
1

Augmented Multi-Party Computation Against
Gradient Leakage in Federated Learning

Chi Zhang, Sotthiwat Ekanut, Liangli Zhen, and Zengxiang Li

Abstract—Multi-Party Computation (MPC) provides an effective cryptographic solution for distributed computing systems so that local
models with sensitive information are encrypted before sending to the centralized servers for aggregation. Though direct local
knowledge leakages are eliminated in MPC-based algorithms, we observe the server can still obtain the local information indirectly in
many scenarios, or even reveal the groundtruth images through methods like Deep Leakage from Gradients (DLG). To eliminate such
possibilities and provide stronger protections, we propose an augmented MPC approach by encrypting local models with two rounds of
decomposition before transmitting to the server. The proposed solution allows us to remove the constraint that servers must be honest
in the general federated learning settings since the true global model is hidden from the servers. Specifically, the augmented MPC
algorithm encodes local models into multiple secret shares in the first round, then each share is furthermore split into a public share
and a private share. Consequences of such a two-round decomposition are that the augmented algorithm fully inherits the advantages
of standard MPC by providing lossless encryption and decryption while simultaneously rendering the global model invisible to the
central server. Both theoretical analysis and experimental verification demonstrate that such an augmented solution can provide
stronger protections for the security and privacy of the training data, with minimal extra communication and computation costs incurred.

Index Terms—Privacy-Preserving, Multi-Party Computation, Federated Learning, Data Leakage

F

1 INTRODUCTION

Data in many scenarios [1]–[3] are naturally distributed or
owned by different organizations/users, and due to privacy, se-
curity, and administrative regulations, there generally exist many
limitations on uploading them across countries or institutions for
traditional centralized learning. In such cases, researchers often
prefer to construct the decision-making models in a distributed
learning way [4]–[8] so that multiple participants can build a
joint machine learning model without sharing their local data,
i.e., no need to upload the private data to the cloud or exchange
data across participants. But recent studies show that sharing local
models instead of data could still leak sensitive information to
other participants or the central server. For instance, Carlini et
al. [9] demonstrated that some sensitive information, e.g., credit
card numbers, can be extracted from a recurrent neural network
trained on users’ email messages. Zhu et al. [10] and Zhao et
al. [11] further showed that the original data can also be recovered
from the local gradients.

For this reason, in federated learning, models of local partic-
ipants generally will go through certain encryption steps before
being transmitted to the server. One typical example of such
an encryption procedure would be the differential privacy (DP)
method [12]–[14], which binds certain levels of noise to the
original data or uses generalization methods to obscure specific
sensitive attributes until the third party cannot distinguish the in-
dividual. Such a local blurring step possesses strong information-

• This work was supported by the A*STAR CRF/ATR Grant: A Secure and
Privacy Preserving AI Platform for Digital Health.

• Chi Zhang, Sotthiwat Ekanut and Liangli Zhen are with the Institute of
High Performance Computing, A*STAR, Singapore. E-mail: {zhang chi,
sotthiwat ekanut from.tp, zhenll}@ihpc.a-star.edu.sg.

• Sotthiwat Ekanut is also with the National University of Singapore.
• Zengxiang Li is with the Digital Research Institute, ENN Group, China.

E-mail: lizengxiang@enn.cn.
• Corresponding Author: Liangli Zhen.

0 20 40 60 80 100

Round
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Av
er

ag
e

Di
ffe

re
nc

e I.I.D, IR=1
I.I.D, IR=5
50%, IR=1
50%, IR=5

Fig. 1: The average L1-norm difference between the aggregated global
model and the first participant’ counterpart on LeNet-5. “50%” refers
to keeping 50% images of one class on a node and evenly distributing
the remaining images, and IR denotes the inner round. The average
model difference tends to be minor in all scenarios, especially with
small IR.

theoretic guarantees and also can be easily implemented, but it
also leads to certain accuracy drops for practical applications.

Another promising solution for secure learning is Multi-Party
Computation (MPC), which can date back to the early studies
in [15], [16]. The MPC method, generally considered a crypto-
graphic solution, provides a generic primitive that enables mul-
tiple parties to jointly compute an arbitrary functionality without
revealing their private inputs [17]–[20]. It addresses the privacy
problem of cooperative computation in a secure fashion so that
each participant only obtains certain pieces from neighborhood
models. Unlike the DP methods, it allows the model encryption
and decryption to be performed in a lossless way so that local
participants can fully recover the true global model without
suffering from accuracy drops.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3208736

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on September 30,2022 at 03:24:15 UTC from IEEE Xplore. Restrictions apply.

2

Though MPC is designed to prevent the local model leakages
and adopted in many open-source federated learning libraries
(e.g., PySyft), we notice there still exist backdoors where the
aggregation center can fully recover or obtain a sufficient-close
model to the local counterparts or even reconstruct local images
from received gradient information. As such, utilizing the MPC
technique directly to federated learning applications may lead to
an insecure situation that violates the purpose of MPC itself. To
give a simple example, we consider the case where data on local
participants are exactly the same; then, the global model will be
identical to each local model. In other words, the MPC mechanism
indeed fails in this case as the server can recover each local model.
Such an exact match is, of course, rather artificial. However, in
practical machine learning, we observe that the difference between
the global model and local models can be minor after certain
learning rounds, as reported in Figure 1. The underlying reason
is that the model aggregation step in federated learning often
renders local models to be trained from the same starting point
and the local updates can be minor in the following training steps,
especially with smaller inner rounds or updating local parameters
in a conservative way like FedProx [21]. These experimental
insights are also validated by theoretical justifications [22], [23]
that deep learning models often move towards the intersection of
local optimums so that the difference between local models tends
to be minor.

