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ABSTRACT

Cross-modal retrieval takes one type of data as the query to retrieve
relevant data of another type. Most of existing cross-modal retrieval
approaches were proposed to learn a common subspace in a joint
manner, where the data from all modalities have to be involved
during the whole training process. For these approaches, the opti-
mal parameters of different modality-specific transformations are
dependent on each other and the whole model has to be retrained
when handling samples from new modalities. In this paper, we
present a novel cross-modal retrieval method, called Scalable Deep
Multimodal Learning (SDML). It proposes to predefine a common
subspace, in which the between-class variation is maximized while
the within-class variation is minimized. Then, it trains m modality-
specific networks for m modalities (one network for each modality)
to transform the multimodal data into the predefined common sub-
space to achieve multimodal learning. Unlike many of the existing
methods, our method can train different modality-specific networks
independently and thus be scalable to the number of modalities.
To the best of our knowledge, the proposed SDML could be one of
the first works to independently project data of an unfixed number
of modalities into a predefined common subspace. Comprehen-
sive experimental results on four widely-used benchmark datasets
demonstrate that the proposed method is effective and efficient in
multimodal learning and outperforms the state-of-the-art methods
in cross-modal retrieval.
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1 INTRODUCTION

Cross-modal retrieval takes one type of data as the query to re-
trieve relevant data of another type, which enables flexible retrieval
across different modalities (e.g., texts vs. images) [38]. With the
rapid growth of multimedia data including image, text, video, and
audio on the Internet, cross-modal retrieval is becoming increas-
ingly important for the search engine as well as multimedia data
management [39]. However, it is well known that the inconsistent
representation and distribution of distinct modalities, such as im-
age, text, and audio, cause the heterogeneity gap, which makes
cross-modal similarity cannot be directly computed [28]. Therefore,
the challenge of cross-modal retrieval is how to effectively measure
the similarity between the samples from different modalities.

To bridge the heterogeneity gap, most of the existing methods
follow the idea of representation learning to find modality-specific
transformations to project the data samples from different modali-
ties into a common subspace. In this common subspace, the sim-
ilarity between different modalities can be measured directly by
adopting common distance metrics. Over the past decades, a large
number of cross-modal retrieval methods [26] have been developed
to eliminate the heterogeneity gap and learn the common repre-
sentation by different learning models. These approaches can be
categorized into two classes according to their distinct models as
follows: the traditional approaches and the deep approaches. The
traditional cross-modal approaches attempt to learn linear or non-
linear single-layer transformations to project different modalities
into a common subspace. One of the typical works is to use the
statistical correlation analysis to learn linear projections by opti-
mizing target statistical values [7, 33, 34]. To utilize the semantic
information, such as the class label, some semi-supervised and su-
pervised cross-modal methods were proposed to learn the common
representations by Fisher’s criterion [8, 12, 35], label space [41, 43]
and so on. However, their performance is limited by the linear
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models, which cannot capture the complex cross-modal correlation
with high nonlinearity. Although they can be easily extended to
nonlinear variants by the kernel trick, such as Kernel CCA [1],
their performance is limited due to the predetermined kernel func-
tions. In addition, it is still an open issue to select a suitable kernel
function for particular cross-modal learning applications [24]. To
overcome aforementioned problems, inspired by the great success
of deep neural networks (DNN) in representation learning [18],
several DNN-based approaches have been proposed to learn the
complex nonlinear transformations for cross-modal retrieval in an
unsupervised [2, 6, 40] or supervised [9, 10, 30, 38, 44] manner.

However, it is notable that the aforementioned cross-modal learn-
ing methods were proposed to learn the common representations of
the multimodal data in a joint manner. Thus, all the modalities must
dependently join in learning the common subspace in these meth-
ods. This learning paradigm has the following two disadvantages:
1) it cannot learn different modality-specific transformations sepa-
rately; and 2) the whole model has to be retrained when handling
samples from new modalities.

