous 
negative examples, the model can now focus on 
positive samples and be well trained to detect 
anomalies. The challenge here is how to design a 
practical filtering strategy to control the portion of 
normal signals while allowing all (or most) abnor-
mal signals to pass through at the same time.

Computation Offloading
As alluded to earlier, a center may need to moni-
tor a large number of edge energy infrastructures, 
and purely relying on the center for AI compu-
tation leads to heavy burdens on one side. An 
efficient AI system should offload computations 
from one server to multiple end clients so that the 
analysis is performed in a decentralized way.

The major challenge lying ahead is that we 
assume edges cannot perform the analysis alone, 
and we cannot naively allocate monitoring tasks 
to them due to performance considerations. 
Instead, we need to design a proper distributing 
mechanism such that only some of the tasks are 
borne by these end clients.

When edges cannot 
process the monitor-
ing task alone, wire-
less communication 
between distributed 
infrastructures and a 
center is inevitable. Still, 
it should be utilized in a 
wiser way: edge  
devices should only 
trigger communication 
when necessary. 
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Proposed Solution: Two-Tier AI Analysis
Instead of utilizing the edge models alone or 
purely relying on the central server, in this article, 
we aim to design a third approach by offloading 
some of the analysis tasks to edge devices. The 
solution we propose is to utilize a two-tier AI sys-
tem: lightweight AI models to be deployed on the 
edge clients as “pre-classifiers” and a large-scale 
expert AI model designed for precise signal analy-
sis on the central server.

General System Scheme
Specifically, the overall signal analysis contains the 
following steps.

Step I: An edge device generates and collects 
signals. These signals can be meter readings or 
sensor values.

Step II: Local models classify and filter the 
signals into normal and suspicious based on the 
features generated in Step I: ŷf = Filter(x). These 
models are assumed to be simple and deployable 
on edge devices.

Step III: If local predictions are normal (ŷf = 0), 
the analysis is complete, and no communication 
is triggered.

Step IV: If the local filter model detects suspi-
cious signals (ŷf = 1) that require further analysis, 
the edge device shall upload these suspicious sig-
nals to the server through a wireless network. The 
wireless network could be a radio-wave network 
if edges are distributed remotely, or a Bluetooth 
network if they are within certain ranges.

Step V: The expert model on the server 
makes the final decision for suspicious signals ŷe 
= Expert(x). The model on the server is assumed 
to be free from memory and computation limits, 
hence acting as an expert to classify normal and 
abnormal events.

Step VI: Return results ŷe to local devices.
In the above scheme, we design two circles 

for AI analysis, and the classified normal and 
suspicious signals of Step II go through different 
decision steps (Fig. 1}). If the signals are locally 
classified as “normal,” the analysis is then com-
plete, and the AI system does not trigger wireless 
communication; we call this “the local circle.” But 
if local models observe signs of abnormality, these 
signals shall be further transmitted to the server on 
the cloud. Since the server is generally assumed 
to have more powerful AI capabilities (e.g., work-
stations with very deep neural networks), the 
second-round analysis is expected to be more 
accurate than the local counterparts. In Fig. 1, we 
conclude these wireless communication steps and 
analysis on the server as the “remote circle.”

The goal of designing such a two-tier signal 
analysis is to address the challenges discussed 
previously. AI capabilities on the edge infra-
structures are generally limited by hardware 
constraints, and therefore we can only deploy 
simple models with light analysis. These edge 
models are expected to filter out normal signals 
and leave the rest as suspicious ones. The under-
lying mechanism is that detecting normal signals 
is generally much more manageable than detect-
ing abnormalities, and local models can frankly 
predict “I do not know” for unknown patterns. 
Communication is utilized more efficiently in this 
case since data analysis for normal signals stays 

local and minimally triggers wireless communi-
cation with the server. Such a first-round analy-
sis also allows the AI system to well offload the 
computations to multiple devices and avoids the 
computation congestion on the server side if we 
were to transmit every signal to the cloud.

Edge Model Design
With the above general scheme, the next step 
would be designing some proper filter models for 
edge infrastructures. Specifically, the model on 
each local client acts as a “membrane” to filter 
out normal signals and let abnormal ones pass. 
Such a functionality makes it clearly different from 
the conventional machine learning approaches, 
where the goal is to achieve the highest accuracy 
or AUC score. Throughout this article, we assume 
memory and/or computation limits of edges; even 
the best local model may not fully classify the local 
signals. As such, instead of seeking its maximum 
classification ability (e.g., 60 or 70 percent), the 
light model now focuses on a simpler task: given 
a signal, it needs to classify whether the signal is 
definitely normal or just report it as suspicious.