Moreover, allowing the central server to obtain the joint
model/gradients fully could even lead to data leakage by using re-
cent reverse engineering techniques like DLG [10] and iDLG [11].
When sending local gradients to the server, MPC methods allow
each participant to shatter its own local gradients, but after averag-
ing, the server can still receive the unbiased averaged gradients. By
considering all the local training images as one batch, DLG would
allow the server to recover training images from local participants
through gradient matching.

Motivations of our research are not merely amending this
potential issue of MPC, though MPC itself tends to be vital
for complete privacy-preserving on knowledge-based systems.
Note that a typical assumption for federated learning is that the
local participants are honest, whereas the server is honest-but-
curious [7]. While the former assumption is generally easy to
satisfy since all participants are stakeholders, the requirement of
ensuring the third-party aggregator to be honest often tends out
to be non-trivial in practice. Public aggregation platforms like
Amazon Web Services (AWS) generally claim that they do not
store or use the global model, but privacy-sensitive users like
banks may still prefer these platforms not to obtain the global
model. Moreover, for fairness considerations [24], these platforms
contribute only an aggregation step and should not take the free-
ride to obtain the true global model.

For these two reasons, it is necessary to design a new federated
learning mechanism so that the aggregator is denied access to any
local information, even the true global model itself, but in the
meanwhile still functions as a normal fusion center. The solution
we provide in this paper, named Augmented Multi-Party Compu-
tation (AMPC), utilizes the inter-participant communications of
standard MPC and encrypts each local model with two rounds of
decomposition before communicating with the aggregation center.
Specifically, the local models are encoded into multiple secret
shares in the first round. Then each share is split into two parts
in the second round: one public share to be sent to the server
for model aggregation and one private share stored on the local

machine to recover the true global model. Theoretical analysis
and practical experiments demonstrate the advantages of such a
new paradigm in the following aspects:

1) More secure scheme: As an augmented approach, the pro-
posed algorithm addresses the information leakage issues
and maximally eliminates the possibility of obtaining
the local models on the server side. It only grants the
server access to some randomly biased public models,
which can only predict like random guesses in real-world
experiments.

2) Inherit merits of MPC: Standing out as a more secure
aggregation method, the AMPC algorithm also inherits
the merits of standard MPC where the local participant
can fully recover the underlying true global model and
the additional encryption and decryption steps do not lead
to accuracy drops.

3) Weaker assumption on server: Local participants only
need to transmit part of their models to the server and
hold private secret shares on local devices. As a conse-
quence, there is no necessity to assume that the third party
is not honest; thus, finding such an aggregator tends to be
simple in practice.

2 THE PROPOSED METHOD

2.1 Preliminary
Federated learning enables multiple participants to collaboratively
learn a shared decision-making model while keeping all the
training data X = {X1, X2, . . . , Xm} on m local participants.
A coordinator, generally named as the server, is in charge of
aggregating models (or gradients) from local participants and
sending back the aggregated values. For example, a typical way
to combine local models is the “Model Averaging Algorithm” for
such an aggregation step:

wt+1 =
1

m

m∑
i=1

wt
i , (1)

where wt
i denotes the weight parameters of the i-th participant on

the t-th iteration, and wt represents the weight parameters of the
global model at the t-th iteration that acts as the start point for the
next round of local training.

An alternative way is to update local gradients to the server and
then perform a global gradient descend step to obtain the model
for the next round:

∇gt =
1

m

m∑
i=1

∇gti , (2)

wt+1 = wt − η∇gt. (3)

2.2 Multi-Party Computation
Multi-party computation (MPC) represents a conventional encryp-
tion methodology with the goal of creating mechanisms for parties
to jointly compute a function while keeping each individual part
safe. Generally, the basic properties that an MPC protocol should
ensure include:

• Lossless encryption: The encryption of local information
should not sacrifice the overall correctness.

• Privacy protection: No information about the private data
held by the parties can be inferred from the messages sent
during the execution of the protocol.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3208736

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on September 30,2022 at 03:24:15 UTC from IEEE Xplore. Restrictions apply.

3

Federated learning requires multiple parties to jointly optimize
some predefined loss function while expecting local data to be
secure. As such, the MPC tends to be a good candidate when
local parties are concerned about the safety of data and models. In
general, FL algorithms utilize the MPC in the following order:

1) Local party splits its true model and sends the fraction to
neighbors.

2) The received fraction is combined with each party’s own
residual model to create a useless new model.

The rest steps follow the general federated learning scheme by
uploading local models to the server and then receiving the
combined model for the next round update.

2.3 Concerns of Applying MPC to Federated Learning
The general belief for federated learning is that by sending
gradients or models, instead of the data itself, the underlying
sensitive data can be utilized only locally and kept private. But yet,
recent studies [10], [11], [25] indicate that image recovery from
gradients is possible by starting from an arbitrary image-label pair
(x′, y′) and then minimizing the gradient difference. This leads
to a backdoor for conventional MPC-based FL research: though
the server cannot obtain each local gradient ∇gi precisely, it can
get the true average gradient ∇gt for each round. Note each local
gradient is the average of multiple images (e.g., N images), then
the server can consider the combined gradient ∇gt as the average
value of a larger batch (e.g., mN images) and conduct reverse
engineering to recover images.

2.4 Augmented MPC with Two-Round Model Decompo-
sition
To eliminate the possibilities of reconstructing the local models
and deny access to the true global model for the server, we provide
augmentation to the standard MPC so that stronger protections are
offered. The method we propose is to further split local shares into
a public share for transmission and a secret share to stay locally,
so that the server can only receive randomly biased local models.
For simplicity, we consider the model averaging algorithm for
backbone FL aggregation method, though the following method
also applies to the gradient updating method.

