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Abstract—Natural Language Video Localization (NLVL) aims to locate a target moment from an untrimmed video that semantically

corresponds to a text query. Existing approaches mainly solve the NLVL problem from the perspective of computer vision by

formulating it as ranking, anchor, or regression tasks. These methods suffer from large performance degradation when localizing on

long videos. In this work, we address the NLVL from a new perspective, i.e., span-based question answering (QA), by treating the input

video as a text passage. We propose a video span localizing network (VSLNet), on top of the standard span-based QA framework

(named VSLBase), to address NLVL. VSLNet tackles the differences between NLVL and span-based QA through a simple yet effective

query-guided highlighting (QGH) strategy. QGH guides VSLNet to search for the matching video span within a highlighted region.

To address the performance degradation on long videos, we further extend VSLNet to VSLNet-L by applying a multi-scale

split-and-concatenation strategy. VSLNet-L first splits the untrimmed video into short clip segments; then, it predicts which clip segment

contains the target moment and suppresses the importance of other segments. Finally, the clip segments are concatenated, with

different confidences, to locate the target moment accurately. Extensive experiments on three benchmark datasets show that the

proposed VSLNet and VSLNet-L outperform the state-of-the-art methods; VSLNet-L addresses the issue of performance degradation

on long videos. Our study suggests that the span-based QA framework is an effective strategy to solve the NLVL problem.

Index Terms—Natural language video localization, single video moment retrieval, temporal sentence grounding, cross-modal retrieval, multi-

modal learning, span-based question answering, multi-paragraph question answering, cross-modal interaction

Ç

1 INTRODUCTION

NATURAL language video localization (NLVL) is a promi-
nent yet challenging problem in vision-language under-

standing. Given an untrimmed video, NLVL is to retrieve a
temporal moment that semantically corresponds to a given
language query. As illustrated in Fig. 1, NLVL involves both
computer vision and natural language processing techni-
ques [1], [2], [3], [4], [5], [6]. Cross-modal reasoning is essen-
tial for NLVL to correctly locate the target moment in a
video. Prior studies primarily treat NLVL as a ranking task,
which apply multimodal matching architecture to find the
best matching video segment for a query [7], [8], [9], [10],
[11]. Some works [11], [12], [13], [14] assign multi-scale tem-
poral anchors to frames and select the anchor with the high-
est confidence as the result. Recently, several methods
explore to model cross-interactions between video and

query, and to regress temporal locations of target moment
directly [15], [16], [17]. There are also studies that formulate
NLVL as a sequential decision-making problem and solve it
with reinforcement learning [18], [19], [20].

Different from the aforementioned works, we address the
NLVL task from a new perspective, i.e., span-based question
answering (QA). Specifically, the essence of NLVL is to
search for a videomoment as the answer to a given language
query from an untrimmed video. By treating the video as a
text passage, and the target moment as the answer span,
NLVL shares significant similarities with the span-based QA
conceptually. With this intuition, NLVL could be revisited in
the span-based QA framework.

However, the existing span-based QA methods could not
be directly applied to solve the NLVL problem, due to the
following two technical gaps. First, the data nature is differ-
ent. To be specific, video is continuous, which results in the
continuous causal relation inference between two consecu-
tive video events; natural language, on the other hand, is
discrete, and words in a sentence demonstrate syntactic
structure. Therefore, changes between consecutive video
frames are usually smooth. In contrast, two word tokens
may carry different and even totally different meanings, e.g.,
oxymoron or negation. As a result, events in a video are tem-
porally correlated, and one can be linked with one another
along the video sequence. The relationships between words
or sentences are usually indirect and can be far apart. Second,
small shifts in video frames are less imperceptible to humans
than words in a text. Videlicet, small drifts between frames
usually do not affect the understanding of video content. In
contrast, the change of a few words or even one word could
change themeaning of a sentence entirely.
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By considering the above differences in data nature, we
propose a video span localizing network (VSLNet), where a
query-guided highlighting (QGH) strategy is introduced on
the top of the traditional span-based QA framework [21]. In
QGH, we consider a region that covers the target moment
by extending its starting and ending frames a bit further. In
this way, the selected region is regarded as foreground,
while the rest is treated as background.

One challenge in NLVL is that the performance of many
existing methods degrades significantly along with the
increase of video length (see detailed discussion in Sec-
tion 4.4). Since the NLVL models generally perform well on
short videos, one straightforward solution to address this
issue is to split a long video into multiple short clip seg-
ments. Then each clip segment is regarded as a short video.
By treating a long video as a document, a clip segment as a
paragraph, NLVL can be viewed as the multi-paragraph
question answering (MPQA) task [22]. The target moment
in a long video can be considered as the answer span in a
document for a given query.

However, how to properly split long video into clip seg-
ments is still challenging. Paragraphs in a document are
semantically coherent units with boundaries defined by
humans. Videos are continuous, and splitting the video into
semantically coherent clip segments is difficult, even if it is
feasible. In addition, the answer span in MPQA can be found
in one of the paragraphs, but we cannot expect the target
moment can be foundwithin a single clip segment, regardless
of how to split the videos. We propose a multi-scale split-and-
concat strategy to partition long video into clips of different
lengths. Comparedwith fixed length splitting, themulti-scale
splitting strategy increases the chance of locating a target
moment in one segment. In this way, even if a target moment
is truncated at one or several scales, segments in other scales
may still be able to fully contain it. Thus, we can locate the
moment in the clips that aremore likely to contain it. This net-
work is termed asVSLNet-L1 in the following context.

This paper is a substantial extension of our conference
publication [23] with the following improvements. First,
we investigate the localization performance degradation
issue of existing NLVL models on long videos, and propose
VSLNet-L to tackle this problem by introducing the concept

of MPQA. Second, we carry out more experimental analyses
involving the VSLNet-L and demonstrate its effectiveness
on long videos. The contribution and novelty of this work
are summarized as follows:

1) We provide a new perspective to solve NLVL by for-
mulating it as span-based QA, and analyze the natu-
ral differences between them in detail. To the best of
our knowledge, this is one of the first works to adopt
a span-based QA framework for NLVL.

2) We propose VSLNet to explicitly address the differ-
ences between NLVL and span-based QA, by intro-
ducing a novel query-guided highlighting strategy.

3) In addition to VSLNet, VSLNet-L is proposed by
incorporating the concept of multi-paragraph QA to
address the performance degradation on long videos.

2 RELATED WORK

2.1 Natural Language Video Localization

As introduced by [24], [25], NLVL requires to model the
cross-modality interactions between natural language texts
and untrimmed videos, to retrieve video segments with lan-
guage queries. Existing work on NLVL can be roughly
divided into five categories: ranking, anchor, reinforcement
learning, regression and span based methods.

Ranking-based methods [7], [8], [9], [10], [24], [26], [27],
[28] treat NLVL as a ranking task and rely on multimodal
matching architectures to find the best matching video
moment for a language query. For instance, Gao et al. [25]
proposed a cross-modal temporal regression localizer to
jointly model the queries, as well as predicting alignment
scores and action boundary regressions for pre-segmented
candidate clips. Chen et al. [29] proposed a semantic activ-
ity proposal that integrates sentence queries’ semantic infor-
mation into the proposal generation process to get
discriminative activity proposals. Although intuitive, these
models are sensitive to negative samples. Specifically, they
need densely sampled candidates to achieve good perfor-
mance, leading to low efficiency and low flexibility.