In this paper, we present a novel cross-modal retrieval method,
called Scalable Deep Multimodal Learning (SDML), which solves
the above two problems simultaneously. The framework of SDML
is summarized in Figure 1. Specifically, we construct m modality-
specific networks for m modalities (one network for each modality)
to transform the multimodal data into a common subspace. Each
modality-specific network consists of a supervised loss, a modality-
specific encoder, and the corresponding decoder. The proposed
supervised loss aims at pushing the encoder to preserve as much
discrimination as possible into the predefined common subspace.
Each modality-specific decoder is stacked on the corresponding
encoder to preserve semantic consistency of the modality. These m
modality-specific networks do not share any parameters and are
independent of each other. Different from the existing cross-modal
works [9, 10, 12, 38, 40, 44, 45], these modality-specific networks
are able to be trained in parallel, and we only need to train a new
modality-specific network to handle samples from a new modality.
To the best of our knowledge, the proposed SDML could be one
of the first works to independently learn common representations
from the data of an unfixed number of modalities. The main contri-
butions and novelty of this work can be summarized as follows:

o Anovel deep supervised cross-modal learning architecture is
proposed to bridge the heterogeneity gap between different
modalities. Unlike most of the existing methods, our pro-
posed method predefines a common subspace to constraint
the modality-specific encoder networks, which makes our
method be able to learn modality-specific transformations
independently. This benefits SDML can be trained in parallel
and is scalable to the number of modalities.

o Multiple modality-specific decoders are designed to stack on
the corresponding encoders to reconstruct the inputs. They
are helpful to the encoding networks to extract underlying
features that preserve semantic consistency and facilitate ac-
curate prediction of the input data. This is also been verified
by our experimental studies.
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o The novel cross-modal learning strategy makes SDML much
efficient in terms of the GPU resource usage or the computa-
tional time cost. Furthermore, extensive experiments on four
widely-used benchmark datasets have been conducted. The
results demonstrate that our method outperforms current
state-of-the-art methods for cross-modal retrieval.

The remainder of this paper is organized as follows. Section 2 re-
views the related work in cross-modal learning. Section 3 presents
the proposed method, includes the problem definition, the SDML
model and implementation details. Section 4 provides the experi-
mental results and analysis. Section 5 concludes this paper.

2 RELATED WORK

In this section, the related works, which are most close to our work,
are briefly reviewed from the following two aspects: traditional
multimodal representation learning methods and deep multimodal
representation learning methods.

2.1 Traditional Multimodal Representation
Learning Methods

One typical kind of methods attempts to project the multimodal
data into a latent common subspace by maximizing the correla-
tion between different modalities, such as Canonical Correlation
Analysis (CCA) [7], Partial Least Squares (PLS) [34], and Multi-
set CCA (MCCA) [22, 33]. However, some useful discriminative
information, e.g., class label, is not considered in their training
stages. To employ the category information, many semi-supervised
and supervised approaches were proposed to learn a latent dis-
criminative common subspace for the multimodal data. In [43],
a semi-supervised cross-modal method, called Generalized Semi-
supervised Structured Subspace Learning (GSS-SL), was proposed
to learn the common features of two-modality data by taking the
label space as a linkage to model the cross-modal correlations. In
[41], a joint representation learning (JRL) was proposed to explore
jointly the correlation and semantic information in a unified opti-
mization framework. With the well-known Fisher’s criterion, some
approaches attempt to learn common discriminative features from
multiple modalities by maximizing the between-class variations and
simultaneously minimizing the within-class variations [11, 12, 35].
Although these methods have achieved the state-of-the-art perfor-
mance in cross-modal retrieval, most of them are linear models and
may be incapable of capturing the high-level nonlinear information
of real-world multimodal data. At the first thought, they can be
easily extended to nonlinear models with the kernel trick, such as
Kernel CCA (KCCA) [1]. However, the learned representation is
limited due to the predetermined kernel.

2.2 Deep Multimodal Representation Learning
Methods

Over the past several years, the deep neural network (DNN) has
achieved great success in many applications, such as image classifi-
cation, object detection, and clustering [23, 46]. To overcome the
shortcomings of kernel trick, DNN is widely used to project multi-
modal data into a high-level common subspace [27]. Firstly, some
works attempt to extend traditional models into deep cross-modal
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Figure 1: The general framework of the proposed SDML method. The m modality-specific neural networks (one network for
each modality) can be trained separately since they do not share any trainable parameters.