2.4.1 First-Round Model Decomposition
Specifically, each local participant (or named as a “node” in graph
theory) first decomposes its model into m secret shares:

wt
i =

m∑
j=1

wj,t
i for i ∈ [1, 2, · · · ,m]. (4)

Throughout this paper, the subscripts represent the origin of
the model, whereas the superscripts denote the destination and
round number. For example, the above formula can be read as:
model wt

i of participant i will be decomposed into m pieces, with
wj,t

i representing a model piece to be transmitted from participant
i to participant j on the t-th round.

The intuition behind such a model decomposition is that rather
than having a single model handled by a single participant, it
would be generally more secure to decompose the model into
multiple pieces and allow multiple parties to manage these pieces.
Any single fraction of wj,t

i often does not present any useful
information of local knowledge.

Algorithm 1 Augmented MPC with Two-Round Model Decom-
position for Secure Federated Learning

Local participant i = 1, 2, · · · ,m:
1: Generate public keys (ni, ei) and private key di
2: for t = 1, 2, · · · , T do
3: Learning on the local dataset to obtain local model wt

i

4: Perform the first-round model decomposition: wt
i =∑m

j=1 w
j,t
i

5: Encode seed cj,ti = RSA.Encode(αt
i) from node j for j ∈

[1, 2, · · · ,m]
6: Communicate with neighbours: broadcast {wj,t

i , cj,ti } to
node j and receive {wi,t

j , c
i,t
j } from node j for j ∈

[1, 2, · · · ,m]
7: Decode seed αt

j = RSA.Decode(ci,tj) for j ∈
[1, 2, · · · ,m]

8: Perform the second-round model decomposition: wi,t
j =

w̃i,t
j ⊕ w̄

i,t
j for j ∈ [1, 2, · · · ,m] based on αt

j

9: Aggregate public model: w̃t
i =

∑m
j=1 w̃

i,t
j and private

model w̄t
i =

∑m
j=1 w̄

i,t
j

10: Push public model w̃t
i to the server

11: Receive the global model w̃t and reconstruct local model
as wt+1

i = w̃t ⊕ w̄t
i

12: end for
Server:

1: for t = 1, · · · , T do
2: Global model: w̃t = 1

m

∑m
i=1 w̃

t
i

3: end for

2.4.2 Second-Round Model Decomposition
After the above decomposition step, each node i proceeds to the
local communication step where it transmits its model pieces to
neighbouring parties and also receives model pieces wi,t

j from
∀j ∈ [1, 2, · · · ,m] if the network is fully-connected. These
received model pieces will then go through a second-round de-
composition:

wi,t
j = w̃i,t

j ⊕ w̄
i,t
j . (5)

Here w̃i,t
j represents a public model piece to be sent to the server,

and w̄i,t
j denotes a randomly bias term as private model piece on

local machines. The ⊕ decomposition above can be performed
in many ways: the local participant can maintain the principal
components or simply generates a random local share and then
deduct it from the true model. For simplicity, we consider the
latter case throughout the paper.

The key step here is to guarantee all neighbours receive the
same bias terms so that they can add it back after receiving global
model from the server. Namely, the bias terms should be equal for
all the local participants:

w̄1,t
j = w̄2,t

j = · · · = w̄m,t
j . (6)

A direct approach would be constructing a companion se-
quence w̄i,t

j while generating the model pieces wi,t
j and deducting

it from the latter values. Yet, such an approach forces each
participant to transmit two models simultaneously and requires
double bandwidth for local communication. Considering the fact
that machine learning models, especially deep neural networks,
usually consist of a large number of parameters, such an approach
leads to a significant amount of extra communication costs.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3208736

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on September 30,2022 at 03:24:15 UTC from IEEE Xplore. Restrictions apply.

4

A potential goal throughout the paper is to augment the
original MPC algorithm while minimally triggering extra costs.
Therefore, we consider an alternative approach by generating a
unique key αt

j on node j, and then transmit such a key to its
neighbours indirectly. With this key, Equation (6) would hold
for all participants. In terms of practical implementations, such
a key can be a simple “seed” when generating random sequences.
For example, in Numpy and PyTorch, the bias term w̄i,t

j can be
generated by setting the seed as:

numpy.random.seed(αt
j) or torch.manual seed(αt

j).

In these cases, the seed αt
j (or the key) is generally only

a scalar, thus the extra cost during model transmission can be
almost neglected when compared to the size of the original
model piece wi,t

j . For privacy concerns, this seed will not be
transmitted directly but first be encrypted locally based on the
RSA algorithm [26], [27]. This would require each node to possess
some public keys (ni, ei) and private keys di, as standard RSA
algorithm demands, and each node will encode such its seed based
on its neighbours’ public keys:

cj,ti = RSA.Encode(αt
i) ∀j ∈ [1, 2, · · · ,m].

Focusing on participant i, after it receives the secret shareswi,t
j

and encrypted scaler cj,ti from its neighbour j, it will then perform
a RSA decoding step to recover the true seed αt

j . With this seed,
the second-round model decomposition can be performed as:

wi,t
j = w̃i,t

j + w̄i,t
j for j ∈ [1, 2, · · · ,m], (7)

so that the model piece is shattered again into a public model piece
w̃i,t

j and a private model piece w̄i,t
j .

Note the above step is not adding the noise w̄i,t
j to wi,t

j as
the differential privacy (DP) approach, and the differences lie in
two aspects: 1) the bias term w̄i,t

j can be arbitrary large while
in DP the noise needs to be controlled within certain levels; 2)
the local participant can later fully reconstruct the underlying true
global model by adding the private models back while in DP it is
generally impossible for any participant to achieve this goal.

The next step would be aggregating the public and private
model pieces:

w̃t
i =

m∑
j=1

w̃i,t
j ; w̄t

i =
m∑
j=1

w̄i,t
j ,

and transmitting w̃t
i to the server while keeping w̄t

i on local
machines.