Various approaches have been developed to overcome
the above-mentioned drawbacks. Anchor-based methods
[11], [12], [13], [14], [30], [31] sequentially process the video
frames and assign each frame with multiscale temporal
anchors; then the anchor with the highest confidence is
selected as the result. For instance, Yuan et al. [32] proposed
a semantic conditioned dynamic modulation for better cor-
relating sentence-related video contents over time and
establishing a precise matching relationship between sen-
tence and video. Zeng et al. [33] designed a dense regres-
sion network to regress the distances from each frame to the
start/end frame of the video segment described by the
query. Liu et al. [30] presented a cross- and self-modal
graph attention network that recasts NLVL as a process of
iterative messages passing over a joint graph to capture
high-order interactions between two modalities.

Reinforcement learning-based methods formulate NLVL
as a sequential decision-making problem [18], [20]. This
process imitates humans’ coarse-to-fine decision-making
scheme to observe candidate moments conditioned on
queries. For example, Wang et al. [18] proposed a recurrent

Fig. 1. An illustration of localizing a temporal moment in an untrimmed
video by a given language query, and the general procedures of natural
language video localization.

1. “L” represents the multi-scale split-and-concat strategy for Long
videos.
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neural network-based reinforcement learning model to
selectively observe a sequence of frames and associate the
given sentence with the video content in a matching-based
manner. He et al. [19] presented a multi-task reinforcement
learning framework to learn an agent that regulates the tem-
poral grounding boundaries progressively based on its pol-
icy. Wu et al. [20] presented a tree-structured policy-based
progressive reinforcement learning framework to simulate
humans’ coarse-to-fine decision-making paradigm and to
sequentially regulate the temporal boundary in an iterative
refinement manner.

Regression-based methods [15], [17] tackle NLVL by
regressing the temporal time of target moments directly.
Yuan et al. [15] built a proposal-free model with BiLSTM and
a three-step attention module to regress temporal locations
of the target moment. Lu et al. [16] proposed a dense bottom-
up framework, which regresses the distances to start and
end boundaries for each frame in the target moment. Then, it
selects the onewith the highest confidence as the result. Chen
et al. [17] further extended the bottom-up framework in [16]
with graph-based feature pyramid network to boost the per-
formance. Mun et al. [34] proposed to extract a collection of
semantic phrases in the query and reflect bi-modal interac-
tions between the linguistic and visual features in multiple
levels for moment boundaries regression.

Recently, a few attempts have been made to address
NLVL that consider the concept of question answering [35],
[36]. Specifically, Chen et al. [35] introduced a cross-gated
attended recurrent network and a self interactor to exploit
the fine-grained interactions between the query and video. A
segment localizer is adopted to predict the starting and end-
ing boundary of the moment. Ghosh et al. [37] presented an
extractive approach that predicts the start and end frames by
leveraging cross-modal interactions between the text and
video. However, they did not state and explain the similarity
and differences between NLVL and the traditional span-
based QA; and they did not adopt the standard span-based
QA framework. In this work, we adopt a standard span-
based QA framework to address NLVL; and propose
VSLNet to explicitly address the issue caused by the differen-
ces betweenNLVL and the traditional span-based QA tasks.

In addition, several other methods have been applied to
NLVL, Escorcia et al. [38] extends NLVL to a general case
that the model is required to retrieve the target moments
from a video corpus instead of from a single video. Shao
et al. [39] presented a unified framework to learn video-
level matching and moment-level localization jointly.
Mithun et al. [40] explored to build a joint visual-semantic
embedding based framework to learn latent alignment
between video frames and sentence descriptions under
weakly supervised setting. Lin et al. [41] proposed a
weakly-supervised moment retrieval framework requiring
only coarse video-level annotations. Zhang et al. [42] mod-
eled the temporal relations between video moments by a
two-dimensional map and proposed a temporal adjacent
network to encode discriminative features for matching
video moments with referring expressions. Chen et al. [43]
presented a method for learning pairwise modality interac-
tions to exploit complementary information better and
improve performance on both temporal sentence localiza-
tion and event captioning.

2.2 Span-Based Question Answering

Span-based Question Answering (QA) has been widely
studied in the past years. Wang et al. [44] combined match-
LSTM [45] and Pointer-Net [46] to estimate boundaries of
the answer span. BiDAF [47] introduced bi-directional
attention to obtain query-aware context representation.
Xiong et al. [48] proposed a coattention network to capture
the interactions between context and query. R-Net [49] inte-
grated mutual and self attentions into the RNN encoder for
feature refinement. QANet [21] leveraged on a similar atten-
tion mechanism in a stacked convolutional encoder to
improve performance. FusionNet [50] presented a full-
aware multi-level attention to capture complete query infor-
mation. By treating input video as a text passage, the above
frameworks are all applicable to NLVL in principle. How-
ever, these frameworks are not designed to consider the dif-
ferences between video and text passage. Their modeling
complexity arises because of the interactions between query
and text passage, where the two inputs are in the homoge-
neous space. In our proposed method, VSLBase adopts a
simple and standard span-based QA framework, making it
easy to model the differences between video and text by
adding additional modules. Our VSLNet addresses the
issue caused by the differences with the QGHmodule.

Moreover, VSLNet-L is conceptually similar to the multi-
paragraph question answering (MPQA) framework [22],
[51], [52], [53], where both methods explore to locate an
answer span from multiple paragraphs/clips. Clark et al.
[22] adopted standard span-based QA models to entire
documents scenario by introducing confidence modules to
find an answer span from multiple paragraphs. Wang et al.
[51] proposed to solve MPQA by jointly training three mod-
ules that can predict the result based on answer boundary,
answer content, and answer verification factors. Wang et al.
[52] presented a multi-passage BERT model to globally
normalize answer scores across all passages of the same
question. Lin et al. [53] proposed a learning to rank model
with an attention module to select the best-matching para-
graph for a question. Pang et al. [54] presented a three-level
hierarchical answer spans model to extract the answer from
multi-paragraphs.

3 METHODOLOGY

In this section, we first describe how to address the NLVL
task by adopting a span-based QA framework. Then, we
present VSLBase (Sections 3.2, 3.3, and 3.4) and VSLNet
(Section 3.5) in detail. Lastly, we detail VSLNet-L (Sec-
tion 3.6) with multi-scale split-and-concat strategy. The
model architectures are shown in Fig. 2.

3.1 Span-Based QA for NLVL

We denote the untrimmed video as V ¼ ½f1; f2; . . . ; fT � and
the language query as Q ¼ ½q1; q2; . . . ; qm�, where T and m
are the number of frames and words, respectively. ts and te

represent the start and end time of the temporal moment
i.e., answer span. To address NLVL with the span-based
QA framework, we transform the data into a set of SQuAD
style triples ðContext;Question;AnswerÞ [55]. For each
video V , we extract its visual feature sequence VV ¼
½vv1; vv2; . . . ; vvn� by a pre-trained 3D ConvNet [56], where n is
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the number of extracted feature vectors. Here, VV can be
regarded as the sequence of word embeddings for a text
passage with n tokens, as in the traditional span-based QA
framework. Similar to word embeddings, each feature vec-
tor vvi here is a video feature vector.

