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Abstract— In an underdetermined mixture system with n unknown
sources, it is a challenging task to separate these sources from their
m observed mixture signals, where m < n. By exploiting the technique
of sparse coding, we propose an effective approach to discover some
1-D subspaces from the set consisting of all the time-frequency (TF)
representation vectors of observed mixture signals. We show that these
1-D subspaces are associated with TF points where only single source
possesses dominant energy. By grouping the vectors in these subspaces via
hierarchical clustering algorithm, we obtain the estimation of the mixing
matrix. Finally, the source signals could be recovered by solving a series
of least squares problems. Since the sparse coding strategy considers
the linear representation relations among all the TF representation
vectors of mixing signals, the proposed algorithm can provide an
accurate estimation of the mixing matrix and is robust to the noises
compared with the existing underdetermined blind source separation
approaches. Theoretical analysis and experimental results demonstrate
the effectiveness of the proposed method.

Index Terms— Mixing matrix identification, single source
detection, source recovery, sparse coding, underdetermined blind
source separation (UBSS).

I. INTRODUCTION

Blind source separation (BSS) aims at separating the original
source signals from their mixtures without any a priori knowledge
about the mixing matrix and the source signals [1]–[3]. BSS has
attracted considerable research attentions because of its wide applica-
tions in biomedical engineering, remote sensing, speech recognition,
and communication systems [4]. A large number of BSS algorithms
have been developed in the past decades, and most of them assume
that the number of sensors is not less than the number of sources.
In practice, however, this assumption is difficult to be satisfied.
For example, in a wireless sensor network, the number of sources
is sometimes unknown to the receivers. Thus, the number of the
disposed receivers could be less than the number of the sources,
which leads to a more challenging problem, i.e., underdetermined
BSS (UBSS) [5]–[13].

To solve the above UBSS problem, many methods have been
proposed by exploiting the sparsity of sources in time domain [5]
or time-frequency (TF) domain [3], [6]–[10], [14]–[25]. In the early
works based on TF representations [7], [14], the source signals
are assumed to be TF-disjoint, i.e., there exists at most one active
source at any point in the TF domain. For example, using lin-
ear TF distributions (TFDs) [7]–[10], Jourjine et al. [7] proposed
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the degenerate unmixing estimation technique (DUET) to recover
the source signals based on the ratios of the TF transforms of the
observed mixing signals. Linh-Trung et al. [14] proposed to exploit
quadratic TFDs [3], [20] to separate the sources. It is notable that
this TF-disjoint constraint is restrictive and easy to be violated in the
real-world applications [15]. Although the methods in [7] and [14]
can still work when there are some small overlapping among different
sources in the TF domain, the separation performance will degrade
as the number of these overlapping TF points is increasing [15].
In order to relax this TF-disjoint constraint, the time-frequency ratio
of mixtures (TIFROM) algorithm is proposed in [8], which allows
overlapping of source TF representations to a certain degree, but still
needs some adjacent TF windows where only one source occurs.

In recent years, based on a more relaxed sparsity assumption that
for each source, there are some TF points where only single source
occurs, many methods have been proposed for UBSS. They detect
the TF points where only one source is active. These points are
referred to as single source points (SSPs) [9], [21]. The mixture
vectors at these SSPs will be clustered to estimate the mixing matrix.
Thirion-Moreau [20] and Linh-Trung et al. [18] suggested to detect
rank-1 matrices to estimate the mixing matrix. Li et al. [10] proposed
to detect directly several submatrices of the ratio matrix each of
which has almost identical columns to estimate the mixing matrix.
Reju et al. [9] proposed to identify the SSPs by comparing
the absolute directions of the real and imaginary parts of the
Fourier transform coefficient vectors of the observable mixtures.
It treats one specific TF point as an SSP if the difference
between the absolute directions of the real part and image part
of the mixture vector at this TF point is less than a given
threshold angle.

It is notable that the performance of all the above-mentioned
UBSS algorithms [7]–[10], [14], [15] depends highly on the correct
detection of SSPs. These methods are all based on the ratios between
different mixture signals at each TF point to achieve the estimation
for the mixture matrix. Clearly, these ratios are sensitive to noises,
which result in a performance degradation of these UBSS algorithms
in noisy environments.