models, such as Deep Canonical Correlation Analysis (DCCA) [2],
Deep Canonically Correlated Autoencoders (DCCAE) [40], and
Multi-view Deep Network (MvDN) [10]. DCCA uses two modality-
specific subnetworks to nonlinearly project two modalities into
a latent common subspace, where the resulting representations
are highly linearly correlated. In [40], Wang et al. extent DCCA as
DCCAE with adding an auto-encoder regularization term. How-
ever, some useful semantic information is ignored by these above
approaches. To use the label information to boost the performance
of DNNs, Kan et al. proposed MvDN to learn a common discrimi-
native subspace by introducing the Fisher’s criterion into a feed-
forward neural network in [10]. Moreover, some works aim to uti-
lize the inter- and intra-modality correlation to learn the common
representations of multimodal data, such Cross-Media Multiple
Deep Network (CMDN) [25] and Cross-modal Correlation Learn-
ing (CCL) [27]. Furthermore, some works attempt to project multi-
modal data into a latent common subspace by metric learning [20],
cross-modal translation [30], and cross-modal hashing [5]. In [20],
Deep Coupled Metric Learning (DCML) [20] adopts two DNNs
to learn two sets of hierarchical nonlinear transformations (one
subnetwork for each modality) so that multimodal samples are
nonlinearly mapped into a shared latent feature subspace. In [30],
a Cross-modal Bidirectional Translation (CBT) approach was pro-
posed to translate one modality as a language into another modal-
ity, so that cross-modal translation can be conducted between two
modalities to effectively explore cross-modal correlations with the
utilization of reinforcement learning.

Unfortunately, most of the existing studies on cross-modal re-
trieval mainly focus on learning a latent common subspace by maxi-
mizing the correlation or discrimination of all modalities. Therefore,
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all modalities have to be dependently utilized to train the models. In
contrast, our approach independently learns the common discrimi-
native representations of each modality by the predefined common
subspace.

3 OUR PROPOSED METHOD

In this section, we first introduce the problem definition for the mul-
timodal learning. Then, we present the Scalable Deep Multimodal
Learning (SDML) algorithm, which trains the models for different
modalities independently. At last, we provide the implementation
details of the proposed method.

3.1 Multimodal Learning Problem

Considering a collection of data from m modalities, we denote
the j-th sample of the i-th modality as x}l and the set containing
all the n; samples of the i-th modality as X; = {xi,x;, . ,xf“}.
The corresponding label matrix of the i-th modality is denoted as
Y; = [yi,yé,...,yﬁli], and yjl. = [yij,yéj,...,yéj]T € {0,1}isa
semantic label vector, where c is the number of semantic categories.
If the sample belongs to the k-th category, ylicj = 1, otherwise
yl"cj = 0. Since the samples from different modalities typically have
different statistical properties and lie in distinct representation
spaces, we cannot directly compared the different modalities for
cross-modal retrieval [38].

Multimodal learning is to learn modality-specific transformation
functions for different modalities: fi(x;, 0;) € RY, where d is the
dimensionality of the representation in the common subspace, and
©; denotes the learnable parameters of the i-th modality-specific
transformation function. In this way, the samples can be compared
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in the common subspace directly even though they come from
different modalities, and the similarity of the samples from the
same category would be larger than the similarity of the samples
from the different categories. Thus, the relevant samples of one
modality can be returned for one query of another modality on
cross-modal retrieval tasks.

3.2 Scalable Deep Multimodal Learning

The general flowchart of the proposed method is shown in Figure 1,
from which we can see that there are m independent networks,
one for each modality. They aim to learn the transform functions
that can project the data of different modalities into a predefined
common subspace, in which the between-class variation is max-
imized while the within-class variation is minimized. The key of
SDML is that it predefines a common subspace by giving a fixed
matrix to make the modality-specific neural networks be indepen-
dent. The fixed matrix projects the representations of the samples
from the common subspace into the label space, which makes the
supervised information be transformed to the common subspace to
supervise the learning of the modality-specific networks. Specifi-
cally, for each modality, we develop a deep supervised auto-encoder
(DSAE) to transform the samples into a common subspace. DSAE is
an auto-encoder (AE) with an addition of a supervised loss on the
representation layer. The original AE is a neural network whose
outputs are set to fitting its inputs. By learning to reconstruction
the inputs, the AE can extract underlying features that facilitate
accurate prediction of the input data [17]. The additional super-
vised loss is deduced from the label information to push as much
discrimination as possible into the predefined common subspace.
From Figure 1, we also can see that each supervised auto-encoder
consists of three parts: an encoder, a decoder (on the upper right
side), and a supervised label projection (on the lower right side).
Denoting the encoder as hj. = ﬁ(xé,@i) and the decoder as

)2; = gi(h;'., ®;) for the i-th network (where ©; and ®; are their
parameters, respectively), we formulate the objective function of
the designed DSAE as follows:

yi

N G ) + (1= DI )]
n; =
1)

ni
1 " . . .
— > TR} = xjlla + (1 = DIIPTh] ~ vk,
i3

where A is a balance parameter to trade-off between the reconstruc-
tion error j,i (X;-) and the supervised loss jsi (X;'.), and P is a given
matrix used to predefine the common subspace.

