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Abstract—In this article, we study two challenging problems
in semisupervised cross-view learning. On the one hand, most
existing methods assume that the samples in all views have a
pairwise relationship, that is, it is necessary to capture or estab-
lish the correspondence of different views at the sample level.
Such an assumption is easily isolated even in the semisupervised
setting wherein only a few samples have labels that could be
used to establish the correspondence. On the other hand, almost
all existing multiview methods, including semisupervised ones,
usually train a model using a fixed dataset, which cannot handle
the data of increasing views. In practice, the view number will
increase when new sensors are deployed. To address the above
two challenges, we propose a novel method that employs multiple
independent semisupervised view-specific networks (ISVNs) to
learn representation for multiple views in a view-decoupling
fashion. The advantages of our method are two-fold. Thanks to
our specifically designed autoencoder and pseudolabel learning
paradigm, our method shows an effective way to utilize both the
labeled and unlabeled data while relaxing the data assumption of
the pairwise relationship, that is, correspondence. Furthermore,
with our view decoupling strategy, the proposed ISVNs could be
separately trained, thus efficiently handling the data of increas-
ing views without retraining the entire model. To the best of our
knowledge, our ISVN could be one of the first attempts to make
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handling increasing views in the semisupervised setting possible,
as well as an effective solution to the noncorresponding problem.
To verify the effectiveness and efficiency of our method, we con-
duct comprehensive experiments by comparing 13 state-of-the-art
approaches on four multiview datasets in terms of retrieval and
classification.

Index Terms—Cross-view retrieval, heterogeneous recognition,
latent common space, semisupervised multiview learning.

I. INTRODUCTION

MULTIVIEW learning aims to learn a common space
shared by different views, which has shown promis-

ing performance to facilitate the downstream tasks, such
as multiview clustering [1]–[4], classification [5]–[7], and
retrieval [8]–[10]. Among them, cross-view retrieval and
classification are two interesting topics due to their flex-
ibility in real-world applications. More specifically, cross-
view retrieval/classification aims to flexibly retrieve/recognize
semantically relevant samples of one view (i.e., query/probe
set) from another view (i.e., database/gallery set). The key
of retrieval and classification is to measure the similarity
between the query/probe and database/gallery, so that the com-
mon representations across different views (e.g., image, text,
etc.) are learned. To the end, a variety of approaches has
been proposed with different problem settings, for example,
unsupervised [11]–[14]; supervised [6], [15]–[17]; and semisu-
pervised [18], [19] methods. In this article, we mainly focus
on a semisupervised setting since it could maximally exploit
all available training data in practice, for example, a few cost-
prohibitive labeled data and a large number of unlabeled data.

To leverage all available labeled and unlabeled multiview
data, a number of semisupervised approaches have been
proposed to learn discriminative representations shared by dif-
ferent views [18], [20], [21], and their major difference is the
choice of different strategies in using unlabeled data. More
specifically, these methods usually take one of the following
two choices: 1) maximizing the pairwise correlations between
cross-view samples [21]–[24] or 2) preserving the intrinsic
information in the common space by using a Laplacian reg-
ularizer [18], [19]. Although these methods have achieved
promising performance, almost all of these methods have faced
the following limitations. To be specific, the methods with the
first choice implicitly require the unlabeled data subsets to sat-
isfy the pairwise constraint, which is easily isolated in practice
as shown in Fig. 1. In other words, the multiview data are prob-
ably not pairwise/aligned due to view missing, independent
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(a)

(b)

Fig. 1. Difference between (a) pairwise-constraint semisupervised methods
and (b) generalized ones. In the figure, red-dotted lines represent the pairwise
constraints between two views; solid items represent labeled samples; hol-
low items denote unlabeled points; different colors represent different views;
and different shapes denote different categories. In brief, most traditional
semisupervised methods require the unlabeled data to satisfy the pairwise
constraint. However, this constraint is often hardly satisfied in practice due
to view missing, independently sampling, and so on. In contrast, generalized
semisupervised methods directly capture the intrinsic information from the
unlabeled data without the pairwise constraint, thus embracing more flexibility
in practice.

sampling, spatial–temporal connection breaking, and so on.
Once there is no available pairwise relationship between unla-
beled cross-view data, the methods would fail to achieve a
desirable result. Although the second kind of method can avoid
the pairwise correspondence by directly enforcing a Laplacian
regularizer on the unlabeled data, they have suffered from
very high computational complexity as the graph Laplacian is
time- and memory-prohibitive. Furthermore, almost all exist-
ing methods, including those mentioned above, cannot handle
the increasing views because they often jointly learn the view-
specific transformations on all views to narrow the view gap.
Such a joint learning paradigm requires retraining the entire
model once some new views are coming, as shown in Fig. 2(a).
In the real world, the view number probably increases by
deploying new sensors or applications.