2.4.3 Global Aggregation and Local Reconstruction
The server only has access to the public model w̃t

i for all nodes i,
where it conducts a simple model aggregation step as Eq (1):

w̃t =
1

m

m∑
i=1

w̃t
i . (8)

Since the private models are not shared with the server, such an
aggregated step on the server only grants it a randomly biased
global model. This is in contrast to the standard MPC, where
the global model may resemble the local models in Figure 1.
Later analysis in Theorem 3 will prove that it would be almost
impossible for the server to obtain an ε-close model.

The last step for the augmented MPC algorithm would be
adding the private bias back to reconstruct the underlying true
global model:

wt+1
i = w̃t ⊕ w̄t

i for i ∈ [1, 2, · · · ,m], (9)

so that the true underlying aggregated model can be fully recon-
structed: wt+1

i = 1
m

∑m
j=1 w

t
j for all i ∈ [1, · · · ,m]. Note the

above ⊕ should be consistent with the operation in Eq (5): for
example, if the local participants use the simple arithmetic plus in
Eq (5), the above equation would use a simple sum here.

Algorithm 1 summarizes the main steps of our proposed
augmented MPC algorithm.

2.5 Summary
Finally, it is necessary to conclude the above algorithm by ex-
amining our gains and payments. By augmenting the classical
MPC algorithm, we obtain a more secure updating scheme for
federated learning that denies the server any access to useful
local knowledge. Moreover, this allows us to fully eliminate
the local information leakage while being easier to nominate an
aggregation center in practice. What the algorithm pays for our
gain in providing stronger model protections is only some extra
scalar transmission among participants and one additional model
decomposition step, which tends to be minimal. Table 1 provides
a complete comparison between our proposed method and other
encryption methods.

2.6 Extension for Handling Other Graphs
In the above scenario, we consider the situation of a fully-
connected graph (or complete graph in graph theory [28]) so that
all participants have direct access to the rest nodes. In case the
participants do not form a fully connected graph, some participants
may not be able to communicate with some nodes directly.
Moreover, denote the collections of i-th node’s direct neighbors as
N(i) (the node itself is considered to be a neighbor), then N(i)
can even be dynamic for different round t if participants join and
leave during the federated learning. In case not all participants are
connected to each other, a few modifications need to be made in
order to ensure wt+1

i = 1
m

∑m
j=1 w

t
j .

First of all, model wt
i needs be decomposed into #N(i) parts

instead of m parts. The communication among participants with
direct connections is performed as Algorithm 1, but for those
participants not directly connected to node i, the public key (or the
seed) in the RSA algorithm needs to be encrypted and transmitted
to the server first. The i-th node then receives and decodes such a
message with its private key, following by generating a bias term
w̄i,t

j and subtracting this term from its own model:

wi,t
i = w̃i,t

i +

w̄i,t
i +

m∑
j=1

j /∈N(i)

w̄i,t
j

 . (10)

Note in the above equation, we require the node to add the private
parts of non-direct neighbour j /∈ N(i) to its own counterpart
w̄i,t

i .
So the overall bias term (private model) on node i will be

w̄t
i =

m∑
j=1;j 6=i;
j∈N(i)

w̄i,t
j + w̄i,t

i +
m∑
j=1

j /∈N(i)

w̄i,t
j =

m∑
j=1

w̄i,t
j . (11)

The rest steps are similar to Algorithm 1.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3208736

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on September 30,2022 at 03:24:15 UTC from IEEE Xplore. Restrictions apply.

5

Algorithm hide LM for participants hide LM for server hide GM for server fully recover GM for participants
FedLearn 3 7 7 3
FedLearn with MPC 3 3 7 3
FedLearn with DP 3 3 3 7
FedLearn with AMPC 3 3 3 3

TABLE 1: Properties of various encryption methods. LM refers to the local model and GM refers to the true global model.

3 THEORETICAL ANALYSIS

We propose an augmented MPC mechanism in which two model
decomposition steps are performed locally. It is expected to inherit
the merits of standard MPC with minimal extra costs while provid-
ing additional model protections simultaneously. These properties
shall be validated through theoretical analysis in the following
part.

3.1 Lossless Encryption and Decryption
One of the key properties of standard MPC is that model en-
cryption and decryption is performed in a lossless way so that
participants can fully recover the true global model wt. Therefore,
before moving towards any extra merits of the augmented MPC
algorithm, let us first ensure our gains do not offset this lossless
property of MPC.

Theorem 1. By performing two-round model decomposition
and adding bias terms locally, each local participant can fully
reconstruct the ground-truth in Algorithm 1, namely wt+1

i =
wt for i ∈ [1, 2, · · · ,m].

Proof: We compute the aggregated global model on the server as:

w̃t =
1

m

m∑
i=1

w̃t
i

=
1

m

m∑
i=1

m∑
j=1

w̃i,t
j

(9)
=

1

m

m∑
i=1

m∑
j=1

(
wi,t

j − w̄
i,t
j

)
=

1

m

m∑
i=1

m∑
j=1

wi,t
j −

1

m

m∑
j=1

m∑
i=1

w̄i,t
j

(4)(6)
=

1

m

m∑
j=1

wt
j −

m∑
j=1

w̄i,t
j

(1)
= wt −

m∑
j=1

w̄i,t
j .

In the above proof, we use the fact that the biased terms w̄i,t
j are

equal for all j ∈ [1, · · · ,m] since they are generated with the
same seed αt

i .
Then the reconstructed model on participant i would be

wt+1
i = w̃t + w̄t

i = wt −
∑m

j=1 w̄
i,t
j +

∑m
j=1 w̄

i,t
j = wt. This

concludes the proof. �
Remark: The server in Algorithm 1 can now have access to the
biased global model w̃t, while the local client is able to obtain the
true global model wt by adding local residuals back. As such, the
local model {wt+1

i } is now unbiased.