It is notable that the setting of the fixed matrix P is critical to
the performance of the proposed method. It is desirable that in the
common subspace, induced by the matrix P, the similarity between
the samples from the same class could be larger than the similarity
between the samples from the different classes. Since the matrix
P projects the common representations of the samples to the label
space, we have that the ground truth label vector of each category
has a corresponding (determined) vector in the common subspace.
This determined vector would induce a one-dimensional subspace
that can be used to guide the learning of modality-specific networks.

638

SIGIR 19, July 21-25, 2019, Paris, France

Supposing the matrix P has u rows and v columns, we should set u
the same as the number of output units of the encoder, and set v the
same as the number of semantic categories, ie., c. In this work, we
set the matrix P as an orthogonal matrix with orthonormal columns.
This leads to the one-dimensional subspaces of different categories
be orthogonal to each other, and makes the predefined common
subspace more discriminative.

To achieve the multimodal learning, the proposed method needs
to simultaneously minimize the objective function in Equation (1)
for the m modality-specific networks as

min J " fori e {1,2,.. 2)

., m}

and obtains the transform functions for the m modalities.
The proposed method constructs one network for each modal-
ity and there are no any shared trainable parameters among all
modality-specific networks. Thus, we can minimize the objective
function of each modality-specific neural network fi(xj.,@,-) in
Equation (2) separately, and train the neural networks in a paral-
leled manner. To minimize the objective function in Equation (1), we
simply adopt the gradient descent algorithm to search the optimal
parameters iteratively as
N
0;«—0;+a 90;°

1
Q; — D; + 0[%,
where « is the learning rate.

The objective function of SDML in Equation (2) can be optimized
using a stochastic gradient descent optimization algorithm [14].
The details of the optimization procedure are summarized in Algo-
rithm 1. The maximal number of training epochs N is taken as the
termination condition in this work, and is typically set as 200.

Different from the existing multimodal learning approaches
which learn P and the weight parameters ©1,0g, . .., 0, simulta-
neously in a joint manner, the proposed method only need to learn
©; separately. Based on this learning strategy, SDML is scalable to
the number of modalities, and all the modality-specific networks
can be trained in parallel. Furthermore, SDML is efficiently to han-
dle the samples from new modality, which only needs to train a
new neural network for the new modality. However, the existing
approaches have to combine the original data and the data of the
new modality, and solving it as a totally new multimodal learning
problem by retraining the whole model with the combined data set.
Thus these approaches have a significantly higher computational
complexity than our proposed method.

3.3 Implementation Details

The proposed method would train multiple modality-specific neural
networks to handle the multimodal data. For each modality, the
network has seven fully-connected layers with each layer following
aRectified Linear Unit (ReLU) [21] active function except the middle
layer. The number of hidden units are 1024, 1024,512, 1024, and
1024. The fixed matrix P is a randomly generated column orthogonal
matrix. In the testing process, the decoder is ignored and the outputs
of the encoder are the common representations of the samples.
The cosine distance between these representations is taken as the
similarity metric for cross-modal retrieval.
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Algorithm 1 The optimization procedure of the proposed SDML

Input: The training data set of all modalities X1, X2, . .., Xm, the
corresponding label matrices Y1, Y2, ..., Yy, the matrix P, the
dimensionality of the common representation space d, the batch
size np, the learning rate @, and the hyper parameter A.

Output: The optimal weight parameters 1,0, ..., Op,.
1: Randomly initialize the parameters ©1,0,...,0, and
D1,Dy,...,Dp,.
2: parfori=1,2,...,mdo > Parallel for loop
3 while not converge do
4 Randomly select nj, samples of the i-th modality X; to
construct a mini-batch.
5 Compute the representations h;'. and 5(; for the samples

in the mini-batch by forward-propagation.

6: Calculate the loss for the i-th modality-specific neural
network with Equation (1).

7: Update the parameters of the i-th modality-specific neu-
ral network, ®; and ®;, by descending the stochastic
gradient as follows:

0 — 0; - a%L;
o — & -al.
8: end while

9: end parfor

The proposed model is trained on two Nvidia GTX 1080Ti GPUs
with PyTorch. For training, we employ the ADAM [14] optimizer
with a batch size of 100 and set the maximal number of epochs as
200.

4 EXPERIMENTAL STUDIES

To evaluate the proposed method, we conduct experiments on four
datasets, namely, the PKU XMedia dataset [29, 42], the Wikipedia
dataset [32], the NUS-WIDE dataset [4], and the MS-COCO dataset
[19]. In our experiments, the true relevance between the sam-
ples is measured according to their semantic classes, by following
the setting in a large number of cross-modal retrieval research
works [27, 30, 38, 44]. In the following experiments, we first com-
pare our SDML with 12 state-of-the-art cross-modal methods to
verify its effectiveness. Then the additional evaluations are con-
ducted to investigate the performance of SDML in more detail.