To overcome the above problem, this brief proposes a novel UBSS
method to separate n sources from their m(m < n) instantaneous
mixtures, which exploits the sparse coding of TF representation
vectors of the observed mixture signals to achieve the UBSS. More
specifically, we code each TF vector as a sparse linear combination
of other mixture TF vectors. By enforcing �1-regularization on the
coding coefficient vector, the sparse coding strategy prefers to select
a few mixture TF vectors from the same subspace as the target vector
to reconstruct it. Based on the obtained sparse coding coefficients, we
can identify the mixture TF vectors at SSPs, which lie in n different
1-D subspaces. These mixture TF vectors at the SSPs are further
clustered to estimate the mixing matrix. After obtaining the mixing
matrix estimation, we formulate the source recovery as a series of
least square problems. By solving these least squares problems, the
source signals can be recovered.

Our main contributions are summarized as follows. We propose a
novel and effective method to detect the mixture TF vectors at SSPs,
where only one source occurs, in the TF domain. It exploits sparse
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coding to detect the mixture TF vectors at SSPs. Since the sparse
coding strategy considers the overall linear representation relations
among the TF vectors of mixing signals, our proposed algorithm can
provide a more accurate estimation for the mixing matrix than the
existing mixing matrix estimation approaches in [7]–[9] and [14],
which detect the mixture TF vectors at SSPs by exploiting the ratios
of mixing signals.

The rest of this brief is organized as follows. Section II presents
the new UBSS algorithm. Section III provides experimental results
to illustrate the effectiveness of the proposed algorithm. Section IV
concludes this brief.

Notations: In this brief, lower-case bold letters represent column
vectors, upper-case bold letters represent matrices, and the entries
of matrices and vectors are denoted with subscripts. For example,
v denotes a column vector, whose i th element is vi . For a given
matrix M, m j stands for its j th column, and m′

i denotes its i th row.
MT represents the transpose of M, whose inverse and pseudo-inverse
are denoted by M−1 and M†. I stands for the identity matrix.

II. PROPOSED UBSS METHOD

Consider the following linear instantaneous mixing system with n
inputs and m outputs:

x(t) = As(t) (1)

where s(t) = [s1(t), s2(t), . . . , sn(t)]T is an n-dimensional column
vector, si (t) denotes the sample of the i th source at t time instant,
x(t) = [x1(t), x2(t), . . . , xm (t)]T denotes an m-dimensional mixture
vector, and xi (t) stands for the observed value of the i th sensor at
t time instant. A = [a1, a2, . . . , an] is the mixing matrix, whose
i th column is called as the steering vector corresponding to the i th
source.

Using short time Fourier transform (STFT) [26], the above instan-
taneous mixing system can be transformed into the TF domain as
follows:

x̃(t, k) = Ãs(t, k) (2)

where x̃(t, k) = [̃x1(t, k), x̃2(t, k), . . . , x̃m (t, k)]T , s̃(t, k) =
[̃s1(t, k), s̃2(t, k), . . . , s̃n(t, k)]T , x̃i (t, k), and s̃ j (t, k) are the STFT
coefficients of the i th mixture signal and the j th source signal in the
kth frequency bin at t time instant, respectively.

In this section, we present a new UBSS algorithm that explores
the sparsity of sources in the TF domain from the following aspects.
We begin by formulating UBSS with SSP as a sparse coding problem.
The mixture TF vectors at these SSPs lie in a subset of the TF vectors
of the observed mixtures, which are further clustered for mixing
matrix identification. Finally, we recover the source signals by solving
a set of least squares problems.

It is notable that the proposed method is different from other sparse
coding-based BSS methods. In [27], the aim of sparse coding is to
find sparse dictionaries from the mixtures; therefore, only a small
number of coefficients in the source signals are needed to encode the
observed mixtures. In [28], it assumes that the sources can be sparsely
represented in one particular orthonormal basis. Each source and its
corresponding column of the mixing matrix are alternately estimated
in an iterative manner based on sparse coding.

In the following, we will present the new UBSS method in detail.