To achieve this goal, these edge models 
require special designs. Note that machine learn-
ing often defines some loss functions to penal-
ize the model’s mistakes and forces it to move 
toward some directions with fewer errors. For a 
classification problem, the errors can be catego-
rized into two classes:
•	 False positive (FP) prediction: incorrectly classi-

fies normal events as suspicious signals
•	 False negative (FN) prediction: incorrectly classi-

fies abnormal events as normal signals
For practical monitoring, the consequences of 

the above two mistakes are often different. The 
former error refers to the case where the filter 
model classifies normal events as abnormal sig-
nals (e.g., classify normal power usage as leak-
age). In Fig. 1, this would trigger communication 
with the server, and further analysis on the cloud 
would correct these mistakes. However, for the 
latter scenario, the filter classifies abnormal events 
(e.g., power leakage or power theft) as normal 
signals and does not inform either the local device 
or the remote server. The potential loss can be 

FIGURE 1. The general scheme for the proposed two-tier AI system. Data anal-
ysis is performed in two circles: edge models first perform some light anal-
ysis in the local circle; only suspicious signals shall be transmitted over the 
wireless network and further analyzed in the remote circle.
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disastrous: failure to predict power leakages could 
lead to fires of energy infrastructures; ignorance 
of power theft could result in continuous loss for 
power supply companies.

As such, instead of seeking the highest accu-
racy an edge model can achieve, we require it to 
obey the “Safety Principle” proposed in [12]:

Safety Principle: The filter models should elimi-
nate or maximally avoid false negative predictions.

In machine learning, obeying the safety princi-
ple could be achieved by different approaches. In 
this article, we consider a simple method by adding 
an additional penalty to the false negative predic-
tions. For example, in the binary classification prob-
lem, besides the prediction loss (e.g., mean-square 
loss (y – ŷ)2), an extra penalty term would be:

l · y max (l – ŷ, 0 ).

Here y refers to the true label, with y=0 denoting 
the normal events and y = 1 denoting the abnor-
mal events. ŷ ∈ [0, 1] (continuous, non-binary) 
refers to the predicted value from the local fil-
ter model, and l refers to a threshold to perform 
binary classification: if ŷ < l, the final prediction 
would be 0; otherwise, the prediction would be 
1. l is a tuning parameter to exaggerate or shrink 
the penalty term. The goal of designing such an 
extra loss is to penalize FN predictions: the above 
formula is non-zero iff y = 1 and ŷ < l, namely the 
truth label y indicates an abnormal event, but our 
local AI model predicts it as a normal event.

Other penalty terms can be utilized similarly if 
the underlying problem is not binary classification. 
For example, in the regression problem, the pen-
alty term could be l · max(y – ŷ, 0). In general, 
the design of these terms follows the same philos-
ophy: we want the edge model to make as few 
FN predictions as possible, and hence be safer in 
filtering positive samples.

Expert Model Design
With the edge model settled, we can now proceed 
to the expert model design. Note that this model is 
to be deployed on the server side, where the server 
on the cloud often refers to a powerful workstation 
or a super-computer with abundant computation 
and memory resources. Hence, the choice of the 
expert model tends to be simple: we may choose 
the state-of-the-art (SOTA) AI model or use very 
deep neural networks (e.g., deep ResNet [13]). 
The principle that an expert should obey follows 
the conventional accuracy or AUC maximization 
principle: an expert should be able to precisely dis-
tinguish abnormal events from normal ones.

It is also worth mentioning that an expert 
model is not indispensable for many AI systems. 
In certain scenarios, its role can be safely replaced 
by humans instead of an AI model. For instance, 
as long as the edge models can filter out suspi-
cious signals from potential tremendous data, a 
human engineer could focus on these tasks and 
perform the analysis and maintenance work. In 
this case, the human engineer acts as the “serv-
er model.” Nevertheless, for a complete AI sys-
tem or in the absence of human staff, we may still 
build an expert model as SOTA does.

Performance Evaluation
Having established the general scheme of the 
AI-assisted monitoring system, we can now pro-
ceed to experimental validations based on some 
real-world datasets.

Preliminary
The data we consider is from a power usage 
dataset released by State Grid Corporation of 
China (SGCC), which contains 42,372 electricity 
consumption records within 1035 days (https://
github.com/henryRDlab/ElectricityTheftDetec-
tion). The goal is to detect power thieves by ana-
lyzing their power usage patterns. Since its first 
usage in [14], this dataset has become a public 
benchmark for power usage anomaly detection, 
especially for power theft detection. However, 
the current SOTA model is a hybrid attention 
model from [6], which consists of 51 million 
parameters and obtains a 0.92 AUC score. Such 
a huge model, though accurate, is clearly not suit-
able for edge infrastructures with limited memory 
and computation abilities. In the meantime, this 
dataset is highly imbalanced: 91.47 percent data 
are normal readings, whereas only 8.53 percent 
samples are power theft.

Edge Model Training
The conventional idea on this dataset is to gath-
er all the readings to one node (e.g., a server) 
and train a complex model to detect anomalies. 
However, power readings are naturally distributed 
over multiple locations, and transmitting signals 
to one place may face both communication and 
computation issues. In this article, we propose a 
filter-and-then-classify paradigm that requires filter 
models to sort out suspicious signals first.