To address the aforementioned problems, we propose a
novel multiview learning method, called the independent
semisupervised view-specific network (ISVN). The proposed
method consists of multiple ISVNs, which aim to learn
representation for different views. All ISVNs work in an inde-
pendent manner so that the newly observed views could be
handled without retraining the trained model. For one new
view, we only need to stack and train a new ISVN for it.
The independent working mechanism of ISVN is derived
from our view decoupling strategy, which leverages the uni-
fied semantic information shared diverse views to alleviate
the cross-view discrepancy instead of the cross-view relation-
ship. Specifically, for the labeled samples X i, the ith ISVN
aims at projecting X i into the common discriminant space
that is predefined by a fixed shared linear classifier W as

(a)

(b)

Fig. 2. Difference between (a) existing joint multiview learning and (b) our
independent multiview learning. In brief, the traditional methods use all views
to learn the common space. They are difficult to handle increasing views since
their models are optimized depending on all views. Thus, they should retrain
the whole model to handle new views, which is inefficient with abandoning the
trained model. In contrast, our method independently trains the k view-specific
models for the k new views, thus efficiently handling increasing views.

shown in Fig. 3. Thanks to the unified semantic space and
the shared classifier, each ISVN could independently project
the corresponding view to the common space by only uti-
lizing the labeled data of its own view. Alternatively, for
the unlabeled samples U i, the intrinsic and discriminative
information is excavated from U i to improve the ith ISVN with
the reconstruction and pseudolabel (PL) learning as shown in
Fig. 3. Thus, each ISVN could be independently trained on
only its corresponding labeled and unlabeled data without any
interview constraints.

Different from existing semisupervised methods, our ISVN
utilizes a reconstruction criterion and a PL strategy to exploit
the intrinsic and discriminative information from the unpaired
unlabeled data. Thanks to the reconstruction criterion, our
ISVN maximizes the mutual information between the learned
representations and the view-specific inputs to smoothly cap-
ture the data manifold instead of the memory-intensive graphic
regularizer. By learning from the PL strategy, the fixed classi-
fier can be more confident in its classification on the unlabeled
data. Thus, the discrimination between distinct classes can be
learned from the labeled and unlabeled data. Another differ-
ence from the existing joint learning methods is that our ISVN
can separately train each view-specific network on its corre-
sponding view without sharing any constraints and trainable
cross-view parameters as shown in Fig. 2(b). Due to the sepa-
rate training strategy, the proposed method can efficiently and
flexibly tackle new views and a large number of views.

The differences with existing semisupervised multiview
learning approaches are given as follows. First, different
from the aforementioned first kind of methods [21]–[24], our
method could use the unlabeled data, while avoiding establish-
ing the pairwise correspondence of views as shown in Fig. 1.
Second, different from the second kind of methods [18], [19],
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Fig. 3. Pipeline of our ISVN for the ith view. For v views, v ISVNs are constructed to separately learn the common representations on each corresponding
view. In the figure, X i = {xi

k}
Ni
k=1 represents the set of Ni labeled samples from the ith view and P i = {pi

k}
Ni
k=1 is the set of the corresponding labels.

U i = {ui
k}

Mi
k=1 denotes the set of Mi unlabeled samples in the ith view. Qi = {qi

k}
Mi
k=1 is the set of the PLs predicted by the network on U i. W is the associated

matrix with the fixed unified linear classifier used to define the common space. X̂ i and Û i are the reconstructed samples from X i and U i, respectively. Since
distinct views share the unified semantic information, the labeled data X i could be used to bridge the different views to learn common representations without
the cross-view pairwise relationship. The unlabeled data U i are exploited to extract the intrinsic and discriminative information from U i into the common
space through reconstruction (i.e., X̂ i and Û i) and PL (i.e., Qi) learning. Thus, all views could be separately projected into the common space without any
interview constraints, and could easily and efficiently handle new views.

our method employs a specifically designed autoencoder (AE)
rather than graph Laplacian to exploit the unlabeled data, thus
enjoying higher computational efficiency. Third, our method
could efficiently handle the newly coming views without
retraining the entire model as shown in Fig. 2. To the best
of our knowledge, fewer efforts have been devoted to devel-
oping a semisupervised multiview neural network that could
handle the increasing views. The main contributions of this
article could be summarized as follows.

1) A novel ISVN is proposed to decouple the joint mul-
tiview semisupervised learning, enabling toseparately
train each view-specific network. Thus, our ISVN could
be efficient and flexible to handle the data of increasing
views.

2) A novel semi-supervised training strategy is proposed to
efficiently exploit the unlabeled unpair multiview data to
encapsulate the inhered data information in the common
representations. Thus, our method could be efficient and
effective in tackling unlabeled multiview data without
pairwise constraints.

II. RELATED WORK

Multiview learning has been the source of more
attention from academic and industry communities, such
as multiview clustering [1], [25], [26], [27]; cross-modal
retrieval [28], [29]; etc. Multiview clustering aims at explor-
ing clusterings to organize the multiview data into mean-
ingful groups [1], [25], [26], [30]. Specifically, the indi-
viduality and commonality of multiview data are creatively
utilized to generate high-quality and diverse clusterings

in [25]. In this work, we mainly focus on multiview learn-
ing for cross-view retrieval and classification, which could be
roughly classified into unsupervised, supervised, and semisu-
pervised categories based on the availability of category label
information. In this section, we will briefly introduce some
related multiview learning methods according to the three
aspects.