Since span-based QA aims to predict start and end
boundaries of an answer span, the start/end time of a video
sequence needs to be mapped to the corresponding bound-
aries in the visual feature sequence VV . Suppose the video
duration is T , the start (end) span index is calculated by
asðeÞ ¼ RoundðtsðeÞ=T � nÞ, where Roundð�Þ denotes the
rounding operator. During the inference, the predicted span
boundary can be easily converted to the corresponding time
via tsðeÞ ¼ asðeÞ=n� T . After transforming moment annota-
tions in the NLVL dataset, we obtain a set of ðVV ;Q;AAÞ tri-
ples. Visual feature sequence VV ¼ ½vv1; vv2; . . . ; vvn� acts as the
passage with n tokens; Q ¼ ½q1; q2; . . . ; qm� is the query with
m tokens, and the answer AA ¼ ½vvas ; vvasþ1; . . . ; vvae � corre-
sponds to a piece in the passage. Then, the NLVL task
becomes to find the correct start and end boundaries of the
answer span, as and ae.

3.2 Feature Encoder

After obtaining visual features VV ¼ ½vv1; vv2; . . . ; vvn�> 2 Rn�dv ,
for a text query Q, we can compute its word embeddings
QQ ¼ ½qq1; qq2; . . . ; qqm�> 2 Rm�dq with existing text embedding
approaches, e.g., GloVe. We project the video and text fea-
ture vectors into the same dimension d, V 0V 0 2 Rn�d and Q0Q0 2
Rm�d, by two linear layers. Then we build the feature
encoder with a simplified version of the embedding encoder
layer in QANet [21].

Instead of applying a stack of multiple encoder blocks, we
use only one encoder block, as shown in Fig. 3. This encoder
block consists of four convolution layers, followed by a
multi-head attention layer [57]. A feed-forward layer is used
to produce the output. Layer normalization [58] and residual
connection [59] are applied to each layer. The encoded visual
feature sequence andword embeddings are as follows:

eVeV ¼ FeatureEncoderðV 0V 0Þ
eQeQ ¼ FeatureEncoderðQ0Q0Þ:

(1)

The parameters of feature encoder are shared by visual fea-
tures and word embeddings.

3.3 Context-Query Attention

After feature encoding, we utilize the context-query atten-
tion (CQA) [21], [47], [48] to capture the cross-modal inter-
actions between visual and textural features. CQA first
calculates the similarity scores, S 2 Rn�m, between each
visual feature and query feature. Then context-to-query (A)
and query-to-context (B) attention weights are computed as:

A ¼ Sr � eQeQ 2 Rn�d;B ¼ Sr � ST
c � eVeV 2 Rn�d; (2)

where Sr and Sc are the row- and column-wise normaliza-
tion of S by SoftMax, respectively. Finally, the output of
context-query attention is written as:

VV q ¼ FFN
�
½ eVeV ;A; eVeV �A; eVeV � B�

�
; (3)

where VV q 2 Rn�d; FFN is a single feed-forward layer; �
denotes an element-wise multiplication.

3.4 Conditioned Span Predictor

We construct a conditioned span predictor using two unidi-
rectional LSTMs and two feed-forward layers, inspired by
Ghosh et al. [37]. The main difference between our method
and the method in [37] is that we use unidirectional LSTM
instead of bidirectional LSTM. We observe that unidirec-
tional LSTM shows similar performance but with fewer
parameters and higher efficiency. We believe that the unidi-
rectional LSTM works as well as bidirectional LSTM in this
setting for two possible reasons. First, video is a temporal
sequence where events happen earlier lead to later events,
but not in the other way round. Second, the end boundary
of a target moment always appears after the start boundary
in the sequence. Therefore, we stack the two LSTMs so that
the LSTM for end boundary is conditioned on the LSTM for

Fig. 2. An overview of the proposed architectures for NLVL. The feature extractors, i.e., GloVe and 3D ConvNet, are fixed during training. (a) depicts
the structure of VSLNet. (b) shows the architecture of VSLNet-L. Note the standard span-based QA framework (VSLBase) is similar to VSLNet by
removing the Self-Attention and Query-Guided Highlighting modules.

Fig. 3. The structure of feature encoder.
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start boundary, to maintain the sequence nature of video.
The hidden states of the two LSTMs are then fed into the
corresponding feed-forward layers to compute the start and
end scores:

hhs
t ¼ UniLSTMstartðvvqt ; hhs

t�1Þ
hhe
t ¼ UniLSTMendðhhs

t ; hh
e
t�1Þ

SSs
t ¼ WWsð½hhs

t ; vv
q
t �Þ þ bbs

SSe
t ¼ WWeð½hhe

t ; vv
q
t �Þ þ bbe;

(4)

where SS
s=e
t 2 Rn denote the scores of start/end boundaries

at position t; vvqt represents the tth element in VV q. WWs=e and
bbs=e denote the weight matrix and bias of the start/end feed-
forward layer, respectively. Then, the probability distribu-
tions of start/end boundaries are computed by Ps=e ¼
SoftMaxðSSs=eÞ 2 Rn, and the training objective is defined as
follows:

Lspan ¼ 1

2

�
fCEðPs; YsÞ þ fCEðPe; YeÞ

�
; (5)

where fCE is the cross-entropy loss function; Ys and Ye are
the labels for the start (as) and end (ae) boundaries, respec-
tively. During the inference, the predicted answer span
ðâs; âeÞ of a query is generated by maximizing the joint prob-
ability of start and end boundaries as:

spanðâs; âeÞ ¼ argmax
âs;âe

PsðâsÞPeðâeÞ

s.t. 0 � âs � âe � n:
(6)

The description of VSLBase architecture has been com-
pleted. VSLNet is built on top of VSLBase with QGH, to be
detailed in Section 3.5.

3.5 Query-Guided Highlighting

The Query-Guided Highlighting (QGH) strategy is intro-
duced in VSLNet, to address the major differences between
text span-based QA and NLVL tasks, as shown in Fig. 2a.
With the QGH strategy, we consider the target moment as
the foreground, and the rest as background, illustrated in
Fig. 4. The target moment, which is aligned with the lan-
guage query, starts from as and ends at ae with length L ¼
ae � as. QGH extends the boundaries of the foreground to
cover its antecedent and consequent video contents, where
the extension ratio is controlled by a hyperparameter a. As
aforementioned in Introduction, the extended boundary
could potentially cover additional contexts and also help
the network to focus on subtle differences among video
frames.