A. Mixing Matrix Identification

To identify the mixing matrix, we propose the following two
assumptions on the mixing matrix and the sparsity of sources.

Assumption 1: For each source s′i , there are some TF points (t, k)
where only s′i is dominant, i.e., |̃si (t, k)| � |̃s j (t, k)|,∀ j �= i .

Assumption 2: Any m column vectors in the mixing matrix A are
linearly independent.

The Assumption 1 is much more relaxed than the constraints
adopted by DUET [7] and TIFROM [8]. More specifically, DUET
assumes that at most one source is dominant at each TF point,
and TIFROM assumes that there exist some adjacent TF windows
where only one source occurs. Clearly, the assumption adopted by
our method only needs the existence of some TF points where
only one source is dominant. In other words, these SSPs are
allowed arbitrarily distributed in the TF plane. This constraint is
called as SSP condition in [21]. The Assumption 2 guarantees
that all the sources can be recovered. Clearly, this assumption is
satisfied with probability one for any randomly generated mix-
ing matrix. It is a widely used assumption in the recent UBSS
algorithms [5], [9], [10], [29].

Based on the above assumptions, for a TF point (μ, ν) on which
only one source s′i is active, we have

x̃(μ, ν) = s̃i (μ, ν)ai . (3)

It means that the i th column vector ai in the mixing matrix equals
to the observed mixture TF vector x̃(μ, ν) up to a multiplicative
coefficient at this SSP (μ, ν). Clearly, we can obtain the estimations
for the column vectors in the mixing matrix by exploiting the mixture
vectors at these SSPs.

Another key observation is that mixture TF vectors with the same
single active source lie in an 1-D subspace, and these mixture TF
vectors can be linearly represented by another mixture TF vector
in this subspace. Therefore, if x̃(μ, ν) and x̃(ψ, ω) are with the
same single active source, there exists a real number α, such that
the following condition can be satisfied:

x̃(μ, ν) = αx̃(ψ,ω). (4)

This allows us to transform the SSPs detection problem into discov-
ering 1-D subspaces in the sets of mixture TF vectors.

Sparse coding has been proven to be a powerful technique to
discover such low-dimensional subspaces. It tries to code each
mixture TF vector as a linear combination of fewest number of other
mixture TF vectors. From (4), we can see that the mixture TF vector
whose sparse coding solution has only one nonzero element, must lie
in one of the above-mentioned 1-D subspaces with probability one.

At this point, the key procedure is how to obtain the sparse coding
solution for TF representation vectors of the observed mixture signals.
In the following, we introduce the solution for this problem in detail.

Let y1, y2, . . . , yQ be the collection of all the mixture TF vectors,
where Q is the number of TF points. From the self-expressiveness
property of the mixture TF vectors, we can code each mixture TF
vector as a linear combination of other mixture TF vectors, that is

yi = Yci , s.t. cii = 0 (5)

where Y � [y1, y2, . . . , yQ ], ci � [ci1, ci2, . . . , ci Q ] is the coding
coefficient vector and the constraint cii = 0 eliminates the trivial
solution of representing a mixture TF vector by itself.

Sparse coding tries to get the solution, ci , whose nonzero entries
corresponds to mixture TF vectors from the same subspace as yi .
More specifically, a mixture TF vector yi generated by the p sources
can be written as a linear combination of p other mixture TF vectors
produced by these same sources. As a result, ideally, the sparse coding
solution only selects mixture TF vectors from the same subspace to
represent yi .

The original sparse coding attempts to solving the following
�0-norm minimization problem:

min ‖ci ‖0 s.t. yi = Yci , cii = 0 (6)
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Algorithm 1 Mixing Matrix Estimation Process of Our Proposed
Method
Input: The observed mixtures x(t), t = 1, . . . , N with n sources, the

sparsity constraint parameter λ, and � = ∅.
1: Transform the observed mixtures from the time domain into the

TF domain by using STFT [26].
2: Normalize all the mixture vectors to have a unit norm.
3: For each mixture TF vector, compute the sparse coding coef-

ficients over all the mixture TF vectors by minimizing (8) via
�1-Homotopy [31] MATLAB package.