A. Unsupervised Multiview Learning

Unsupervised multiview learning aims at projecting mul-
tiview data into a common space wherein all views are
statistically correlated. One pioneer is canonical correlation
analysis (CCA), which maximizes the cross-view correlations
to learn two linear transformations so that different views are
projected into a latent common space. Similarly, Sharma and
Jacobs [12] proposed a partial least squares method (PLSs),
which linearly projects two views into a latent common space
by maximizing their covariance. One major limitation of CCA
and PLS might be that they can only handle the biview data,
and it is costly to extend them to the multiview case. To
overcome this limitation, some works were proposed, which
often maximize the sum of correlations between all pairwise
views. For example, multiview CCA (MCCA) [11], [31] pro-
poses learning v view-specific linear transformations for v
views. To excavate the intrinsic structure in the relative low-
dimensional space, Ma et al. [32] proposed an unsupervised
non-negative matrix factorization-based method by introducing
manifold regularizations into the multiview discriminant anal-
ysis. To tackle missing samples in the training set, Lampert and
Krömer [33] presented a dimensionality reduction method that
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is able to work with weakly paired data and also robust
to partially missing data. Zhu et al. [34] proposed a novel
cross-modal hashing approach to enable scalable training data
with a linear time complexity to the training dataset. In [35],
a multimodal graph regularized smooth matrix factorization
hashing (MSFH) approach is proposed to counter quantization
loss caused by relaxing hash codes for unsupervised cross-
modal retrieval. Moreover, some variants of CCA are proposed
with kernel trick to make handling linear inseparable data
possible, such as Kernel CCA (KCCA) [36] and kernel non-
linear orthogonal iterations (KNOIs) [37]. However, it lacks
a golden criterion to choose a suitable kernel function, and
the performance of these approaches heavily depends on the
used kernel [38]. To tackle the problem, some deep multiview
methods have been proposed [39]–[41].

B. Supervised Multiview Learning

Different from the unsupervised setting, supervised meth-
ods assume that all training data are well annotated. With the
semantic information rooted in the class label, a variety of
methods has been proposed to learn a latent common dis-
criminant space wherein the samples from the same class are
compacted; meanwhile, the ones from different classes are
enforced to be scattered [6], [42]. Moreover, Ma et al. [43] and
Sun et al. [44] proposed incorporating the label into CCA to
learn a single discriminant space by minimizing the between-
class correlation and maximizing the within-class correlation
across different views. Hou et al. [45], [46] studied how
to prevent the new views from worsening performance and
presented a stable method to guarantee that the performance
does not become worse with more views. To efficiently explore
the complementary properties from multiple different feature
domains, Zhang et al. [47] presented a simultaneous spectral-
spatial feature selection and extraction algorithm to project
the spectral-spatial feature into a common feature space.
Mandal et al. [48] proposed a simple hashing framework that
is able to handle different scenarios wherein multimodal data
may be associated with a single label or multilabel with or
without pairwise correspondence. Yu et al. [28] proposed a
flexible cross-modal hashing approach (FlexCMH) to learn
effective binary codes from weakly paired multimodal data,
which is a challenge scenario wherein correspondence across
different modalities is partially (or even completely) missed.
To capture high nonlinearity across different views, some
recent works proposed employing a deep neural network
to project different views into a latent common discrimi-
nant space with the semantic information [49], [50]. In very
recent, motivated by the success of generative adversarial
nets [51] in modeling data distribution, adversarial learning
was introduced to model the joint distribution over all views
with the semantic information to learn common discriminative
representations [29], [42].

C. Semisupervised Multiview Learning

Although the supervised methods have achieved promis-
ing performance, their performance fully relies on sufficient
labeled multiview data. It is time and cost-prohibitive to obtain

an amount of well-annotated multiview data, and even impos-
sible for some applications that need careful expert labeling,
e.g., medicine. Thus, it is highly encouraged to design semisu-
pervised multiview methods to exploit the discrimination from
a few labeled multiview data and a large number of unlabeled
data. To the end, a number of algorithms have been proposed,
and one most popular solution is combining the supervised
objective and a Laplacian regularizer [18]–[20]. For instance,
Chen et al. [20] proposed a dimensionality reduction method,
which performs CCA on a few paired data and utilizes both
the local discriminative information of labeled data and the
global structural information of unlabeled data to compensate
for the limited pairedness. Moreover, to address the incom-
pleteness issue of pairwise correspondence and category labels
in multiview, multiinstance, and multilabel learning (M3L),
Xing et al. introduced a weakly supervised M3L approach
(WSM3L) based on multimodal dictionary learning in [52].
By considering the nonlinearity of data, some deep semisuper-
vised methods are recently proposed, which project different
views into a common space in a progressive way [21], [53].
Although these methods have achieved promising performance
in their specific settings, the view-dependent training strat-
egy will hinder their efficiency and flexibility from handling
increasing views.