4.1 Datasets and Features

Four multimodal datasets are adopted in our experiments, including
PKU XMedia, Wikipedia, NUS-WIDE and MSCOCO. The statistics
of the four datasets are summarized in Table 1.

e The PKU XMedia dataset!: This dataset [29, 42] consists of
5,000 texts, 5,000 images, 1,143 videos, 1,000 audio clips and
500 3D models. It was divided into two parts by the authors:
the training set has 10,169 instances (with 4,000 texts, 4,000
images, 969 videos, 800 audio clips and 400 3D models), and
the testing set has 2,474 instances (with 1,000 texts, 1,000
images, 174 videos, 200 audio clips and 100 3D models). We

1The PKU XMedia dataset is available at http://www.icst.pku.edu.cn/mipl/XMediaNet/.
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further split the testing set as two subsets: the testing set has
1,237 instances and the validation set has 1,237 instances.

e The Wikipedia dataset?: It is the most widely-used dataset
for cross-modal retrieval. The dataset [32] consists of 2,866
image-text pairs, where each pair consists of an image and
the corresponding complete text article annotated with a
label from 10 semantic classes (i.e., art, biology, history, etc).
For a fair comparison, we also exactly follow the data parti-
tion strategy of [6] to divide the dataset into three subsets:
2,173 pairs in training set, 231 pairs in validation set and 462
pairs in the testing set.

e The NUS-WIDE dataset>: This dataset [4] contains about
270,000 images with their tags categorized into 81 classes.
Only the images exclusively belonging to one of the 10
largest categories in NUS-WIDE dataset are selected for ex-
periments by following [27], and each image along with its
corresponding tags is viewed together as an image/text pair
with a unique class label. Finally, there are about 70,000 im-
age/text pairs, where the training set consists of 42,941 pairs,
the testing set consists of 23,661 pairs, and 5,000 pairs are in
the validation set.

e The MS-COCO dataset*: This dataset [19] contains 123,287
images and their annotated sentences with their annotations
categorized into 80 classes. After pruning images without
category information, MSCOCO consists of 82,081 training
images and 40,137 validation images, each of which is as-
sociated with five sentences. Similar to other datasets, we
split the validation set as two parts: the validation subset has
10,000 pairs and the testing subset has 30,137 pairs.

Table 1: General statistics of the four datasets used in the
experiments, where “*/*/*” in the “Instance” column stands
for the number of training/validation/test subsets.

Dataset Label Modality  Instance Feature
Image 4,000/500/500 4,096D VGG
Text 4,000/500/500 3,000D BoW
PKU XMedia 20 Audio clip  800/100/100 29D MFCC
3D model  400/50/50 4,700D LightField
Video 969/87/87 4,096D C3D
o . Image 2,173/231/462 4,096D VGG
Wikipedia 10 p 2,173/231/462 3,00D Doc2Vec
Image 42,941/5,000/23,661 4,096D VGG
NUS-WIDE 10 Text 42,941/5,000/23,661 3,00D Doc2Vec
Image 82,081/10,000/30,137  4,096D VGG
MS-COCOo 80 Text 82,081/10,000/30,137  3,00D Doc2Vec

In this work, the multimodal input features of the PKU XMedia
dataset are provided by the authors. For images, each image is rep-
resented by a 4,096-dimensional CNN feature extracted from the fc7
layer of AlexNet [15], which is pre-trained on ImageNet. For text,
the 3,000-dimensional BoW features are adopted as the text features.

The Wikipedia dataset is available at http://www.svcl.ucsd.edu/projects/crossmodal/.
3The NUS-WIDE dataset is available at http://lms.comp.nus.edu.sg/research/
NUS-WIDE.htm.
4The MS-COCO dataset is available at http://lms.comp.nus.edu.sg/research/
NUS-WIDE.htm.
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For video, C3D model [37] pre-trained on Sports-1M [13] is used
to extract the 4,096-dimensional outputs from the fc7 layer as the
video features. For audios, audio clips are represented by the 29-
dimensional mel-frequency cepstral coefficients (MFCC) features.
For 3D models, the models are represented by the concatenated
4,700-dimensional vectors of a LightField descriptor set [3]. For the
other three datasets, i.e, Wikipedia, NUS-WIDE and MS-COCO,
the image representation extractor has the same configuration
with the 19-layer VGGNet [15] and the 4, 096-dimensional feature
vector from the fc7 layer is extracted as the input image feature.
The 300-dimensional text representation is extracted by a Doc2Vec
model® [16], which is pre-trained on Wikipedia. The statistics of
the four datasets are summarized in Table 1.