By assigning 1 to the foreground and 0 to the background,
we obtain a binary sequence, denoted as Yh. QGH is a binary
classification module to predict the confidence a visual fea-
ture vector belongs to the foreground or background. The
structure of QGH is shown in Fig. 5. We first encode word
feature representations eQeQ into sentence representation
(denoted by hhQ), with self-attention mechanism [60]. Then
hhQ is concatenated with each feature element in VV q as �V�V

q ¼
½�v�vq1; . . . ; �v�vqn�, where �v�vqi ¼ ½vvqi ;hhQ�. The highlighting score and
highlighted feature representations are computed as:

Sh ¼ s
�
Conv1Dð �V�V qÞ

�
eVeV q ¼ Sh � �V�V q

;
(7)

where Sh 2 Rn; s denotes the Sigmoid activation; � repre-
sents multiplication operator, which multiplies each feature
of �V q and the corresponding score of Sh. Accordingly, fea-
ture VV q in Equation 4 is replaced by eVeV q

in VSLNet to com-
pute Lspan. The loss function of query-guided highlighting
is formulated as:

LQGH ¼ fCEðSh; YhÞ: (8)

VSLNet is trained in an end-to-end manner by minimizing
the following overall loss:

L ¼ Lspan þLQGH: (9)

3.6 Multi-Scale Split-and-Concat

To address the localization performance degradation issues on
long videos, we introduce VSLNet-L with a multi-scale split-
and-concatenation strategy. The architecture of VSLNet-L is
shown in Fig. 2b.

3.6.1 Split: Clip Segment Level Detection

As illustrated in Fig. 6a, given a long video, VSLNet-L splits
it intoK clip segments:

VV ¼ ½CCk�Kk¼1 and CCk ¼ ½vvi�k�l
i¼ðk�1Þ�l; (10)

where l is the length of each clip segment CCk, i.e., K � l ¼ n.
Note that, in our implementation, we perform video split at
visual feature level, instead of the untrimmed video itself
for computational efficiency. Specifically, we split the fea-
tures VV ¼ ½vvi�ni¼1 obtained from the pre-trained 3D ConvNet
(see Section 3.1), and use the feature vector VV in Eq. (10)
accordingly.

Each clip segment CCk is then processed by feature
encoder and CQA, to learn query-attended representations

Fig. 4. An illustration of foreground and background of visual features. a
is the ratio of foreground extension.

Fig. 5. The structure of query-guided highlighting (QGH).
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CCq
k ¼ ½ccqi �

k�l
i¼ðk�1Þ�l 2 Rl�d, as shown in Fig. 2b. Thus, CCq

k enco-
des the cross-modal features between clip segment k and
query. Then, a Nil Prediction Module (NPM) is introduced
in VSLNet-L, to predict whether a clip segment contains or
partially contains the temporal moment that corresponds to
the text query, as shown in Fig. 2b. Next, we detail the struc-
ture of the NPM following the illustration in Fig. 7.

For each clip segment, its query-attended features CCq
k are

first encoded by a feature encoder as:

bCbCq

k ¼ FeatureEncoderNPMðCCq
kÞ: (11)

The self-attention mechanism [60] is adopted to encode bCbCq

k

into clip representation hhq
Ck
, and the nil-score is computed as:

aak ¼ SoftMaxðConv1Dð bCbCq

kÞÞ

hhq
Ck

¼
Xl

i¼1
ak;i � ĉ̂cqðk�1Þ�lþi

Sk
nil ¼ sðFFNðhhq

Ck
ÞÞ;

(12)

where aak 2 Rlc and hhq
Ck

2 Rd. Sk
nil 2 R is a scalar, which indi-

cates the confidence of clip segment k containing the ground
truth moment. The loss of NPM is formulated as:

LNPM ¼ fCEðSnil; YnilÞ; (13)

Ynil is a 0-1 sequence provided during training. A clip seg-
ment is positive (label 1) iff it overlaps with ground truth
moment, illustrated in Fig. 6. Clip segments that do not con-
tain ground truth moment are negative (label 0). After com-
puting the nil-scores of all clip segments, i.e., Snil ¼
½S1

nil; . . . ;SK
nil� 2 RK , we normalize the scores. The output for

clip segment k is:

�Snil ¼
Snil

maxðSnilÞ
; �C�C

q
k ¼ �Sk

nil � bCbCq

k; (14)

where �Snil is the normalized nil-score and �C�C
q
k is the re-

weighted representations of clip segment k. The NPM high-
lights the clip segments that contain the target moment, and
suppresses other segments. Then the subsequent modules
could localize the result by focusing more on the
highlighted segments, which is equivalent to narrowing

down the searching scope from a long video to a short seg-
ment of it.

3.6.2 Concat: Video Level Localization

With the clip segments processed separately in the previous
step, we now concatenate the representations of all clip seg-
ments, for two reasons. First, a single clip segment may not
fully cover the target moment. Second, even if a segment is
predicted to be negative (or low confidence), it might pro-
vide useful contextual information for localizing the target
moment.

�C�C
q
V ¼ ½ �C�Cq

1 k �C�C
q
2 k . . . k �C�C

q
K �; (15)

where k denotes the concatenation operator and �C�C
q
V 2 Rn�d.

Accordingly, the input feature VV q of QGH is replaced by �C�C
q
V

in VSLNet-L to compute LQGH and Lspan. The combined
training loss for VSLNet-L is:

L ¼ Lspan þ LQGH þLNPM: (16)

3.6.3 Multi-Scale Split-and-Concat

Unlike a text document, there are no paragraphs as seman-
tic units in a video. Any split in the video may break impor-
tant contextual information to different clip segments.
Although all clip segments will be concatenated again for
video level localization, each clip segment is processed sep-
arately, and the contextual information between two seg-
ments may not be well captured.

To address this issue, we propose a multi-scale split
mechanism, to split the video at different segment lengths,
i.e., different K (see Fig. 6c). Suppose we use Ns different
scales, and for each scale we have:

Ki � li ¼ n; 8 i ¼ 1; 2; . . . ; Ns; (17)

where Ki and li denote the number of clip segments and
clip segment length for the ith scale, respectively. Through
a multi-scale split, contextual information is well captured.
Meanwhile, a multi-scale split also provides variation in
training samples for the same video and query pair input.
The target moment may be located in multiple different clip
segments, and its contexts are also different. Note that the
same training process as the single-scale split-and-concat

Fig. 7. The structure of nil prediction module (NPM).

Fig. 6. Illustration of splitting video into clip segments.
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applies, except that the clip segments of each scale are fed
separately into VSLNet-L, to optimize the objective.

Consequently, we derive Ns predicted moments for a
given video and language query pair, because the clip seg-
ments at each scale would lead to a pair of start/end bound-
aries for a predicted moment. During inference, we adopt
two simple candidate selection strategies to derive the final
target moment. VSLNet-L-Pm strategy selects the candi-
date with the highest joint boundary probability, Pm ¼
maxfPi

spang
Ns
i¼1, where Pi

span ¼ Pi
sðâsÞPi

eðâeÞ is the maximal
joint boundary probability of the moment generated by ith
scale using Eq. (6). VSLNet-L-U strategy selects two
moments with the largest overlap from Ns candidates, and
computes their union as the final result.