4: Add the mixture TF vectors whose sparse coding coefficient vector
contains only one nonzero element into �.

5: Apply clustering method on � to group its elements into n
clusters.

6: Calculate the centers of these n clusters as the estimations for the
columns of the mixing matrix .

Output: The estimated mixing matrix.

where ‖ci ‖0 is the �0-norm and is equivalent to the number of
nonzero elements in the vector ci . It is a general NP-hard prob-
lem [30] due to its nature of combinational optimization.

Recent development in the theory of compressed sensing reveals
that if the solution of ci is sufficiently sparse, the solution of
problem (6) is equal to the solution of the following �1-norm
minimization problem [30]:

min ‖ci‖1 s.t. yi = Yci , cii = 0 (7)

where ‖ci ‖1 is the �1-norm of ci . This problem can be solved in
polynomial time by the standard linear programming methods [30].

Moreover, the mixture procedures of source signals are usually
corrupted by the noises. To improve the robustness of our method, we
introduce a construction error term and formulate the sparse coding
problem as follows:

J (ci ; λ) = λ‖ci ‖1 + 1

2
‖yi − Yci ‖2

2 s.t. cii = 0 (8)

where λ > 0 is a scalar regularization parameter that balances the
tradeoff between sparsity and reconstruction error. As this is a convex
optimization problem, we can solve it efficiently using the convex
optimization methods [30]. In this brief, we use the �1-norm solver
that is from MATLAB package: �1-Homotopy [31], to calculate the
optimal solution of (8). The homotopy method recovers solutions
with p nonzeros in O(p3 + Q) time, where Q is the number of the
columns in Y [31].

Once getting the sparse coding solutions at each TF point, we treat
the TF points where the sparse coding coefficient vector has only one
nonzero element as the SPPs. By clustering the mixture TF vectors
at these detected SSPs, we can obtain the estimation for the mixing
matrix. More specifically, we can cluster these single source mixture
TF vectors by some robust clustering methods [9], [12], [32], [33]
into n groups, and take the center of each group as a steering vector in
the mixing matrix. The value of n is given as a parameter or learned
from the mixtures by some other methods.

Based on the above analysis, we propose the following Algorithm 1
to estimate the mixing matrix.

B. Source Recovery

After the mixing matrix is estimated, the source recovery is not
a trivial task, since the mixing matrix is irreversible in the UBSS
problem [24], [25]. In order to recover the sources, we proceed with
the definition of a set A, and introduce another assumption on the
sparsity of sources as follows:

Algorithm 2 Source Recovery Process of Our Proposed Method
Input: The observed mixtures x(t), t = 1, . . . , N with n sources,

and the estimated mixing matrix A.
1: Transform the observed mixtures from the time domain into the

TF domain using STFT.
2: For each mixture TF vector, find out the corresponding submatrix

A∗ via equ. (12).
3: Calculate the estimation of source TF representation in each TF

point via equ. (11).
4: Convert the estimated source TF representations back into the time

domain by employing the Inverse Short Time Fourier Transform
(ISTFT) [26].

Output: The recovered source signals.

Definition 1: A is a set composed of all m × (m −1) submatrices
of the matrix A, that is

A = {Ai |Ai = [aθ1 , aθ2 , . . . , aθm−1 ]}. (9)

Clearly, A contains C(m−1)
n elements.

Assumption 3: At most m −1 sources among n sources are active
at each TF point.

This condition is easy to satisfy in the BSS problems with speech
sources, which has been used in [15]. Under Assumption 2 and
Assumption 3, we have the following conclusions.

Lemma 1: For any given mixture TF vector x̃(t, k), there must
exist a submatrix A∗ = [aφ1 , aφ2 , . . . , aφm−1 ] in the set A, such
that

x̃(t, k) = A∗A†∗x̃(t, k) (10)

where A†∗ is the pseudo-inverse of A∗.
Proof: See Appendix A.

For each TF point (t, k), we have a corresponding A∗ =
[aφ1 , aφ2 , . . . , aφm−1 ], which satisfies (10). Using A∗, we construct
an n-dimensional vector ŝ(t, k) by setting its j th element as

ŝ j (t, k) =
{

ei , if j = φi

0, otherwise
(11)

where e = [e1, e2, . . . , em−1]T = A†∗x̃(t, k). Next, based on
Lemma 1, we can obtain the following theorem.