3.2 Privacy-Preserving Learning
The above theorem says our augmented MPC inherits the merits of
standard MPC by encrypting and decrypting models in a lossless

way, and now we can proceed to the privacy-preserving part. Our
considerations include both protections over local models among
neighbours and the server, as well as avoiding the true global
model wt to be revealed by the server. Proof for the former claim
will be trivial since local models are split into multiple pieces
in the first model decomposition step (as standard MPC), and
therefore we shall focus on justifying the latter claim.

Lemma 2. Suppose elements of the bias term w̄i,t
j are generated

based on a distribution F t
j with the mean µt

j and the variance
(σt

j)
2, then components of the overall biased term wt− w̃t would

obey a distribution with mean and variance as

µ̄t =
m∑
j=1

µt
j , (σ̄t)2 =

m∑
j=1

(σt
j)

2. (12)

Proof: The proof is straightforward by considering wt − w̃t =∑m
j=1 w̄

i,t
j . Note that the components w̄i,t

j in the sum value is
generated with its own seed αt

j so that they are independent
across different iterations. The mean and variance of their sum
can therefore be easily proved. �

The above lemma paves a road to prove the aggregated public
model w̃t is sufficiently far from the underlying ground-truth
wt on each round. For simplicity of notations, let us assume
w̄i,t

j is non-negative and models w̃t and wt are reshaped into a
long vector with N parameters, then the model difference can be
computed as follows.

Theorem 3. The possibility of obtaining an ε close model w̃t on
the server side is

P
(‖w̃t − wt‖1

N
< ε

)
<

(σ̄t)2

N(µ̄t − ε)
,

for any ε < µ̄t.

Remark: For deep neural networks, the parameter number N of
is generally sufficiently large, so that the above theorem says it
would almost be impossible to obtain an ε-close model on the
server side.
Proof: For the k-th component of wt− w̃t, we denote its absolute
value as

βk = |[wt]k − [w̃t]k| =
m∑
i=1

[w̄j,t
i]k.

Lemma 2 ensures each component βk is generated independently
with mean E [βk] = µ̄t and variance Var [βk] = (σ̄t)2. As
consequences, for any ε < µ̄t, we have

P

(∑N
k=1 βk
N

< ε

)

< P

(∣∣∣∣∣
∑N

k=1 βk
N

− µ̄t

∣∣∣∣∣ > µ̄t − ε
)

≤ (σ̄t)2

N(µ̄t − ε)
,

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3208736

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on September 30,2022 at 03:24:15 UTC from IEEE Xplore. Restrictions apply.

6

0 20 40 60 80 100

Round
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Tr

ai
ni

ng
 L

os
s

CentralLearn
FedLearn
MPC
AMPC
DP(noise scale=0.5)
DP(noise scale=1.0)

(a) Training loss on the MNIST dataset.

0 20 40 60 80 100

Round
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Te
st

in
g

Ac
cu

ra
cy

CentralLearn
FedLearn
MPC
AMPC
DP(noise scale=0.5)
DP(noise scale=1.0)

(b) Testing accuracy on the MNIST dataset.

Fig. 2: Performance of LeNet-5 on the MNIST dataset. Samples are randomly distributed to 10 participants.

0 20 40 60 80 100

Round
0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 L
os

s

CentralLearn
FedLearn
MPC
AMPC
DP(noise scale=0.38)
DP(noise scale=0.5)

(a) Training loss on the CIFAR-10 dataset.

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

in
g

Ac
cu

ra
cy

CentralLearn
FedLearn
MPC
AMPC
DP(noise scale=0.38)
DP(noise scale=0.5)

(b) Testing accuracy on the CIFAR-10 dataset.

Fig. 3: Performance of VGG-16 on the CIFAR-10 dataset. Samples are randomly distributed to 10 participants.

where in the last step we use Chebyshev inequality. By the defi-
nition of `1-norm on vectors, we have ‖w̃t − wt‖1 =

∑N
k=1 βk

and conclude the proof. �

In Lemma 2 and Theorem 3, we consider the general case and
do not specify how the bias terms w̄i,t

j are generated. To give a
simple example, we consider the case where the bias terms w̄i,t

j

are generated based on a uniform distribution in the following
corollary.

Corollary 4. Suppose the biased terms are generated based on a
uniform distribution, namely w̄i,t

j ∼ U[0, 1], then we have

P
(‖w̃t − wt‖1

N
< ε

)
<

m

6N(m− 2ε)
≈ 1

6N
,

for ε� m.

Remark: N refers to the parameter number of the backbone
models, for instance millions in deep neural network. Hence the
possibility to recover the true model is almost 0.
Proof: Proof is straightforward by plugging the mean and variance
of uniform distribution, hence omitted. �

4 EXPERIMENTAL STUDY

Having established theoretical guarantees, our next step would be
testing its actual performance on real-world datasets. Our goal in

this part is still two-fold: showing AMPC algorithm obtains loss-
less encryption and decryption by examining the training curves;
showing it provides stronger security protections by measuring the
difference between local models and the (biased) global model.

4.1 Experimental settings

Performance of the algorithms are reported on two public datasets
MNIST [29] and CIFAR-10 [30], together with two neural ar-
chitectures LeNet-5 and VGG-16 [31]. Specially, the following
algorithms are considered:

1) CentralLearn: centralized learning by sending all data
to the server and updating only the global model.

2) FedLearn: federated learning without performing MPC
or DP.

3) MPC: standard MPC algorithm from PySyft.
4) DP: Renyi differential privacy algorithm [32] 1 by per-

forming RDP on local models. Noise levels and delta (δ)
are set as suggested values and the clipping threshold of
the gradient norm is set as 1.