4 EXPERIMENTS

4.1 Datasets

We conduct experiments on three benchmark datasets:
Charades-STA [25], ActivityNet Captions [61], and TACoS
[62], as summarized in Table 1. Charades-STA is prepared by
Gao et al. [25] based on Charades dataset [63], with the vid-
eos of daily indoor activities. There are 12,408 and 3,720
moment annotations for training and test, respectively. Acti-
vityNet Captions (ANetCap) contains about 20k videos taken
from ActivityNet [64]. We follow the setup in Yuan et al.
[15], with 37,421 moment annotations for training, and
17,505 annotations for test. TACoS is selected from MPII
Cooking Composite Activities dataset [65]. There are two
versions of TACoS available. TACoSorg used in [25] has
10,146, 4,589 and 4,083 annotations for training, validation
and test. TACoS tan is from 2D-TAN [42], which contains
9,790, 4,436 and 4,001 annotations in train, validation and
test sets.

We conduct experiments on all the benchmark datasets
for VSLBase and VSLNet. For VSLNet-L, we evaluate it on
ActivityNet Captions and both versions of TACoS. Char-
ades-STA is not used for VSLNet-L due to its short video
length.

4.2 Experimental Settings

4.2.1 Evaluation Metrics

We adopt “Rank@n; IoU ¼ m” and “mIoU” as the evaluation
metrics, following [8], [15], [25]. The “Rank@n; IoU ¼ m”
denotes the percentage of language queries having at least
one result whose Intersection over Union (IoU) with ground
truth is larger than m in top-n retrieved moments. “mIoU” is
the average IoU over all testing samples. In our experiments,
we use n ¼ 1 andm 2 f0:3; 0:5; 0:7g.

4.2.2 Implementation Details

For a text query Q, we lowercase all its words and initialize
them with 300d GloVe [66] embeddings. The word embed-
dings are fixed during training. For the untrimmed video V ,
we extract its visual features using 3D ConvNet pre-trained
on Kinetics dataset [56]. We set the maximal feature length
n as 128 for Charades-STA, i.e., the extracted visual feature
sequence of a video will be uniformly downsampled if its
length > n, or zero-padding otherwise. The n of ANetCap
is set to 300, while two maximal feature lengths, n 2
f300; 600g, are used for evaluation on TACoS. When evalu-
ating VSLNet-L, the visual features are split into multiple
clip segments using different scales, we use l ¼ f60; 75;
100; 150g (i.e., K ¼ f5; 4; 3; 2g) for n ¼ 300, and l ¼ f100;
120; 150; 200g (i.e., K ¼ f6; 5; 4; 3g) for n ¼ 600. We set the
dimension of all the hidden layers in the model as 128; the
kernel size of the convolution layer is 7; the head size of
multi-head attention is 8. All the models are trained for 100
epochs with a batch size of 16 and an early stopping strat-
egy for all datasets. Adam [67] is used as the optimizer,
with a learning rate of 0.0001, linear decay of learning rate
and gradient clipping of 1.0. Dropout [68] of 0.2 is applied
to prevent overfitting. All experiments are conducted on
dual NVIDIA GeForce RTX 2080Ti GPUs workstation.

4.3 Comparison With State-of-the-Arts

We compare the proposed methods with the following
state-of-the-arts: CTRL [25], ACRN [8], TGN [12], ACL [9],
DEBUG [16], QSPN [10], SM-RL [18], RWM-RL [19],
ABLR [15], SCDM [32], TSP-PRL [20], 2D-TAN [42],
GDP [17], CBP [14], LGI [34] and DRN [33]. Scores of the
benchmark methods in all result tables are those reported in
the corresponding papers. The best results are in bold and
the second bests are underlined.

Among the proposed methods, VSLBase is a direct
implementation of span-based QA framework on the NLVL
task; VSLNet is the extension of VSLBase with QGH;
VSLNet-L is a further extension of VSLNet with multi-scale
split-concat strategy, designed to handle long videos more
effectively. In the following, we show that VSLBase is com-
parable to existing baselines on NLVL tasks, while VSLNet
surpasses VSLBase and all existing baselines, and achieves
state-of-the-art results. We then show that VSLNet-L well
addresses the issue of performance degradation on NLVL
for long videos, compared to VSLNet.

The results on Charades-STA are reported in Table 2. It is
observed that VSLNet significantly outperforms most of the
baselines by a large margin over all metrics. In addition, it is

TABLE 1
Statistics of the Natural Language Video Localization (NLVL) Datasets

Dataset Domain # Videos (train/val/test) # Annotations Nvocab
�Lvideo

�Lquery
�Lmoment Dmoment

Charades-STA Indoors 5; 338=� =1; 334 12; 408=� =3; 720 1,303 30:59s 7.22 8:22s 3:59s
ANetCap Open 10; 009=� =4; 917 37; 421=� =17; 505 12,460 117:61s 14.78 36:18s 40:18s
TACoSorg Cooking 75=27=25 10; 146=4; 589=4; 083 2,033 287:14s 10.05 5:45s 7:56s
TACoS tan Cooking 75=27=25 9; 790=4; 436=4; 001 1,983 287:14s 9.42 25:26s 50:71s

Note that Nvocab is the vocabulary size of lowercase words, �Lvideo denotes the average length of videos in seconds, �Lquery denotes the average number of words in
sentence query, �Lmoment is the average length of temporal moments in seconds, and Dmoment is the standard deviation of temporal moment length in seconds.
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worth noting that the performance improvements of
VSLNet are more significant under larger values of IoU. For
instance, VSLNet achieves 7.47 percent improvement in
IoU ¼ 0:7 versus 0.78 percent in IoU ¼ 0:5, compared to
MAN. Without query-guided highlighting, VSLBase out-
performs all compared baselines over IoU ¼ 0:7, which
shows adopting the span-based QA framework is promis-
ing for NLVL. Moreover, VSLNet benefits from visual fea-
ture fine-tuning, and achieves state-of-the-art results on this
dataset.

Table 3 reports the results on both versions (if available)
of TACoS dataset. In general, VSLNet outperforms previous
methods over all evaluation metrics. In addition, with the
Split-and-Concat mechanism, VSLNet-L further improves
the performance, on top of VSLNet. On TACoSorg, the
results of VSLNetðSÞ is comparable to that of VSLNetðLÞ,
while VSLNet-LðLÞ surpasses VSLNet-LðSÞ for both candi-
date selection strategies. Here, L and S denote the maximal
video feature length 600 and 300, respectively. Similar
observations hold on TACoS tan . These results demonstrate
that VSLNet-L is more adept than others at localizing tem-
poral moments in longer videos. Moreover, VSLNet-L-Pm is
generally superior to VSLNet-L-U under different n for
both versions of the TACoS dataset.

The results on the ActivityNet Captions dataset are sum-
marized in Table 4. We observe that VSLBase shows similar
performance to or slightly better than most of the baselines,
while VSLNet further boosts the performance of VSLBase
significantly. Comparing VSLNet with n ¼ 128 and that
with n ¼ 300, we find that small n leads to better perfor-
mance on loose metric (e.g., 63.16 versus 61.61 on IoU ¼ 0:3)
and large n is beneficial for strict metric (e.g., 26.16 versus
26.54 on IoU ¼ 0:7). Meanwhile, the performance of

VSLNet-L is comparable to state-of-the-art methods. It is
worth noting that 99 percent annotations in ActivityNet
Captions belong to videos that are shorter than 4 minutes.