III. PROPOSED ALGORITHM

In this section, we introduce our method, which consists
of v independent view-specific ISVNs for v views. The ith
network pipeline for the ith view is shown in Fig. 3. Since
all the view-specific ISVNs are independent of each other,
thanks to our view-decoupling approach, we will introduce
one view-specific ISVN in the following example without loss
of generality.

A. Problem Formulation

Let X i = {xi
k}Ni

k=1 be the set of Ni labeled samples from the
ith view with the corresponding one-hot labels P i = {pi

k}Ni
k=1

sampled from c classes, and let U i = {ui
k}Mi

k=1 be a set
of Mi unlabeled samples from the ith view. Although our
method belongs to the semisupervised family, we consider
one more challenging situation, that is, only an extremely
small portion of data is labeled and the unlabeled data does
not satisfy the pairwise constraint. Note that most existing
works [22]–[24] implicitly assumed the unlabeled data are
with well-established correspondence. In contrast, we assume
that one does not know whether two cross-view points belong
to the same subject or not. Clearly, such a setting is more
difficult and practical in the real world.

The key to solving the above challenge is to decouple the
joint cross-view learning paradigm. More specifically, these
existing methods often learn a common space wherein the
cross-view data points of the same subject are with the similar
even the same representation. To learn the common space,
the correspondence of points is necessary so that the cross-
view data points of the same subject are known and the joint
optimization could work. Once we do not adopt the joint cross-
view learning paradigm, it is unnecessary to establish the view
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correspondence on the unlabeled data. As another benefit of
such a view-decoupling paradigm, one could handle the newly
coming view.

To achieve the aforementioned goal, different from the
joint multiview learning methods, the objective functions and
networks of all views should be individual with each other.
Thus, the overall objective function of our ISVN for the ith
view could be formulated as follows:

{
�∗

i ,�
∗
i

} = arg min
�i,�i

L(X i,P i,U i,Qi)

= arg min
�i,�i

(L(X i,P i) + βL(U i,Qi)) (1)

where β > 0 balances the contributions of the labeled and
unlabeled data, �i and �i are parameter sets of the encoder
and decoder, Qi is the PLs obtained by Eq. (4), and L is
a unified loss function for both labeled and unlabeled data,
which are elaborated in the following sections.

B. Independent Semisupervised View-Specific Network

To achieve the aforementioned goal, we employ an
untrained orthogonal matrix W to replace the popular learning-
based common space. Note that if W is orthogonal, the
within-class similarity will be maximized and the between-
class similarity will be minimized according to [54] and [55].
To be specific, for a given labeled/unlabeled data point, we
feed it through the encoder to obtain the feature yi

k, that is

yi
k = f

(
si

k

)
, s ∈ {x, u} (2)

where f (·) denotes the encoder.
After that, we project yi

k into the label space via WTyi
k.

Here, one could observe that W performs like a classifier with
an untrained orthogonal matrix. We fix it due to the following
reason. To be specific, if W is trainable, we will still face the
view-coupling problem, that is, it is necessary to train W using
all data, thus disabling handling the increasing view problem.

After projecting yi
k into the label space, we aim at

minimizing

Lc
(S i,Oi) = 1

Ni

Ni∑

k=1

η
∥∥WTyi

k − oi
k

∥∥
2

= 1

Ni

Ni∑

k=1

η
∥∥WT f

(
xi

k

) − oi
k

∥∥
2 (3)

where pi
k denotes the label of the kth sample of the ith view,

η = 1/
∑c

l=1 pi
kl is a penalty parameter, ‖ · ‖2 is the �2-norm

operator, S ∈ {X ,U}, O ∈ {P,Q}, o ∈ {p, q}, Qi = {qi
k}Mi

k=1,
and qi

k is the PL of ui
k, which will be elaborated in the fol-

lowing. Here, η is used to weaken the indeterminate predicted
PLs for unlabeled data. In short, when data are labeled, η = 1.
Otherwise, η will be with real value. For the unlabeled data
point ui

k, we assign a PL to it via qi
k = h(WT f (ui

k)), h(·) is a
sharpening function as follows:

h(z)i =
{

1, zi
max(z) > γ

0, otherwise
(4)

Algorithm 1 Optimization Procedure of ISVN for the ith View

Input: The labeled training samples X i = {
xi

k

}Ni

k=1 and the

unlabeled points U i = {
ui

k

}Mi

k=1 from the i-th view, objec-
tive dimensionality d, batch size Nb, positive balance
parameters α and β, and learning rate τ .

1: while not converge do
2: Randomly sample Nb points from X i and U i to con-

struct a labeled min-batch Xb and Pb, and an unlabeled
min-batch Ub of the i-th view, respectively.