5) AMPC: the proposed algorithm in this paper.

We use Adam [33] as the network optimizer, with its batch size
set as 128 and learning rate fixed at 10−3. A federated learning

1. Source code from Opacus:https://github.com/pytorch/opacus.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3208736

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on September 30,2022 at 03:24:15 UTC from IEEE Xplore. Restrictions apply.

7

0 20 40 60 80 100

Round
0.0

0.5

1.0

1.5

2.0

2.5
Av

er
ag

e
Di

ffe
re

nc
e

MPC
AMPC

(a) Global model difference.

0 20 40 60 80 100

Round
0.0

0.2

0.4

0.6

0.8

1.0

Gl
ob

al
 M

od
el

 A
cc

ur
ac

y MPC
AMPC

(b) Testing accuracy with global model on server.

Fig. 4: The left figure represents the model difference ‖w̃
T−wT ‖1

N
between the aggregated model on the server and true global model. The right

figure shows the testing accuracy by utilizing the model on the server. Experiments are reported on the MNIST dataset.

0 20 40 60 80 100

Round
0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

Di
ffe

re
nc

e

MPC
AMPC

(a) Global model difference of VGG-16

0 20 40 60 80 100

Round
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Gl
ob

al
 M

od
el

 A
cc

ur
ac

y MPC
AMPC

(b) Testing accuracy with global model on server.

Fig. 5: The left figure represents the model difference between the aggregated model on the server and true global model. The right figure
shows the testing accuracy by utilizing the model on the server. Experiments are reported on the CIFAR-10 dataset.

system is generated with 10 local participants and 1 server, with
each local participant receiving random data from the dataset and
performing 5 inner rounds of local updates.

4.2 Convergence and Prediction Accuracy
For privacy concerns, local models of federated learning will
generally go through certain encryption steps and then decrypted
after model aggregation. In the meanwhile, we expect these steps
will have minimal effects on the convergence rate during training,
and also the final prediction accuracy.

Figure 2 and 3 report the training and testing performance of
various algorithms on these two datasets. As shown in the figure,
the curves of the MPC-based algorithms are most identical to
the non-encrypted federated learning (FedLearn), representing the
fact that models are fully reconstructed so that these additional
MPC encryption and decryption steps do not affect the final
performance. Note such a conclusion is true for both MPC and
AMPC, since the latter is designed to inherit the lossless property
of standard MPC as shown in Theorem 1.

In contrast to lossless property of AMPC is the accuracy drops
of DP algorithm. By adding noise locally, the central server can
only obtain some perturbed local models for model aggregation.
In the Opacus framework, such a perturbation leads to 1.1% and

2.0% accuracy drops with noise scale set as 0.5 and 1 on the
MNIST dataset, and almost 30% accuracy drops on the CIFAR-10
dataset. As references for results on the CIFAR-10 dataset, readers
can refer to similar reported in Opacus2 where the accuracy of
centralized learning with DP-based ResNet-18 drops to 56%, also
see other centralized results in [34], [35]. Note here we do not
perform an exhaustive search for hyper-parameters of DP, either
using default or previously published values.

4.3 Model Difference and Privacy Preserving

The MPC-based algorithms can prevent the model from suffering
from accuracy drops, but as shown in Figure 1, possibilities still
exist as the server or third-parties can obtain a close model to local
counterparts. We enhance the security protection by augmenting
the MPC algorithm so that only local participants can obtain the
true underlying global model in Theorem 3. In this part, we shall
validate such a conclusion with practical experiments.

Figure 4(a) illustrates the model difference ‖w̃
t−wt‖1
N on the

MNIST dataset. For the MPC algorithm, the difference is exactly
zero since no biased term is introduced. In practice, this leads

2. https://opacus.ai/tutorials/building image classifier

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3208736

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on September 30,2022 at 03:24:15 UTC from IEEE Xplore. Restrictions apply.

8

Algorithms Reconstructed Images

Groundtruth

FedLearn

MPC

DP

AMPC

Fig. 6: Defence against gradient leakage attack for various algorithms. The first row represents the ground-truth images, and the rest lines show
the obtained images by gradient inverse method for 2000 iterations [36].

to a situation where we are forced to select a trusted third-
party for all local participants and exposed to possibilities of
leaking such an aggregated model during transmission. Such a
situation can be avoided for AMPC algorithm, as the aggregated
model is sufficiently far from the underlying ground-truth on all
rounds (Figure 4(a)). Moreover, if the server tries to utilize the
aggregated model or the model is leaked to any third-party, the
final performance on the MNIST dataset is only around 10%
accuracy, as shown in Figure 4(b). Note the dataset contains 10
classes, so it represents a fact that prediction with public model
alone only provides random guess. As comparisons, the averaged
model obtains good performance for the MPC algorithm. Similar
results are reported in Figure 5 on the CIFAR-10 dataset.

To summarize, the proposed MPC mechanism can protect local
participants’ privacy by only transmitting biased public models
to the server for aggregation, and then fully reconstructing the
underlying true global model. In practice, this represents an ideal
situation where we are able to protect model privacy without
sacrificing the overall learning accuracy.

4.4 Defence Against Gradient Leakage
As alluded to earlier, the gradient inverse method [10] allows
the malicious attacker to recover the underlying images by per-
forming gradient inverse engineering. While their experiments are
conducted on the FedAvg algorithm, we notice conventional MPC
method could also face this potential issue since the server can
obtain an unbiased gradient/model after aggregation.