TABLE 2
Results (%) of “Rank@1; IoU ¼ m” and “mIoU” Compared With

the State-of-the-Art on Charades-STA

Model Rank@1; IoU ¼ m mIoU
m ¼ 0:3 m ¼ 0:5 m ¼ 0:7

3D ConvNet without fine-tuning as visual feature extractor
CTRL - 23.63 8.89 -
ACL - 30.48 12.20 -
QSPN 54.70 35.60 15.80 -
SAP - 27.42 13.36 -
SM-RL - 24.36 11.17 -
RWM-RL - 36.70 - -
MAN - 46.53 22.72 -
DEBUG 54.95 37.39 17.69 36.34
TSP-PRL - 37.39 17.69 37.22
2D-TAN - 39.81 23.31 -
CBP - 36.80 18.87 -
GDP 54.54 39.47 18.49 -

VSLBase 61.72 40.97 24.14 42.11
VSLNet 64.30 47.31 30.19 45.15

3D ConvNet with fine-tuning on Charades dataset
ExCL 65.10 44.10 23.30 -
SCDM - 54.44 33.43 -
DRN - 53.09 31.75 -

VSLBase 68.06 50.23 30.16 47.15
VSLNet 70.46 54.19 35.22 50.02

TABLE 3
Results (%) of “Rank@1; IoU ¼ m” and “mIoU” Compared With

the State-of-the-Art on TACoS

Dataset Model Rank@1; IoU ¼ m mIoU
m ¼ 0:3 m ¼ 0:5 m ¼ 0:7

TACoSorg CTRL 18.32 13.30 - -
TGN 21.77 18.90 - -
ACL 24.17 20.01 - -
ACRN 19.52 14.62 - -
ABLR 19.50 9.40 - 13.40
SM-RL 20.25 15.95 - -
DEBUG 23.45 11.72 - 16.03
SCDM 26.11 21.17 - -
GDP 24.14 13.90 - 16.18
CBP 27.31 24.79 19.10 21.59
DRN - 23.17 - -

VSLNetðSÞ 29.21 24.37 19.37 23.48
VSLNetðLÞ 29.78 24.71 19.64 23.96

VSLNet-L-Pm
ðSÞ 31.94 26.72 22.36 25.71

VSLNet-L-U ðSÞ 31.69 26.79 22.02 25.78

VSLNet-L-Pm
ðLÞ 32.04 27.92 23.28 26.40

VSLNet-L-U ðLÞ 31.86 27.64 22.72 26.25

TACoS tan 2D-TAN Pool 37.29 25.32 - -
2D-TAN Conv 35.22 25.19 - -

VSLNetðSÞ 42.66 32.72 23.12 33.07
VSLNetðLÞ 41.42 30.67 22.32 31.92

VSLNet-L-Pm
ðSÞ 47.66 36.15 26.19 36.24

VSLNet-L-U ðSÞ 47.66 36.12 25.87 35.98

VSLNet-L-Pm
ðLÞ 47.11 36.34 26.42 36.61

VSLNet-L-U ðLÞ 46.44 35.74 26.19 36.05

ðSÞ denotes n ¼ 300 and ðLÞ represents n ¼ 600.

TABLE 4
Results (%) of “Rank@1; IoU ¼ m” and “mIoU” Compared With

State-of-the-Arts on ActivityNet Captions

Model Rank@1; IoU ¼ m mIoU
m ¼ 0:3 m ¼ 0:5 m ¼ 0:7

TGN 45.51 28.47 - -
ACRN 49.70 31.67 11.25 -
ABLR 55.67 36.79 - 36.99
RWM-RL - 36.90 - -
QSPN 45.30 27.70 13.60 -
DEBUG 55.91 39.72 - 39.51
SCDM 54.80 36.75 19.86 -
TSP-PRL 56.08 38.76 - 39.21
GDP 56.17 39.27 - 39.80
CBP 54.30 35.76 17.80 -
DRN - 45.45 24.36 -
LGI 58.52 41.51 23.07 -
2D-TAN Pool 59.45 44.51 26.54 -
2D-TAN Conv 58.75 44.05 27.38 -

VSLBase* 58.18 39.52 23.21 40.56
VSLNet* 63.16 43.22 26.16 43.19
VSLNet 61.61 43.78 26.54 43.22
VSLNet-L-Pm 62.18 43.69 27.22 43.67
VSLNet-L-U 62.35 43.86 27.51 44.06

* denotes that the maximal visual sequence length n of VSLBase and VSLNet
is set as 128, which is consistent with [23].

ZHANG ETAL.: NATURAL LANGUAGE VIDEO LOCALIZATION: A REVISIT IN SPAN-BASED QUESTION ANSWERING FRAMEWORK 4259

Authorized licensed use limited to: ASTAR. Downloaded on September 02,2022 at 01:45:38 UTC from IEEE Xplore.  Restrictions apply. 



As VSLNet-L is designed to address performance degrada-
tion on long videos, it is reasonable to observe that VSLNet-
L achieves less significant performance improvement on
ActivityNet Captions compared to TACoS, w.r.t. the state-
of-the-arts. Moreover, VSLNet-L-U performs better than
VSLNet-L-Pm on ActivityNet Captions, different from the
observation on TACoS. This could be due to the different
ratios of �Lmoment and �Lvideo in the two datasets (see Table 1).
The strategy to select longer spans works better on Activity-
Net Captions dataset.

4.4 Performance on Videos With Different Length

As discussed in Section 1 and illustrated in Fig. 8, existing
methods including VSLNet still underperform on NLVL
with long videos. That is, the localization performance
decreases dramatically along with the increase of video
length. Summarized in Table 5, there are fewer videos/
annotations along the increase of video length in the data-
sets. The relatively small number of training samples may
lead to instability of the evaluated models, and performance
degradation on long videos, to some extent. However, we
believe that the following are the two main reasons for the
performance degradation:

1) Downsampling of visual features of long videos in
most existing methods adversely affects localization
accuracy due to information loss. As shown in Fig. 9,
sparsely downsampling video feature presentations
below certain number (e.g., n < 200) would lead to
dramatic performance degradation.

2) As plotted in Fig. 10, the average normalized length
of ground truth moments gradually decrease along
with the increase of video length. The sparsity of
moments also contributes to poor performance on
long videos.

To address this issue, VSLNet-L splits the video into mul-
tiple clip segments with different scales to simulate the mul-
tiple paragraphs in the document and maximize the chance
of locating the target moment in one segment clip.

Table 6 reports the “mIoU” gains of VSLNet-L on the
TACoS dataset for videos with different lengths. Compared
to the results of VSLNet (the best performing method with-
out considering video length), larger improvements are
observed on longer videos, which demonstrates the

Fig. 8. The Mean IoU (%) performance of CTRL [25], SCDM [32], 2D-
TAN Pool [42] and VSLNet on the TACoS dataset.