3: Compute the pseudo-labels Qb for Ub by Eq. (4).
4: Calculate the loss L(Xb,Pb,Ub,Qb) for Xb and Ub by

Eq. (1).
5: Update the network parameters �i and �i by minimiz-

ing the obtained loss with descending their stochastic
gradient:

�i = �i − τ
∂L(X i,P i,U i,Qi)

∂�i

�i = �i − τ
∂L(X i,P i,U i,Qi)

∂�i
6: end while

Output: The optimized ISVN model for the i-th view.

where 0 < γ < 1 is a positive threshold, and max(z) returns
the maximum element of the vector z.

Besides the discrimination loss defined in the above formu-
lation, our loss function also consists of a reconstruction term
as follows:

Lr
(S i) = 1

Ni

Ni∑

k=1

∥∥ŝi
k − si

k

∥∥
2

= 1

Ni

Ni∑

k=1

∥∥g
(
f
(
si

k

)) − si
k

∥∥
2 (5)

where s ∈ {x, u}, ŝi
k is the reconstruction of the given data

point si
k, namely, the output of decoder g(·).

Putting the discriminative loss Lc and view-specific recon-
struction loss Lr together, we have

L(S i,Oi) = (1 − α)Lc
(S i,Oi) + αLr

(S i) (6)

where α is a balanced parameter for classification and recon-
struction losses. Therefore, we obtain the unified loss function
for both labeled and unlabeled data, which can be applied
on (1) to train the models.

In summary, each view-specific network could be sepa-
rately trained by optimizing the objective function (1). The
optimization process for the ith view can be summarized as
Algorithm 1.

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed method
for cross-view retrieval and recognition, we conduct
experiments on four benchmark multiview datasets,
that is: 1) XMediaNet [56]; 2) NUS-WIDE [57];
3) INRIA-Websearch [58]; and 4) MNIST-SVHN [59], [60].
We not only compare our ISVN with 11 state-of-the-art
methods but also conduct ablation study to investigate the
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TABLE I
GENERAL STATISTICS OF THE FOUR DATASETS USED IN THE

EXPERIMENTS, WHERE “*/*/*” IN THE “#SAMPLE” COLUMN

STANDS FOR THE NUMBER OF TRAINING/VALIDATION/TEST

SUBSETS

contribution of each component of ISVN. Besides, we also
carry out experiments of parameter analysis and the efficacy
analysis for new views.

A. Experiment Settings

We compare our method with 13 state-of-the-art meth-
ods, including: 1) MCCA [11]; 2) PLS [12]; 3) DCCA [39];
4) DCCAE [14]; 5) GMLDA [7]; 6) MvDA [55];
7) MvDA-VC [6]; 8) ACMR [42]; 9) FGCrossNet [61];
10) JRL [19]; 11) GSS-SL [18]; 12) DSCMR [62]; and
13) SMLN [21]. Among these methods, MCCA, PLS,
GMLDA, MvDA, and MvDA-VC are shallow models, of
which the optimal dimensionality of the common space is
searched into the range of [10:250] using the validation sub-
set of each data collection. For the evaluated deep models, we
adopt the values recommended by the corresponding authors.

For a fair comparison, all methods adopt the same fea-
tures as shown in Table I. In other words, the parameters
of the feature extractors (e.g., VGGNet [63], AlexNet [64],
Doc2vec [65], etc.) are fixed during training even though our
ISVN can be trained in an end-to-end manner. Moreover, we
employ v extra four-layer neural networks to extract features
from XMediaNet, NUS-WIDE, and INRIA-Websearch, that
is, di → 4096 → 4096 → d for the ith view, where di is
the input dimensionality of the ith view and d is the objective
dimensionality of the common space. For the MNIST-SVHN
dataset, the raw data are used as inputs to train each ISVN in
an end-to-end manner. The CNN network architecture of our
ISVN is implemented according to MNIST-SVHN CycleGAN
transfer.1 For the other methods, an image of this dataset is
reshaped as an input vector. In the inference process, the out-
puts of each ISVN are the common representations of the
corresponding input samples. Nb and d are set to 16 and 1024
for all datasets, respectively. The learning rate γ is set 0.0001
for all views.

The ADAM [66] optimizer is employed to optimize our each
ISVN with the maximal epoch of 200. The optimized ISVN
model of the last epoch (i.e., the 200th epoch) is used as the
inference model to compute the common representation for a
testing sample of the corresponding view. Note that for super-
vised and unsupervised multiview methods, only the labeled
samples can be used to train their models since any two views
of unlabeled multiview data are unpaired. On the other hand,

1https://github.com/yunjey/mnist-svhn-transfer

the semisupervised methods without pairwise restriction could
fully employ both labeled and unlabeled multiview data, that
is, JRL, GSS-SL, and our ISVN.