To validate, we follow the SOTA deep leakage method [36]
to utilize the generative model for gradient inverse engineering.
Specifically, we use 4 local clients to build a whole batch size of
16 images on the CIFAR-10 dataset. Results (Figure 7) indicate
that the server (or any malicious attacker) could start from some
random noise and then gradually match the obtained gradients to
the truth gradients to recover the underlying true pictures. For all
algorithms except for AMPC, the structural similarities (SSIM)
between the inverse images and the ground-truth continue to
increase, whereas the SSIM keeps low for the proposed AMPC
algorithm.

Figure 6 also shows the final obtained images after 2000
rounds, as well as the ground-truth for comparison. For the un-
protected FedAvg and the conventional MPC algorithm, the server
could almost identically obtain all the images when the batch size

0 250 500 750 1000 1250 1500 1750 2000

Round

0.0

0.2

0.4

0.6

0.8

SS
IM

FedLearn
MPC
DP
AMPC

Fig. 7: Image quality assessment for various algorithms during the
gradient inverse. The vertical axis SSIM represents the structural
similarity between the inverse images and the ground-truth.

equals 16. The DP algorithm provides different levels of noise-
adding before sending the model to the server, hence the obtained
image quality by gradient inverse tends out to be lower than the
previous two algorithms. But we also show that under minor
noise level (N(0, 10−4)), obtaining high-quality images is still
possible. In contrast, by providing a two-round MPC, the server
in AMPC algorithm can only receive a biased model/gradient,
hence the gradient matching is no longer possible. After 2000
local iterations, the server can only obtain some random noise in
our experiment, hence providing more secure defences against the
gradient inverse methodology.

4.5 Additional Cost
Finally, it is worth mentioning the additional time and commu-
nication costs led by AMPC: 1) the coding, decoding and model
decomposition steps can be processed within seconds on the tested
GPU (2080Ti), hence the extra time cost tends to be minor when
compared to other algorithms; 2) the AMPC algorithm triggers
additional peer-to-peer communication costs when compared to
FedAvg and DP algorithm, but its communication load is generally
on the same level as the conventional MPC algorithm.

5 CONCLUSION

The goal of this paper is to propose an effective method (AMPC)
for secure federated learning systems. By observing the difference

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3208736

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on September 30,2022 at 03:24:15 UTC from IEEE Xplore. Restrictions apply.

9

0 20 40 60 80 100

Round

0.2

0.3

0.4

0.5

0.6

0.7
Tr

ai
ni

ng
 L

os
s

DP(Noise scale = 0.5)
DP(Noise scale = 1.0)
DP(Noise scale = 2.0)

(a) Training Loss for DP

0 20 40 60 80 100

Round
0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Te
st

in
g

Ac
cu

ra
cy

DP(Noise scale = 0.5)
DP(Noise scale = 1.0)
DP(Noise scale = 2.0)

(b) Testing accuracy for DP.

Fig. 8: Performance of DP algorithm with various noise levels on the MNIST dataset.

of the global model and local models, we reveal the fact that stan-
dard MPC could fail in certain scenarios. We therefore introduce
a two-step decomposition for the secret shares, and render the true
global model invisible to the central server, which also leads to the
simplicity of selecting a “server” in practice. A series of theoretic
analysis are provided to illustrate the effectiveness of the proposed
method, along with practical experimental results on the MNIST
and CIFAR-10 datasets.

6 ADDITIONAL PROOF AND EXPERIMENT

6.1 Proof for Other Graphs

Similar to Theorem 1, the MPC encryption and decryption for
general graph is also performed in a lossless way.

Theorem 5. Suppose all the participants form a graph G and
the bias terms are generated according to Equation (10), then the
local participant can reconstruct the true global model:

wt+1
i = wt for i ∈ [1, 2, · · · ,m].

6.1.0.1 Proof: Proof will be similar by considering the
averaged global model first:

w̃t =
1

m

m∑
i=1

m∑
j=1;

j∈N(i)

w̃i,t
j

=
1

m

m∑
i=1

m∑
j=1;j 6=i;
j∈N(i)

(
w̃i,t

j

)
+

1

m

m∑
i=1

w̃i,t
i

(10)
=

1

m

m∑
i=1

m∑
j=1;j 6=i;
j∈N(i)

(
wi,t

j − w̄
i,t
j

)

+
1

m

m∑
i=1

wi,t
i − w̄

i,t
i −

m∑
j=1

j /∈N(i)

w̄i,t
j


=

1

m

m∑
i=1

m∑
j=1;

j∈N(i)

wi,t
j −

1

m

m∑
i=1

m∑
j=1

w̄i,t
j

= wt −
m∑
j=1

w̄i,t
j .

Then the local model on node i would be

wt+1
i = w̃t + w̄t

i

(11)
= wt −

m∑
j=1

w̄i,t
j +

m∑
j=1

w̄i,t
j = wt.

This concludes the proof. �
The proof for stronger privacy-preserving is exactly the same

as Theorem 3 and hence omitted.

6.2 DP Experiments on MNIST
We have provided results of the DP algorithm on MNIST dataset
in Figure 2(a) and 2(b), with noise level set as 0.5 and 1.0. But
DP algorithm is very sensitive to the noise added, and user often
has to face trade-off between privacy level (hence noise level) and
the final performance. We provide an additional experiment by
providing a larger noise level 2.0 in the following figure. Results
are consistent with our previous observations that the noise level
incurs additional performance loss in DP algorithm.

0 250 500 750 1000 1250 1500 1750 2000

Round
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SS
IM

Noise = N(0, 10 4)
Noise = N(0, 10 3)
Noise = N(0, 10 2)

Fig. 9: The obtained images from gradient inverse with different DP
noise levels. Here N represents the normal distribution.

6.3 Gradient Inverse with Various DP Noise
DP algorithm allows the local client to add different levels of noise
to the model before sending it to the server. In the previous section,

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3208736

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on September 30,2022 at 03:24:15 UTC from IEEE Xplore. Restrictions apply.