Theorem 1: The constructed vector ŝ(t, k) equals to the source TF
vector s̃(t, k) with probability one.

Proof: See Appendix B.
Theorem 1 provides a theoretical foundation to estimate the TF

representation s̃(t, k) of the original source signals.
In noisy environments, we cannot find the submatrix A∗ satisfying

exactly (10). Instead, we can get it from the following criterion:
A∗ = arg min

Ai∈A
‖̃x(t, k)− AiA†

i x̃(t, k)‖2. (12)

Finally, we can convert the source TF representations obtained
via Theorem 1 back into the time domain by employing the inverse
STFT [26].

In summary, the source recovery process of our proposed approach
is described in Algorithm 2.

III. EXPERIMENTS AND RESULTS

In this section, we conduct some experiments to verify the
effectiveness of the proposed algorithm. In all the experiments, the
STFT size is set as 1024, time step equals to 512, and Hanning
window is used as the weighting function. In all the noisy situations,
100 times of Monte Carlo simulations are conducted to evaluate



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 28, NO. 12, DECEMBER 2017 3105

Fig. 1. (a) Source signals. (b) Mixture signals. (c) Recovered signals. Four
speech signals in (a) are mixed into three mixtures in (b) and the recovered
signals by the proposed method in (c).

the performance of the proposed method versus signal-to-noise
ratio (SNR). For the proposed method, the mixture TF vectors at
SSPs are clustered via hierarchical clustering [9].

To eliminate possible permutations of the mixing matrix and the
sources, we denote the mixing matrix estimation via the UBSS
method as Ā, the corresponding sources as S̄, the final mixing matrix
estimation Â, and the final estimated sources Ŝ. For each column
in mixing matrix ai , i = 1, 2, . . . , n, we find its corresponding
estimation âi as the column in Ā, which has a closest absolute angle
with ai . The source in S̄ associated with âi is the final estimation of
the i th source, which is denoted as ŝ′i .

To evaluate the performance of mixing matrix estimation, we use
the following performance index:

Error = 1

n

n
∑

i=1

(

1 − aT
i âi

‖ai ‖‖âi ‖

)

(13)

where âi denotes the estimation of the mixing steering vector ai , and
n stands for the number of sources. To measure the performance of
source recovery, the mean squared error (MSE) is used, which has
the following definition:

MSE = 10 log10

⎛

⎝

1

n

n
∑

i=1

min
δ

‖s′i − δŝ′i‖2
2

‖s′i ‖2
2

⎞

⎠ (14)

where ŝ′i denotes the estimation of the source signal s′i , and δ is a
scalar reflecting the scalar ambiguity.

In the first experiment, our proposed method achieves blind sep-
aration of an underdetermined mixture system with m = 3 outputs
and n = 4 input speech sources. In this system, the 3 × 4 mixing
matrix is given by

A =
⎛

⎝

0.5877 0.6025 0.5358 0.7078
0.4494 −0.5525 0.6552 −0.4767
0.6728 −0.5760 −0.5325 0.5212

⎞

⎠ (15)

and four speech sources with 15000 samples in time domain are
shown in Fig. 1(a), and the observed mixing results are shown in
Fig. 1(b).

By using Algorithm 1 with λ = 0.001, we get the mixing matrix
estimation Â as shown in (16). Then, inputting the observed mixtures

Fig. 2. Performance comparison of matrix estimation with the proposed
method, DUET method, TIFROM method, and the algorithm in [9] from
378035 mixture samples.

and the mixing matrix estimation Â into Algorithm 2, we can obtain
the source recovery results as shown in Fig. 1(c)

̂A =
⎛

⎝

0.6189 0.6230 0.5670 0.6927
0.4566 −0.5428 0.6013 −0.4849
0.6391 −0.5633 −0.5629 0.5339

⎞

⎠. (16)

From the above results, we can find that the estimated mixing
matrix ̂A is very close to the real mixing matrix A, and all the sources
have been recovered successfully.