B. Evaluation Metric

We evaluate the effectiveness of our method in two
tasks, that is: 1) cross-view retrieval and 2) classification.
Specifically, we adopt the mean average precision (mAP)
to evaluate the cross-view retrieval performance on the
XMediaNet, NUS-WIDE, and INRIA-Websearch datasets.
Like [8] and [42], we calculate the mAP scores on the ranked
lists of the retrieved results for two distinct tasks to evaluate
the performance, namely: 1) retrieving relevant text instances
using an image query (Img2Txt) and 2) retrieving relevant
image samples using a text query (Txt2Img). Noticed, the
mAP is a widely used performance evaluation criterion for
cross-view retrieval [42], which is the mean value of average
precision (AP) scores for each query. For the ith query, the
corresponding AP is calculated as follows:

P̄i = 1

R(n)

n∑

k=1

R(k)

k
× P(k) (7)

where n is the number of retrieving samples, and R(k) counts
the number of the relevant instances in the top k returned
results. P(k) is a Boolean function, which is equal to 1 if
the returned result of the rank k is a relevant point, and zero
otherwise. With AP, the mAP score could be computed as
follows:

P̄ = 1

n

n∑

i=1

P̄i. (8)

From the above formulation, the mAP score simultaneously
considers the precision as well as the rank of the returned
retrieval results. It should be noted that the mAP scores of
all experiments are computed on the all returned results fol-
lowing [42]. Besides mAP, the precision–recall curves are
illustrated to visually investigate the performance of our ISVN
and its counterparts.

In addition, the top-1 classification accuracy is reported to
evaluate the performance of cross-view classification on the
MNIST-SVHN dataset. The top-k classification accuracy can
be calculated through

ACC(k) = 1

n

n∑

l=1

Q(l, k) (9)

where n is the number of probes. Q(l, k) is an indicator func-
tion that is equal to 1 if the top k returned instances from the
gallery have the same class as the kth probe, and zero other-
wise. Similar to cross-view retrieval, the top-1 classification
accuracy is computed for some different cross-view pairwise
tasks, that is, the samples from a view are adopted as the
gallery set while the ones from another view are used as the
probes. For example, M2S (S2M) denotes that the testing set
of MNIST (SVHN) is used as the gallery set while the test-
ing set of SVHN (MNIST) is used as the probe set. Note that
the similarity between two points is computed through cosine
distance in all experiments.
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TABLE II
PERFORMANCE COMPARISON IN TERMS OF MAP SCORES ON THE XMEDIANET DATASET. THE HIGHEST SCORE IS SHOWN IN Boldface

C. Datasets

In this section, we elaborate the tested datasets, that
is, XMediaNet [56], [67], NUS-WIDE [57], INRIA-
Websearch [58], and MNIST-SVHN [59], [60]. The general
statistics and basic information of the datasets are summarized
in Table I and some details are given as follows.

1) XMediaNet [56], [67] is a large-scale multiview dataset,
which includes 40 000 images, 40 000 texts, 10 000
audio, 2000 3-D models, and 10 000 videos, of which
each sample is classified into 200 nonoverlap categories.
In this article, the experiments are conducted on the
image and text data of the dataset, where the images are
collected from Flickr and the text sentences are selected
from the Wikipedia articles. We evenly split the dataset
to three sets following [56], [68] as shown in Table I.

2) NUS-WIDE [57] consists of about 270 000 images dis-
tributed over 81 categories. In this dataset, one sample
may belong to multiple classes. In the experiments, we
only choose the samples from the ten categories with
the largest quantity, and each sample belongs to a single
class by following [69]. Besides, the obtained samples
are split into three subsets as shown in Table I.

3) INRIA-Websearch [58] consists of 71 478 images and
71 478 text descriptions (sentences or tags). All the
samples of this dataset are from 353 classes. In our
experiments, we use the subset of INRIA-Websearch
provided by Wei et al. [70]. In the dataset, 14 698 sam-
ples of 100 largest classes are used by removing the
irrelevant image–text pairs. We adopt the training and
testing data partitions used in [70]. We also use the pro-
vided features, that is, 4096-dimensional CNN visual
feature for image and 1006-dimensional LDA feature
for text. Furthermore, we further split the training set
as a new training set and a validation set as shown in
Table I.

4) MNIST-SVHN [59], [60] is an union of MNIST [59] and
SVHN [60], which is used to evaluate the performance
of the proposed method for cross-view classification.

In the experiments, we combine the two datasets as a
multiview dataset with a training set (including 60 000
MNIST training images and 73 257 SVHN training
images) and a testing set (including 10 000 MNIST
testing images and 26 032 SVHN testing images). We
further randomly split the training set into two subsets
as shown in Table I.

D. Comparisons With the State of the Art

In this section, we evaluate the effectiveness of our ISVN
by comparing with 11 cross-view methods on four widely
used benchmark datasets. To comprehensively investigate the
semisupervised performance of our method, we conduct five
different semisupervised settings on each dataset, that is, learn-
ing from 400, 1000, 2000, 3000, and 4000 labeled data for
each view.