4.2 Evaluation Metric and Compared Methods

To evaluate the performance of the methods, we perform cross-
modal retrieval tasks as retrieving one modality by another modal-
ity query, such as retrieving text by image query (Image — Text)
and retrieving image by text query (Text — Image). We adopt mean
average precision (mAP) as the evaluation metric, which is calcu-
lated on all returned results for a comprehensive evaluation.

The proposed approach is compared with 12 state-of-the-art
cross-modal retrieval methods to demonstrate its effectiveness, in-
cluding six traditional cross-modal methods, namely MCCA [33],
GMLDA [35], JRL [41], ml-CCA [31], MvDA-VC [12] and GSS-
SL [43], six DNN-based cross-modal methods, namely DCCA [2],
DCCAE [40], ACMR [38], CMPM+CMPC [44], CCL [27] and CBT [30].
For a fair comparison, all the compared methods adopt the same
CNN features for the image, which are extracted from the CNN ar-
chitectures used in our approach. Specifically, the CNN feature for
the image is extracted from the fc7 layer in the 19-layer VGGNet [36]
with 4,096 dimensions. While the 300-dimensional text original rep-
resentation is extracted by pre-trained Doc2Vec model [16] for
Wikipedia, NUS-WIDE, and MS-COCO. On the other hand, all the
features of PKU XMedia are provided by the authors. Moreover, the
results of CCL and CBT are reported by their authors.

4.3 Comparison with State-of-the-art Methods

In this section, we evaluate the effectiveness of our proposed method
by comparing with 12 state-of-the-art cross-modal methods on four
widely-used multimodal datasets. Most compared methods can
handle only two modalities, and four multimodal approaches (i.e.,
MCCA, GMLDA, MvDA-VC and our SDML) can be directly used
to learn a latent common subspace from multiple (more than two)
modalities. To evaluate the performance of the two-modal method
on the multimodal dataset, they should be respectively conducted
in a pairwise manner on every two modalities. Specifically, the

m(m=1) times to learn

two-modality methods should be performed

the w common subspaces in pairwise manner on m modali-
ties. Thus, the two-modal methods cost much more time to train
m models than the multimodal methods which only need to
train once to get a model for m modalities. There are five modalities
in PKU XMedia, thus these two-modal methods must be performed

10 times on the 10 pairwise modalities. On the other hand, the

5The pre-trained Doc2Vec model is available at https://github.com/jhlau/doc2vec.
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Figure 2: Precision-recall curves and precision-scope curves
for the image-query-texts and text-query-images experi-
ments on the Wikipedia dataset.
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Figure 3: Precision-recall curves and precision-scope curves
for the image-query-texts and text-query-images experi-
ments on the NUS-WIDE dataset.
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multimodal methods are only conducted one time to obtain the
common representations for all modalities. The mAP scores of the
5 X 4 = 20 cross-modal retrieval tasks and their average results are
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Table 2: Performance comparison in terms of mAP scores on the PKU XMedia dataset.