In the second experiment, we compare the performance of the pro-
posed algorithm with the DUET method1 [7], TIFROM method2 [8],
and the method3 in [9]. We use four speech audio sources of 378035
samples with a sample rate of 16 kHz as the source signals. Moreover,
additive noise signals with the normal distribution are considered. The
mixing matrix is given by

A =
⎛

⎝

0.6542 0.4811 0.7923 0.2840
−0.1638 0.5780 −0.1192 0.6192

0.7383 −0.6591 −0.5984 0.7321

⎞

⎠. (17)

For the DUET method, we only input the mixtures from first two
sensors, since it is designed for two mixtures separation. For the
TIFROM method, the threshold of the distance between a new column
of estimated mixing matrix and each previous found one is set as 0.5,
which is suggested in the code provided by Abrard and Deville [8].
The parameter 
θ in Reju’s method is set as 0.8◦ as suggested in [9].
As the TIFROM method cannot exact any source signals from the
mixtures and the method in [9] only considers the mixing matrix
estimation, these two methods are used to only estimate the mixing
matrix. Their estimation of the mixing matrix are then inputted to
the method in [5] to recover the source signals. The parameter λ of
the proposed method is taken as 0.001. Please note that our method
can get both the mixing matrix estimation and the separated sources.
Figs. 2 and 3 show the performance comparison of the proposed
algorithm and other three methods in the different noise scenarios.

From the results, we find that with the increase of SNR, the
Error and M SE of all the tested algorithms are decreased. Fur-
thermore, the source recovery performance depends on the mixing

1The source code of DUET method is provided by its authors via the
Appendix in Chapter 8 of Blind Speech Separation, 2007, Springer.

2The source code of the TIFROM method is from LI-TIFROM software at
http://www.ast.obs-mip.fr/article715.html

3The source code of the method in [9] is provided by its first author at
http://www3.ntu.edu.sg/home/Reju/IBSS.zip.
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Fig. 3. Performance comparison of source recovery with the proposed
method, DUET method, TIFROM method, and the algorithm in [9] from
378035 mixture samples.

TABLE I
TIME COST OF MIXING MATRIX ESTIMATION AND SOURCE RECOVERY

OF DIFFERENT METHODS OVER 378035 MIXTURE SAMPLES

matrix estimation accuracy. From Fig. 2, we get that the method
in [9] and the TIFROM method have much better performance than
the DUET method for mixing matrix estimation when SNR ≥ 40 dB.
The TIFROM method is more sensitive to the noise, which results
in that it has a high error when SNR ≤ 30 dB. The method
in [9] outperforms the DUET method and the TIFROM method
under different noise levels, and is inferior to our proposed method in
mixing matrix estimation. From Fig. 3, we observe that the proposed
method outperforms the DUET method, the TIFROM method, and the
method in [9] at all noisy levels. Although the method in [9] achieved
low error on mixing matrix estimation when SNR ≥ 20 dB, the
source recovery performance is much lower than that of the proposed
method.

To investigate the complexity of the proposed, we suppose that
there are ρ TF points in the TF plane. For each TF mixture vector,
we use γ other TF mixture vectors to linearly reconstruct it. If the
proposed method detected η SSPs, it takes O(ρ(m3 + γ ) + η2) to
estimate the mixing matrix, and O(ρ(m3 + Cm−1

n )) to recover the
source signals. In the experiment, we set γ = 200, and randomly
select 5000 mixture TF vectors to estimate the mixing matrix for the
proposed method. The time cost of different methods with SNR =
45 dB is summarized in Table I, where t1 denotes the CPU elapsed
time (s) for mixing matrix estimation stage, t2 denotes that of source
recovery stage, and t3 is the whole time cost for the UBSS. From
Table I, we find that the proposed method is slightly slower than
other methods, since it considers the sparse linear representation
relationships among all the mixture TF vectors. This experiment
demonstrates that the proposed method can get a higher accuracy
at the cost of adding a little more computational complexity.

In the third experiment, we investigate the performance of the
above-mentioned methods and a quadratic TFDs-based method
in [14] on mixing matrix estimation with insufficient mixture samples.
We extract a patch of samples with the length of 4096 from the
speech samples, which are used in the second case. Moreover, the

Fig. 4. Performance comparison of mixing matrix estimation with the
proposed method, the method in [14], the algorithm in [9], the TIFROM
method, and the DUET method from 4096 mixture samples.