1) Cross-View Retrieval: We applied the XMediaNet,
NUS-WIDE, and INRIA-Websearch datasets for cross-view
retrieval. The experimental results on these datasets are shown
in Tables II–IV, respectively. As shown in these tables, our
ISVN achieves the best performance comparing with 13 state-
of-the-art methods on the three datasets. From Tables II–IV,
we could draw the following observations.

1) The performance of unsupervised, supervised, and
semisupervised methods could be improved by increas-
ing the data amount. It indicates that more data can be
used to improve the performance in the training stage.

2) The existing graph-based semisupervised methods could
improve their performance using the unlabeled data
in some cases, such as the results on XMediaNet.
However, in most cases, the Laplacian regularizer can-
not work well to exploit the intrinsic information from
the labeled and unlabeled data. Another disadvantage
of these graph-based methods is the heavy cost of con-
structing the Laplacian matrix. In contrast, our method
can capture the intrinsic information in the data in
a batch-by-batch manner, and thus easily handling
large-scale datasets.
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TABLE III
PERFORMANCE COMPARISON IN TERMS OF MAP SCORES ON THE NUS-WIDE DATASET. THE HIGHEST SCORE IS SHOWN IN Boldface

TABLE IV
PERFORMANCE COMPARISON IN TERMS OF MAP SCORES ON THE INRIA-WEBSEARCH DATASET. THE HIGHEST SCORE IS SHOWN IN Boldface

3) Most supervised cross-view methods are superior to the
unsupervised ones, which indicates the importance of
the labeled data in cross-view retrieval. This observation
also can be obtained, for example, more labeled data,
better performance.

4) Although DNN can capture highly nonlinear information
in the dataset, and the limited available labeled data
hinder the performance of both unsupervised and super-
vised methods, that is, DCCA, DCCAE, ACMR, and
FGCrossNet. Even if the unsupervised multiview meth-
ods do not need the labels, they still need to establish
the pairwise relationship between cross-view samples.
In other words, they cannot utilize the unpaired unla-
beled data in our settings. Thus, these data-driven deep
methods cannot achieve promising performance when
training data are insufficient.

5) The proposed method achieves the best performance
compared with its counterparts in the cross-view
retrieval tasks. One possible reason is that our ISVN can
exploit the intrinsic and discriminative information from
both labeled and unlabeled data with the autoencoder
and PL confidence strategy.

In addition to the mAP scores, we plot the precision–recall
curves to visually show the effectiveness of the proposed
method and its counterparts. Fig. 4 demonstrates the precision–
recall curves of all tested methods on the XMediaNet, NUS-
WIDE, and INRIA-Websearch datasets, respectively. From the
figures, one could see that our ISVN is superior to all the com-
pared methods, which is consistent with the above observations
about the mAP scores.

2) Cross-View Classification: The cross-view classifica-
tion tasks are conducted on the MNIST-SVHN dataset. The
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TABLE V
PERFORMANCE COMPARISON IN TERMS OF CROSS-VIEW TOP-1 CLASSIFICATION ON THE MNIST-SVHN DATASET.

THE HIGHEST SCORE IS SHOWN IN Boldface

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Precision–recall curves on XMediaNet, NUS-WIDE, and INRIA-
Websearch. (a) Img2Txt on XMediaNet. (b) Txt2Img on XMediaNet.
(c) Img2Txt on NUS-WIDE. (d) Txt2Img on NUS-WIDE. (e) Img2Txt on
INRIA-Websearch. (f) Txt2Img on INRIA-Websearch.

experimental results are shown in Table V. From the table, one
could observe that our ISVN achieves the best performance
again comparing with other multiview methods. In brief:

1) like the result on cross-view retrieval, most supervised
methods outperform the unsupervised methods. Thus,
semantic information is also much important for cross-
view classification;

2) the graph-based semisupervised multiview methods (i.e.,
GSS-SL and JRL) take high memory to compute the
Laplacian similarity matrices, which hinders them from
handling the large-scale multiview dataset, e.g., MNIST-
SVHN. In contrast, our method shows efficiency in
handling large-scale datasets;

3) our method remarkably outperforms the traditional and
deep multiview methods. Especially, our ISVN improves
the average top-1 recognition accuracy from 0.318 to
0.778 with only 400 labeled data. Moreover, the CNN
architecture (i.e., ISVNCNN) shows better result than the
fully connected network (i.e., ISVNFC).

E. Ablation Study

To investigate the contributions of different components of
our model, we carry out ablation study using the following
three variants.

1) ISVN ———-(AE+PL) removes both the reconstruction objec-
tive and the unlabeled data from the proposed method,
that is, ISVN with Lc(X i,P i) only.

2) ISVN —(AE) is a variant of ISVN without considering the
reconstruction loss Lr, that is, ISVN without Lr.

3) ISVN —(PL) does not adopt the unlabeled data to predict
PLs to back boost the performance, that is, ISVN
without L(U i,Qi).