Method Query Image Text Audio 3D Video Ave.
Target | Text Audio 3D Video|Image Audio 3D Video|Image Text 3D Video|Image Text Audio Video|Image Text Audio 3D
ml-CCA [31]* 0.597 0.241 0.284 0.377 | 0.613 0.242 0.243 0.355| 0.202 0.210 0.159 0.176 | 0.228 0.165 0.130 0.203 | 0.374 0.307 0.166 0.252|0.276
JRL [41]* 0.770 0.296 0.521 0.376 | 0.788 0.279 0.477 0.348 | 0.260 0.233 0.302 0.214 | 0.522 0.365 0.211 0.403 | 0.399 0.272 0.172 0.366 | 0.379
GSS-SL [43]* 0.875 0.360 0.584 0.562 | 0.878 0.336 0.509 0.527 | 0.294 0.285 0.389 0.201 | 0.554 0.431 0.239 0.423 | 0.512 0.463 0.207 0.388 | 0.451
DCCA [2]* 0.869 0.264 0.186 0.463 | 0.871 0.306 0.221 0.406 | 0.218 0.265 0.221 0.157 | 0.169 0.169 0.177 0.155 | 0.433 0.369 0.167 0.163 | 0.312
DCCAE [40]* 0.868 0.278 0.195 0.492 | 0.878 0.288 0.244 0.450 | 0.229 0.273 0.184 0.227 | 0.150 0.164 0.190 0.141 | 0.442 0.427 0.185 0.194|0.325
CMPM+CMPC [44]*|0.897 0.544 0.637 0.641|0.896 0.500 0.669 0.675| 0.568 0.551 0.481 0.397 | 0.578 0.666 0.388 0.506 | 0.583 0.626 0.385 0.497 | 0.584
ACMR [38]* 0.882 0.504 0.512 0.559 | 0.885 0.488 0.483 0.565 | 0.497 0.452 0.358 0.308 | 0.448 0.428 0.239 0.328 | 0.527 0.523 0.276 0.338 | 0.480
MCCA [33] 0.128 0.186 0.221 0.140 | 0.133 0.174 0.177 0.128 | 0.146 0.140 0.201 0.132| 0.153 0.110 0.177 0.139 | 0.101 0.079 0.128 0.164 |0.148
GMLDA [35] 0.608 0.186 0.513 0.414 | 0.629 0.170 0.470 0.332 | 0.267 0.211 0.239 0.170 | 0.487 0.420 0.150 0.319 | 0.368 0.282 0.121 0.329 |0.334
MvDA-VC [12] 0.630 0.290 0.550 0.488 | 0.643 0.264 0.491 0.411| 0.261 0.231 0.344 0.168 | 0.513 0.430 0.214 0.346 | 0.435 0.343 0.152 0.353|0.378
SDML 0.899 0.552 0.690 0.659|0.917 0.572 0.722 0.686|0.576 0.604 0.501 0.425|0.668 0.694 0.428 0.533|0.587 0.604 0.342 0.514|0.609

*These methods are two-modality methods.

Table 3: Performance comparison in terms of mAP scores on
the Wikipedia dataset.

Table 5: Performance comparison in terms of mAP scores on
the MS-COCO dataset.

Method Image — Text Text — Image Average Method Image — Text Text — Image Average
MCCA [33] 0.202 0.189 0.195 MCCA [33] 0.646 0.640 0.643
ml-CCA [31] 0.388 0.356 0.372 ml-CCA [31] 0.667 0.661 0.664
GMLDA [35] 0.238 0.240 0.239 GSS-SL [43] 0.707 0.702 0.705
JRL [41] 0.343 0.376 0.330 DCCA [2] 0.415 0.414 0.415
MvDA-VC [12] 0.397 0.345 0.387 DCCAE [40] 0.412 0.411 0.411
GSS-SL [43] 0.466 0.413 0.440 ACMR [38] 0.692 0.687 0.690
DCCA [2] 0.301 0.286 0.294 CMPM+CMPC [44] 0.759 0.748 0.753
DCCAE [40] 0.308 0.290 0.299 SDML 0.827 0.818 0.823
ACMR [38] 0.479 0.426 0.452

CMPM+CMPC [44] 0.493 0.438 0.466

CCL [27] 0.504 0.457 0.481

CBT [30] 0.516 0.464 0.490

SDML 0.522 0.488 0.505

Table 4: Performance comparison in terms of mAP scores on
the NUS-WIDE dataset.

Method Image — Text Text — Image Average
MCCA [33] 0.510 0.525 0.517
ml-CCA [31] 0.527 0.532 0.530
GMLDA [35] 0.582 0.577 0.580
JRL [41] 0.634 0.652 0.643
MvDA-VC [12] 0.604 0.616 0.610
GSS-SL [43] 0.640 0.659 0.650
DCCA [2] 0.524 0.541 0.533
DCCAE [40] 0.525 0.542 0.534
ACMR [38] 0.658 0.663 0.661
CMPM+CMPC [44] 0.669 0.675 0.672
CCL [27] 0.671 0.676 0.674
SDML 0.694 0.699 0.697

shown in Table 2 on the PKU XMedia dataset. From the experimen-
tal results, we can see that our proposed approach achieves the best
performance compared to its counterparts. It outperforms the best
competitor (i.e., CMPM+CMPC [44]) by 4.28% on the average mAP

scores. The results of Table 2 indicate that our SDML is an effec-
tive multimodal representation learning method for cross-modal
retrieval on multiple modalities.