Fig. 5. Performance comparison of source separation on cocktail party
problem with the proposed method, the algorithm in [9], the TIFROM method,
and the DUET method.

parameters of the method in [14] is set as ε1 = 0.05 and ε2 = 0.8.
The performance comparison of the mentioned methods are shown
in Fig. 4. The CPU elapsed time of these 4096 samples with
SNR = 45 dB for the proposed method, the method in [14],
the algorithm in [9], TIFROM method, and DUET method are
1.8569, 12.8193, 1.7278, 0.11348, and 0.2191 s, respectively.

From the results, we observe that the method in [14] outperforms
the DUET method. As both of them assume that the source signals
are TF-disjoint, it means that the source signals are more sparse in
quadratic TFDs than in the linear TFDs. The proposed method can
still work well in such challenging situations and outperforms other
methods, since the linear relations among the TF vectors at different
TF points are considered. Moreover, the proposed method has higher
efficiency than the quadratic TFDs-based method in [14].

In the fourth experiment, to evaluate the performance of the
proposed method on the real-world applications, we use a public
benchmark of cocktail party problem, which is provided by the ICA
research center at the Helsinki University of Technology and available
at http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi. Specifically,
we separate four sources from the outputs from three microphones,
and compare the source estimation with its corresponding original
source signals. Fig. 5 shows the separation performance of the
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Fig. 6. Performance comparison of source recovery with different number
of sources and sensors.

proposed method,4 the DUET method, the TIFROM method, and
the method in [9] under different noisy levels. From the result,
we can see that the proposed method achieves the ideal performance
under different noisy levels.

In the last experiment, we assess the performance of the proposed
method with different number of sources and sensors. We consider
the mixing matrices with the dimensions of 2× 3, 3× 4, 3× 5, 4× 5,
and 4 × 6, i.e., the mixture cases with three sources two sensors,
four sources three sensors, five sources three sensors, five sources
four sensors, and six sources four sensors, respectively. The mixing
matrices and the source signals are generated randomly, and the
source separation performance is shown in Fig. 6.

From the result, we find that the performance with the 3 × 4
mixing matrix is similar to that of the 4 × 5 mixing matrix, and
the performance with the 3 × 5 mixing matrix is similar to that of
the 4 × 6 mixing matrix. It means that the separation performance
mainly depends on the difference between the number of sources and
the number of sensors. However, the case with 2 × 3 mixing matrix
is an exception. In this case, Assumption 3 requires that there exist
at most one active sources at each TF point. This restriction is hard
to satisfy, which results in the performance degradation.

IV. CONCLUSION

This brief focus on the problem of underdetermined blind sep-
aration, where the number of sensors is less than the number of
sources. We exploit the sparse coding strategy among the mixture
TF vectors to detect the SPPs. After detecting the SSPs in the TF
plane, we get the estimation for the mixing matrix by grouping the
mixture TF vectors at these SSPs. The source recovery is completed
by solving a set of least squares problems. The proposed assumptions
are easy to be satisfied in the practical applications. Experimental
results demonstrate that the proposed method can achieve satisfactory
performance.

APPENDIX A
PROOF OF LEMMA 1

Proof: According to Assumption 3, at most m − 1 sources are
active at each TF point (t, k), which means that the source signal
representation vector s̃(t, k) contains at most m−1 nonzero elements.
Here, we denote the indices of these m − 1 nonzero elements as
φ1, φ2, . . . , φm−1.

4The blind separation results of our proposed method are available at
https://www.dropbox.com/s/vb8d9l69rw93mwh/UBSS.rar?dl=0.

Obviously, there must exist a submatrix A∗ =
[aφ1 , aφ2 , . . . , aφm−1 ] in the set A satisfying

Ãs(t, k) = A∗s̃φ1,φ2,...,φm−1(t, k) (18)

where s̃φ1,φ2,...,φm−1(t, k) is constructed by the elements from s̃(t, k)
with the indices as φ1, φ2, . . . , φm−1.