TABLE 5
Statistics of Videos and Annotations w.r.t. Different Video Lengths Over NLVL Datasets

Dataset Split # Videos # Annots # of videos / annotations w.r.t. different video lengths

0 	 2min 2 	 4min 4 	 6min 6 	 8min 8 	 10min 10 	 12min > 12min

TACoSorg Train 75 10,146 27 / 2,847 29 / 4,015 8 / 1,284 4 / 607 3 / 616 2 / 328 2 / 449
Val 27 4,589 3 / 312 5 / 771 5 / 887 7 / 1,275 1 / 173 4 / 830 2 / 341
Test 25 4,083 5 / 578 6 / 937 3 / 564 3 / 447 2 / 373 3 / 617 3 / 567

TACoS tan Train 75 9,790 27 / 2,769 29 / 3,840 8 / 1,227 4 / 576 3 / 597 2 / 336 2 / 445
Val 27 4,436 3 / 311 6 / 929 4 / 639 7 / 1,225 1 / 171 4 / 812 2 / 349
Test 25 4,001 5 / 594 6 / 907 3 / 535 3 / 428 2 / 370 3 / 598 3 / 569

ANetCap Train 10,009 37,421 5,278 / 17,806 4,715 / 19,551 8 / 28 3 / 10 4 / 22 0 / 0 1 / 4
Test 4,917 17,505 2,516 / 8,193 2,392 / 9,274 5 / 19 2 / 9 0 / 0 1 / 5 1 / 5

Fig. 9. Mean IoU (%) results of VSLNet on the TACoS tan dataset under
different maximal visual representation lengths n.

Fig. 10. Statistic of normalized moment lengths in videos for both
TACoSorg and TACoS tan .
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superiority of VSLNet-L for localizing temporal moments in
long videos. For instance, VSLNet-LðLÞ achieves more than 3
percent absolute improvements in mIoU for videos longer
than 8 minutes versus less than 2 percent gains for videos
shorter than 8 minutes on TACoSorg. Despite the slight per-
formance reduction on videos shorter than 2 minutes, along
with video length raises, consistent improvements are
observed on TACoS tan for both n ¼ 300 ðSÞ and 600 ðLÞ,
compared to VSLNet. Fig. 11 plots the performance
improvements along video lengths for better visualization.

Results on ActivityNet Captions are reported in
Table 7. Despite that the videos are relatively short,
VSLNet-L manages to improve localization performance,
with larger improvements observed on longer videos.
These results show consistent superiority of VSLNet-L
over VSLNet for both candidate selection strategies, on
videos of different lengths.

4.5 Ablation Studies

In this section, we conduct ablative experiments to analyze
the importance of different modules, including feature
encoder and context-query attention in VSLBase. We also
investigate the impact of extension ratio a (see Fig. 4) in

query-guided highlighting (QGH) of VSLNet, and study the
impact of the multi-scale split strategy in VSLNet-L. Finally,
we visually show the effectiveness of the proposed methods
and discuss their limitations. We conduct the ablation stud-
ies in this order because VSLNet is built on top of VSLBase,
and VSLNet-L is an extension of VSLNet.

4.5.1 Module Analysis

We first study the effectiveness of the feature encoder and
context-query attention (CQA) in VSLBase by replacing
them with other modules. Specifically, we use bidirectional
LSTM (BiLSTM) as an alternative feature encoder. For con-
text-query attention, we replace it by a simple method
(named CAT), which concatenates each visual feature with
the max-pooled query feature.

Our feature encoder consists of Convolution + Multi-
head attention + Feed-forward layers (see Section 3.2),
named as CMF here. With these alternatives, we now have
four combinations, listed in Table 8. As observed from the
results, CMF shows stable superiority over CAT on all met-
rics regardless of other modules; CQA surpasses CAT
whichever feature encoder is used. This study indicates that
CMF and CQA are more effective.

Table 9 reports the performance gains of different mod-
ules over “Rank@1; IoU ¼ 0:7” metric. The results show that
replacing CAT with CQA leads to larger improvements,
compared to replacing BiLSTM by CMF. This observation

TABLE 6
Comparison of mIoU (%) Between VSLNet and VSLNet-L on TACoS Dataset w.r.t. Different Video Lengths

ðSÞ denotes n ¼ 300 and ðLÞ represents n ¼ 600. Performance gain and loss are indicated in different colors.

Fig. 11. Visualization of performance improvement of VSLNet-L on dif-
ferent video lengths compared to VSLNet on TACoS.

TABLE 7
Comparison of mIoU (%) Between VSLNet and VSLNet-L on

ActivityNet Captions w.r.t. Different Video Lengths

Performance gain and loss are indicated in different colors.
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suggests that CQA plays a more important role in our
model. Specifically, keeping CQA, the absolute gain is 1.61
percent by replacing the encoder module. Keeping CMF,
the gain of replacing the attention module is 3.09 percent.

Fig. 12 displays the matrix of similarity score between
visual and language features in the context-query attention
(CQA) module (S 2 Rn�m in Section 3.3). This figure shows
visual features are more relevant to the verbs and their
objects in the query sentence. For example, the similarity
scores between visual features and “eating” (or “sandwich”)
are higher than that of other words. We believe that verbs
and their objects are more likely to be used to describe video
activities. Our observation is consistent with Ge et al. [9],
where verb-object pairs are extracted as semantic activity
concepts. In contrast, these concepts are automatically cap-
tured by the CQAmodule in our method.

4.5.2 The Impact of Extension Ratio in QGH

VSLNet introduces a query-guided highlighting (QGH)
module on top of VSLBase to address the technical gaps
between video and text. The QGH guides the VSLNet to
search for the target moment within a longer highlighted
region controlled by the extension ratio a. We now

investigate the impact of the extension ratio a in the QGH
module on the Charades-STA dataset. We evaluated 12 dif-
ferent values of a from 0.0 to 1 in experiments. 0.0 repre-
sents no answer span extension, and 1 means that the
entire video is regarded as foreground. The results for vari-
ous a’s are plotted in Fig. 13. It shows that query-guided
highlighting consistently contributes to performance
improvements, regardless of a values, i.e., from 0 to 1.
Along with a raises, the performance of VSLNet first
increases and then gradually decreases. The optimal perfor-
mance appears between a ¼ 0:05 and 0.2 over all metrics.

Note that, when a ¼ 1, which is equivalent to no region
is highlighted as a coarse region to locate target moment,
VSLNet remains better than VSLBase. Shown in Fig. 5,
when a ¼ 1, QGH effectively becomes a straightforward
concatenation of sentence representation with each of the
visual features. The resultant feature remains helpful for
capturing semantic correlations between vision and lan-
guage. In this sense, this function can be regarded as an
approximation or simulation of the traditional multimodal
matching strategy [8], [24], [25].

4.5.3 Single Versus Multi-Scale Split-and-Concat

VSLNet-L further introduces a multi-scale split-and-concat
strategy to address performance degradation on long vid-
eos. Here, we study the impact of the multi-scale split on
the TACoS dataset with n ¼ 600, against the single-scale
split. We evaluate 4 different values of single-scale, i.e., l 2
f100; 120; 150; 200g. The multi-scale mechanism is jointly
trained with the four scales. The results are summarized in
Table 10. Compared to VSLNet, split-and-concat strategy in
VSLNet-L consistently contributes to performance improve-
ments, regardless of the l value. The best single-scale l is 120
for TACoSorg, and 150 for TACoS tan: Compared to VSLNet-
L with single-scale, VSLNet-L-Pm (-U) further improves all
metrics significantly. The multi-scale split-and-concat mech-
anism not only alleviates the issue of target moment trunca-
tion but also captures contextual information in the video;
both improve the generalization ability of VSLNet-L.