The difference between these variants and our ISVN is only
the loss functions, and the other factors (e.g., network archi-
tectures) are the same with full ISVN. We compare these
variants with our ISVN in terms of cross-view retrieval and
classification and report the experimental results in Table VI.
From the table, one could see that all the components (i.e.,
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TABLE VI
ABLATION STUDY ON DIFFERENT DATASETS. —X DENOTES TRAINING ISVN WITHOUT X, AND X COULD BE AE AND PL. THIS TABLE SHOWS

THE EXPERIMENTAL RESULTS OF CROSS-VIEW RETRIEVAL ON XMEDIANET AND NUS-WIDE, AND OF CROSS-VIEW

CLASSIFICATION ON MNIST-SVHN. THE HIGHEST SCORE IS SHOWN IN Boldface

(a) (b)

Fig. 5. Cross-view retrieval performance of our proposed method in terms
of mAP versus different values of α and β on the XMediaNet dataset,
respectively. (a) mAP versus. α. (b) mAP versus. β.

reconstruction and PL) contribute to the final performance of
our ISVN, indicating that all the terms should be simultane-
ously optimized to achieve better performance. Furthermore,
the reconstruction loss is more important than the PL loss in
improving the cross-view retrieval performance, whereas the
PL loss is more important in cross-view classification.

F. Parameter Analysis

In this section, we investigate the impact of the parameters
α and β. In order to analyze the influence of the parameters,
Fig. 5(a) and (b) is drawn to show the cross-view retrieval
performance versus their different values. From Fig. 5, one
could observe that both classification and reconstruction losses
contribute to the cross-view retrieval. Without reconstruc-
tion loss (i.e., α = 0) or classification loss (i.e., α = 1),
the performance of cross-view retrieval will be degraded.
Obviously, the classification loss is very important for our
ISVN because it bridges the heterogeneous gap. Namely, the
proposed method cannot work without the classification loss
(i.e., α = 1), which is consistent with the experimental results.
Similarly, from Fig. 5(b), one can see that the PL classification

TABLE VII
EFFICIENCY COMPARISON IN TERMS OF GPU MEMORY (MIB) USAGE

AND AVERAGE TRAINING TIME (S) OF 5 RUNS FOR NEW

VIEWS (MNIST-M [71] AND USPS [72]) ON MNIST-SVHN

loss [i.e., Lc(U i,Qi) in (4)] also contributes to the final
performance. Furthermore, if the PL and real-label classifi-
cation loss have equal weight, the unlabeled data will confuse
the unified classifier and degrade the performance at β = 1.
From both Fig. 5(a) and (b), it can be seen that our method
is robust to the parameters with a reasonable range. In our
experiments, the values of these parameters are determined on
the corresponding validation set of the benchmark databases.

G. Efficiency Analysis for New Views

In this section, we evaluate the efficiency of the proposed
method for handling newly coming views. To investigate the
advantage of the proposed independent training strategy, we
developed and assessed two variants of our ISVN on two
TITAN RTX GPUs. The variants are as follows.

1) ISVNp parallelly trains all view-specific networks for the
new views on different GPU devices.

2) ISVNs serially trains each view-specific network for the
corresponding view. In other words, the new views are
trained in a one-by-one manner.

The baseline is the traditional joint multiview methods [21],
[29], [49], [50], which have to merge the new and exist-
ing views as a new dataset to retrain the enire model. For
a fair comparison, all the methods use the same settings to
evaluate their efficiency, that is, the batch size is 32 and the
training epoch is 20. The experimental results are shown in
Table VII. From the table, one could see that our ISVN is
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TABLE VIII
PERFORMANCE COMPARISON IN TERMS OF AVERAGE CROSS-VIEW TOP-1 CLASSIFICATION ACCURACY FOR NEW VIEWS ON THE MNIST-SVHN

DATASET WITH 400 LABELS. THE HIGHEST SCORE IS SHOWN IN Boldface

much flexible and scalable with higher efficiency to handle
the new views (i.e., MNIST-M [71] and USPS [72]) than the
joint learning strategy. For the low resource device, the serial
version (ISVNs) could remarkably reduce the GPU memory
cost. Moreover, the parallel variant (ISVNp) could signifi-
cantly reduce the training time if there are sufficient computing
resources. Furthermore, we also give the average cross-view
accuracy to evaluate the performance of ISVN for new views
in Table VIII. From the experimental results, we could see
that our method also achieves the best performance under
separately handling new views.

V. CONCLUSION

In this article, we proposed a semisupervised multiview
approach that employs multiple ISVNs to learn common rep-
resentations for multiple views. One major advantage of our
method is the capacity to handle increasing views, thanks
to your view-decoupling paradigm. In short, we employ an
untrained matrix to project the latent view-specific features
into the label space so that our method does not need all views
to learn the common space. With such a view-decoupling
paradigm, our ISVN could be separately trained and deployed,
thus enjoying stability in data size and view numbers. We con-
duct comprehensive experiments on four multiview datasets
to verify the effectiveness and efficiency of the proposed
approach. In the future, we plan to investigate how to trans-
fer knowledge from external databases to further boost the
cross-modal retrieval and classification performance of our
method.
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