10

we consider a minor noise case, while detailed experimental
results are presented in this subsection. Figure 9 indicates the
increasing noise level could reduce the obtained image quality
from gradient inverse algorithm. Note in general, the DP algorithm
does not utilize a fixed noise level but gradually increases the noise
from low to high during the training process. Higher noise level
can provide better model protection, while in the same time lead to
inaccurate model aggregation, in contrast to the lossless properties
of MPC and AMPC.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[3] Y. Zhao, J. Zhao, L. Jiang, R. Tan, D. Niyato, Z. Li, L. Lyu, and
Y. Liu, “Privacy-preserving blockchain-based federated learning for iot
devices,” IEEE Internet of Things Journal, 2020. [Online]. Available:
https://doi.org/10.1109/JIOT.2020.3017377

[4] J. Konečnỳ, B. McMahan, and D. Ramage, “Federated optimization:
Distributed optimization beyond the datacenter,” CoRR, 2015. [Online].
Available: arXiv:1511.03575

[5] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” CoRR, 2016. [Online]. Available: arXiv:1610.05492

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–
1282.

[7] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[8] C. Zhang, Q. Li, and P. Zhao, “Decentralized optimization with edge
sampling.” in IJCAI, 2019, pp. 658–664.

[9] N. Carlini, C. Liu, J. Kos, Ú. Erlingsson, and D. Song, “The secret
sharer: Evaluating and testing unintended memorization in neural
networks,” CoRR, vol. abs/1802.08232, 2018. [Online]. Available:
https://arxiv.org/abs/1802.08232

[10] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Advances
in Neural Information Processing Systems, 2019, pp. 14 774–14 784.

[11] B. Zhao, K. R. Mopuri, and H. Bilen, “iDLG: Improved deep leakage
from gradients,” CoRR, 2020. [Online]. Available: arXiv:2001.02610

[12] C. Dwork, “Differential privacy: A survey of results,” in Interna-
tional conference on theory and applications of models of computation.
Springer, 2008, pp. 1–19.

[13] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy.” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211–407, 2014.

[14] S. Truex, L. Liu, K.-H. Chow, M. E. Gursoy, and W. Wei, “Ldp-fed:
Federated learning with local differential privacy,” in Proceedings of
the Third ACM International Workshop on Edge Systems, Analytics and
Networking, 2020, pp. 61–66.

[15] A. C. Yao, “Protocols for secure computations,” in 23rd annual sympo-
sium on foundations of computer science (sfcs 1982). IEEE, 1982, pp.
160–164.

[16] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986). IEEE,
1986, pp. 162–167.

[17] C. Zhao, S. Zhao, M. Zhao, Z. Chen, C.-Z. Gao, H. Li, and Y.-a.
Tan, “Secure multi-party computation: theory, practice and applications,”
Information Sciences, vol. 476, pp. 357–372, 2019.

[18] R. Kanagavelu, Z. Li, J. Samsudin, Y. Yang, F. Yang, R. S. M. Goh,
M. Cheah, P. Wiwatphonthana, K. Akkarajitsakul, and S. Wang, “Two-
phase multi-party computation enabled privacy-preserving federated
learning,” in 2020 20th IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing (CCGRID). IEEE, 2020, pp. 410–419.

[19] J. Wang, D. He, A. Castiglione, B. B. Gupta, M. Karuppiah, and L. Wu,
“Pcnncec: Efficient and privacy-preserving convolutional neural network
inference based on cloud-edge-client collaboration,” IEEE Transactions
on Network Science and Engineering, 2022.

[20] E. Sotthiwat, L. Zhen, Z. Li, and C. Zhang, “Partially encrypted multi-
party computation for federated learning,” in 2021 IEEE/ACM 21st
International Symposium on Cluster, Cloud and Internet Computing
(CCGrid). IEEE, 2021, pp. 828–835.

[21] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[22] C. Zhang and Q. Li, “Distributed optimization for over-parameterized
learning,” arXiv:1906.06205, 2019.

[23] C. Zhang and L. Qianxiao, “Distributed optimization for degenerate loss
functions arising from over-parameterization,” Artificial Intelligence, vol.
301, p. 103575, 2021.

[24] L. Lyu, X. Xu, Q. Wang, and H. Yu, “Collaborative fairness in federated
learning,” in Federated Learning. Springer, 2020, pp. 189–204.

[25] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients-how easy is it to break privacy in federated learning?” Advances
in Neural Information Processing Systems, vol. 33, pp. 16 937–16 947,
2020.

[26] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[27] C. C. Cocks, “A note on non-secret encryption,” CESG Memo, 1973.
[28] J. A. Bondy, U. S. R. Murty et al., Graph theory with applications.

Macmillan London, 1976, vol. 290.
[29] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based

learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[30] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Technical Report TR-2009, University of Toronto,
2009.

[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, 2014. [Online]. Available:
https://arxiv.org/abs/1804.09081

[32] I. Mironov, “Rényi differential privacy,” in 2017 IEEE 30th Computer
Security Foundations Symposium (CSF). IEEE, 2017, pp. 263–275.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, 2014. [Online]. Available: arXiv:1412.6980

[34] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 308–318.

[35] A. Triastcyn and B. Faltings, “Bayesian differential privacy for machine
learning,” in International Conference on Machine Learning. PMLR,
2020, pp. 9583–9592.

[36] J. Jeon, K. Lee, S. Oh, J. Ok et al., “Gradient inversion with genera-
tive image prior,” Advances in Neural Information Processing Systems,
vol. 34, pp. 29 898–29 908, 2021.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3208736

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on September 30,2022 at 03:24:15 UTC from IEEE Xplore. Restrictions apply.