TABLE 8
Comparison Between Models With Alternative Modules in

VSLBase on Charades-STA

Module Rank@1; IoU ¼ m mIoU
m ¼ 0:3 m ¼ 0:5 m ¼ 0:7

BiLSTM + CAT 61.18 43.04 26.42 42.83
CMF + CAT 63.49 44.87 27.07 44.01
BiLSTM + CQA 65.08 46.94 28.55 45.18
CMF + CQA 68.06 50.23 30.16 47.15

TABLE 9
Performance Gains (%) of Different Modules Over

“Rank@1; IoU ¼ 0:7” on Charades-STA

Module CAT CQA D

BiLSTM 26.42 28.55 +2.13
CMF 27.07 30.16 +3.09
D +0.65 +1.61 -

Fig. 12. Similarity scores, S, between visual and language features in the
context-query attention. as=ae denote the start/end boundaries of ground
truth video moment, âs=âe denote the start/end boundaries of predicted
target moment.

Fig. 13. Analysis of the impact of extension ratio a in Query-Guided
Highlighting on Charades-STA.
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4.5.4 Qualitative Analysis

Fig. 14 shows the histograms of predicted results of
VSLBase and VSLNet on test sets of the Charades-STA and
ActivityNet Captions datasets. Results indicate that VSLNet
beats VSLBase by having more samples in the high IoU
ranges, e.g., IoU 
 0:7 on the Charades-STA dataset. More
predicted results of VSLNet are distributed in the high IoU

ranges for the ActivityNet Caption dataset. This result dem-
onstrates the effectiveness of the query-guided highlighting
(QGH) strategy.

We show two examples of VSLBase and VSLNet in
Figs. 15a and 15b from the Charades-STA and ActivityNet
Captions datasets, respectively. From the two figures, the
localized moments by VSLNet are closer to the ground truth
than that by VSLBase. Meanwhile, the start and end bound-
aries predicted by VSLNet are roughly constrained in the
highlighted regions Sh, computed by QGH.

Fig. 16 depicts two predicted examples from the TACoS
dataset as case studies. The localized moments by VSLNet-
L are more accurate and closer to the ground truth
moment than that of VSLNet. Both figures show the results
of VSLNet-L are constrained in the positive clip segments,
i.e., the clip segment that contains ground truth. In the

TABLE 10
Results (%) of VSLNet-L on TACoS Using Different Split Scales

With n ¼ 600

Dataset Model Scales (l) Rank@1; IoU ¼ m mIoU
m ¼ 0:3 m ¼ 0:5 m ¼ 0:7

TACoSorg VSLNet - 29.78 24.71 19.64 23.96
VSLNet-L 100 30.18 25.81 20.77 24.46

120 31.13 26.87 21.19 25.12
150 30.42 26.38 20.89 24.73
200 30.59 26.07 21.01 24.61
-Pm 32.04 27.92 23.28 26.40
-U 31.86 27.64 22.72 26.25

TACoS tan VSLNet - 41.42 30.67 22.32 31.92
VSLNet-L 100 42.24 32.69 23.67 32.41

120 43.39 33.37 24.19 33.45
150 44.61 33.99 24.27 33.71
200 43.74 33.67 23.74 33.50
-Pm 47.11 36.34 26.42 36.61
-U 46.44 35.74 26.19 36.05

Fig. 14. Histograms of the number of predicted results on test set under
different IoUs, on two datasets.

Fig. 15. Visualization of predictions by VSLBase and VSLNet. Figures on the left depict the localized results by the two models. Figures on the right
show probability distributions of start/end boundaries and highlighting scores.
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second example, VSLNet does not capture the concept “the
cutting board in the sink” and focuses on retrieving
“washes” action only, which leads to an error prediction.
In contrast, VSLNet-L correctly understands both “washes”
and the position of “cutting board”, leading to the correct
prediction.

4.5.5 Error Analysis

We further study the error patterns of predicted moment
lengths on VSLBase and VSLNet, as shown in Fig. 17. The
differences between moment lengths of ground truths and

predicted results are measured. A positive length difference
means the predicted moment is longer than the correspond-
ing ground truth, while a negative means shorter. Fig. 17
shows that VSLBase tends to predict longer moments, e.g.,
more samples with length error larger than 4 seconds in
Charades-STA or 30 seconds in ActivityNet. On the con-
trary, constrained by QGH, VSLNet tends to predict shorter
moments, e.g., more samples with length error smaller than
�4 seconds in Charades-STA or �20 seconds in ActivityNet
Caption. This observation is helpful for future research on
adopting the span-based QA framework for NLVL.

In addition, we also exam failure cases (with IoU pre-
dicted by VSLNet lower than 0.2) shown in Fig. 18. In the
first case, as illustrated by Fig. 18a, we observe an action
that a person turns towards to the lamp and places an item
there. The QGH falsely predicts the action as the beginning
of the moment “turns off the light”. The second failure case
involves multiple actions in a query, as shown in Fig. 18b.
QGH successfully highlights the correct region by capturing
the temporal information of two different action descrip-
tions in the given query. However, it assigns “pushes” with
a higher confidence score than “grabs”. Thus, VSLNet only

Fig. 16. Visualizations of two predicted examples by VSLNet and
VSLNet-L on TACoS dataset.

Fig. 17. Plots of moment length errors in seconds between ground truths
and results predicted by VSLBase and VSLNet, respectively.

Fig. 18. Two failure examples predicted by VSLNet, as=ae denote the start/end boundaries of ground truth video moment, âs=âe denote the start/end
boundaries of predicted target moment.
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captures the region corresponding to the “pushes” action,
due to its confidence score.

5 CONCLUSION

In this paper, we revisit the NLVL task and propose to solve
it with a multimodal span-based QA framework by consid-
ering a video as a text passage. We show that adopting a
standard span-based QA framework, VSLBase, can achieve
promising results on the NLVL task. However, there are
two major differences between video and text in the stan-
dard span-based QA framework, limiting the performance
of VSLBase. To address the differences, we then propose
VSLNet, which introduces a simple and effective strategy
named query-guided highlighting (QGH), on top of
VSLBase. With QGH, VSLNet is guided to search for
answers within a predicted coarse region. The effectiveness
of VSLNet (and VSLBase) is demonstrated with experiments
on three datasets. The results indicate that it is promising to
explore the span-based QA framework to address NLVL
problems. Moreover, we have observed that the existing
methods including VSLNet suffer from the performance
degradation issue on long videos. To address this issue, we
further extend VSLNet by regarding a long video as a docu-
ment with multiple paragraphs. We adopt the concept of
MPQA and propose a multi-scale split-and-concat network
to capture contextual information in a long video by parti-
tioning the long video multiple times with different clip
lengths. Extensive experiments demonstrate that VSLNet-L
prevents performance degradation on long videos effectively
and advances the state-of-the-art for NLVL on three bench-
mark datasets.
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