Specifically, the underlying model should fit the 
hardware constraints first and then maximize its AI 
capabilities. For simulation purposes, we adopt a 
convolutional neural network (CNN) model with 
three convolution layers and three linear layers, 
as has been validated in previous research [6]. To 
train such edge models, we use both the predic-
tion loss (1/2)(y – ŷ)2 and the extra penalty term l 
· y max(l – ŷ, 0 ). Here l acts as a hyper-parame-
ter that decides how we shall penalize the FN pre-
dictions: a large l would severely punish any FN 
predictions but at the same time lead to more FP 
predictions. This is because the algorithm tends to 
predict more instances to be positive (abnormal) 
to avoid the extra penalty term, some of which 
are actually negative (normal) samples. We split 
the overall dataset into a training set and a testing 
set with test_ratio = 0.3 and train the filter model 
with various l.

Table 1 reports the final test performance 

TABLE 1. Filter model results with various l. As 
references, the SOTA model obtains ≈ 4.0% 
false negative rate, and the label ratio without 
filtering is 10.72.

l False negative 
rate

Communication 
reduction

Label 
ratio

0 100 % 100 % —

0.05 20.27 % 75.83 % 2.46

0.1 5.02 % 46.16 % 5.46

0.2 3.77 % 30.66 % 7.22

The conventional idea 
on this dataset is to 
gather all the readings 
to one node (e.g., a 
server) and train a 
complex model to 
detect anomalies. How-
ever, power readings 
are naturally distributed 
over multiple locations, 
and transmitting signals 
to one place may face 
both communication 
and computation 
issues. 
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on this dataset. Setting l = 0 refers to the con-
ventional approach by training edge models 
with standard mean squared error (MSE) loss. 
In this case, since we are using a relatively sim-
ple model and the negative samples dominate 
the whole dataset, the trained model predicts all 
instances as negative and does not trigger com-
munication. Such a 100 percent false negative 
rate leads to an extreme case where all anom-
alies are neglected, and the fi lter model fails to 
sort out the suspicious signals. In contrast, by 
adding an extra penalty term (l  > 0), the false 
negative rate (FNR) can be signifi cantly reduced. 
A larger l refers to more severe penalties on the 
FN predictions; hence, the FNR decreases to 
maximally obey the safety principle.

Specifically, by setting l = 0.2, we obtain an 
edge model with a 3.77 percent false negative 
rate, which is better than the SOTA complex 
model with ≈ 4.0 percent FNR. The limit of the 
hardware forces us to select a light model on 
edge energy infrastructures, but by training with 
the safety principle, this model minimally avoids 
predicting abnormal events as normal ones. This 
refers to the scenario where edge models filter 
out abnormal events to their maximum ability 
instead of seeking the best accuracy.

In the meanwhile, 30.66 percent of the signals 
are analyzed only locally and do not trigger wire-
less communication. By doing so, we are able to 
off load 30.66 percent computations to light models 
on edge devices instead of transmitting every signal 
and purely relying on the server. The data imbalance 
issue is also partially alleviated, reducing from 10.72 
of the original dataset to 7.22 with local fi ltering.

expert model trAInIng
The memory and computation ability on the serv-
er side is assumed to be suffi  ciently large. As such, 
we are able to deploy a more complex model on 
the server side, such as the SOTA Hybrid Atten-
tion model proposed in [6]. However, the safety 
principle should also be addressed for the expert 
model to penalize misclassifying abnormal signals 
as normal ones. To facilitate this idea, we add a 
similar penalty term with l  = 0.05 to force the 
expert model to address the false negative issue, 
which is not included in the original article.

Table 2 summarizes the overall performance of 
two previous research works and the two models 
proposed in this article. Note that the functionality 
of the filter model is not to seek the best AUC 
or F1 score; hence, its values are not as good as 
the rest. For the expert model, the obtained AUC 
is slightly higher than the original work, but the 
F1 score is lower. In general, though, the perfor-
mance difference is rather minor since we use 
the same architecture as [6]. However, looking 
into the training process of these two models, as 
shown in Fig. 2, we observe that the underlying 
false prediction rate for the expert model is less 
by adding a penalty, and hence safer in terms of 
the safety principle.

summAry
This article considers a communication-efficient 
approach for energy infrastructure monitoring and 
maintenance enabled by wireless networks. Our 
goal is to build a two-tier AI-assisted management 
system by providing smart device status predictions, 

while at the same time addressing the communica-
tion overhead issues incurred by transmitting signals 
from edges to the server. We propose an AI system 
containing filter models that emphasize the false 
negative predictions and safety principle, as well 
as another expert model that can provide accurate 
analysis for suspicious signals. Validations are pro-
vided on a power theft detection dataset, where 
we show that the collaboration can distribute the 
computation burden to multiple edge devices and 
obey the safety principle simultaneously.

Regarding the edge models, we adopt some 
architectures from previous research studies but 
training with different criteria. For demonstration 
purposes, we adopt a simple penalty term to force 
the edge models to make as few false negative pre-
dictions as they can. The choice of the architecture 
and the penalty term may not be optimal, and we 
defer further explorations to future works.
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