From (2) and (18), it follows that:
A∗A†∗x̃(t, k) = A∗A†∗(Ãs(t, k))

= A∗A†∗(A∗s̃φ1,φ2,...,φm−1(t, k))

= A∗s̃φ1,φ2,...,φm−1(t, k)

= Ãs(t, k)

= x̃(t, k). (19)

This completes the proof.

APPENDIX B
PROOF OF THEOREM 1

Proof: According to the number of active sources, denoted by
p, the following two cases are considered.

Case 1: p = m − 1
Let H be the set of all x̃(t, k), such that the linear system (2) has

a solution with m − 1 nonzero elements, i.e., where there are m − 1
active sources at each TF point. Obviously H is the union of all the
Cm−1

n subspaces, which are spanned by m × (m − 1) submatrices of
the matrix A.

Set T be the union of all the intersections of any two above
subspaces. Clearly, T has a measure zero in H, which means that
any mixture vector x̃(t, k) is in the set T with probability zero.

For any given mixture TF vector x̃(t, k) ∈ H − T , from (11), the
constructed vector ŝ(t, k) satisfies the following equation:

Âs(t, k) = A∗e

= A†∗x̃(t, k)

= x̃(t, k). (20)

It holds from (2) and (20) that

A[̂s(t, k)− s̃(t, k)] = 0. (21)

As x̃(t, k) /∈ T , x̃(t, k) belongs to only one (m − 1)-dimensional
subspace spanned by m − 1 columns aφ1 , aφ2 , . . . , aφm−1 of A.
It means that ŝ(t, k) and s̃(t, k) have m − 1 nonzero elements in
places with indices in φ1, φ2, . . . , φm−1.

From (21), it follows that if ŝ(t, k) �= s̃(t, k), the m − 1 vector
columns aφ1 , aφ2 , . . . , aφm−1 of A will be linearly dependent, which
is a contradiction with Assumption 2.

Case 2: p < m − 1
For any given mixture TF vector x̃(t, k) produced by p sources,

that is the TF vector s̃(t, k) has p nonzeros. Such that x̃(t, k) lies
in the space spanned by p columns of the mixing matrix. Based
on (11), we get that ŝ(t, k) also has p nonzeros. We can take out
the steering vectors corresponding to p sources, and rewrite (21) as
follows:

(aι1 , aι2 , . . . , aιp )̂sι1,...,ιp (t, k)

= (aϑ1 , aϑ2 , . . . , aϑp )s̃ϑ1,...,ϑp (t, k). (22)

Let U be the set of all x̃(t, k), such that the linear system (2) has a
solution with p nonzero elements. Here, U is the union of all the C p

n
subspaces, which are produced by m × p submatrices of the mixing
matrix A.

Set L be the union of all the intersections of the two subspaces
spanned by aι1 , aι2 , . . . , aιp and aϑ1 , aϑ2 , . . . , aϑp . As the sources



3108 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 28, NO. 12, DECEMBER 2017

are irrelevant to the mixing matrix, obviously, L has a measure zero
in U , which means that any mixture vector x̃(t, k) is in the set L
with probability zero.

For a vector x̃(t, k) ∈ U − L, as x̃(t, k) /∈ L, x̃(t, k) can only
belongs to the subspace spanned by p columns aι1 , aι2 , . . . , aιp or
the subspace spanned by p columns aϑ1 , aϑ2 , . . . , aϑp .

Let us consider x̃(t, k) belongs to the subspace spanned by p
columns aι1 , aι2 , . . . , aιp . ŝ(t, k) and s̃(t, k) have p nonzero elements
in places with indices in ι1, ι2, . . . , ιp . From (21), it follows that if
ŝ(t, k) �= s̃(t, k), the p vector columns aι1 , aι2 , . . . , aιp of A will be
linearly dependent, which is a contradiction with Assumption 2.

The same theory proves the case of x̃(t, k) belongs to the subspace
spanned by p columns aϑ1 , aϑ2 , . . . , aϑp .

Based on the analysis outcomes from the above two cases, we
conclude that ŝ(t, k) is unique and equals to the source signals with
probability one. This completes the proof.
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