On the other hand, the cross-modal retrieval across image and
text is evaluated on other 3 cross-modal datasets, i.e., Wikipedia,
NUS-WIDE and MS-COCO. Similarly, the mAP scores of two cross-
modal retrieval tasks (i.e., image-query-texts and text-query-images)
and their average results on the three datasets are shown in Table 3,
Table 4 and Table 5, respectively. From these tables, we can see that
our proposed approach also achieves the best performance. With uti-
lizing label information, more discrimination can be extracted from
the multimodal data. Therefore, the supervised methods outper-
form most of unsupervised methods. In Table 3, the SDML achieves
the improvements of 1.16% for image-query-texts, 5.17% for text-
query-images, and 3.06% for average compared with the best results
of counterparts (i.e., CBT [30]) on the Wikipedia dataset. In Table 4,
our SDML outperforms the best competitor (i.e., CMPM+CMPC) by
2.81% for image-query-texts, 2.77% for text-query-images, and 2.79%
for average on the NUS-WIDE dataset. Furthermore, MS-COCO
is a multi-label dataset and some methods can not handle this
case, such as GMLDA, JRL and MvDA-VC. In Table 5, the proposed
SDML achieves the improvements of 8.90% for image-query-texts,
9.51% for text-query-image, and 9.14% for average on the MS-COCO
dataset. This indicates that our SDML is effective to handle multi-
label case. In conclusion, the experimental results of Table 3, Table 4
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Figure 4: Precision-recall curves and precision-scope curves
for the image-query-texts and text-query-images experi-
ments on the MS-COCO dataset.

and Table 5 indicate that our SDML is an effective multimodal repre-
sentation learning approach for cross-modal retrieval across image
and text.

In addition to the evaluation terms of the mAP score, we also
draw precision-recall and precision-scope curves for additional
comparison. On the Wikipedia dataset, the precision-recall and
precision-scope curves of the image-query-texts and text-query-
images are plotted in Figure 2(a) and Figure 2(b), respectively. Simi-
larly, the precision-recall and precision-scope curves of the image-
query-texts and text-query-images on the NUS-WIDE dataset are
respectively displayed in Figure 3(a) and Figure 3(b). Furthermore,
the precision-recall and precision-scope curves of the image-query-
texts and text-query-images on the MS-COCO dataset are plotted
in in Figure 4(a) and Figure 4(b), respectively. The scope (i.e., the top
K retrieved samples) of the precision-scope varies from K = 100
to 800 on the Wikipedia dataset, and K = 100 to 1000 on the NUS-
WIDE and MS-COCO datasets as [43]. Figure 2 and Figure 3 show
the curves of our SDML and 10 state-of-the-art cross-modal meth-
ods. Since MS-COCO is a multi-label dataset, our SDML just com-
pares with 6 state-of-the-art cross-modal methods in Figure 4. The
precision-recall and precision-scope evaluations are consistent with
the mAP scores for cross-modal retrieval tasks, where our SDML
outperforms all the compared methods.

4.4 Parameter Analysis

To investigate the impact of the parameter A, we analyze the per-
formance of our SDML with different values of 1 on the testing set
of the Wikipedia dataset as shown in Figure 5. These plots show
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the mAP scores of SDML versus different values of A for image-
query-texts, text-query-images and the average results. The mAP
scores is low When A = 1, which indicates the importance of the
supervised loss. In addition, we can see that the performance is not
satisfactory without the auto-encoder, i.e., when A is 0. At last, our
SDML achieves the best result when A = 0.5. Thus A is set as 0.5
for SDML in all experiments.

4.5 Convergence Analysis

We also evaluated the convergence of our method on the Wikipedia
dataset. Figure 6 plots the losses versus different numbers of epochs
on the Wikipedia dataset. From the result, we can see that the
proposed method converges in 100 ~ 200 epochs. Thus we set
maximum epoch as 200 for SDML in all experiments.

4.6 GPU Memory and Time Cost Analysis

In this section, we investigate the benefits of independently training
different modality-specific networks. We define the following three
alternative baselines to study the impact of independently training
strategy:

e SDML-1 is one variant of our SDML. All the modalities
should be used to dependently train the networks like the
existing cross-modal approaches.

e SDML-2 serially trains each modality-specific network for
the corresponding modality. At each time, just one modality-
specific network is trained on the device.

e SDML-3 parallelly trains each modality-specific model for
the corresponding modality.

For a fair comparison, all these variants have the same network
architecture and settings. The difference between them is the used
training strategy. It is notable that SDML-3 can use multiple GPU
devices to train different modality-specific networks in parallel and
improve the training efficiency, e.g., two Nvidia GTX 1080Ti GPUs
are used in our experiments. Table 6 shows the comparison of GPU
memory usages and training time costs among the three baselines
for 200 training epochs on the four datasets. From the experimental
results, we can see that independently training strategy reduces
7% ~ 33% GPU memory usage or 29% ~ 58% training time cost com-
pared with the traditional joint strategy SDML-1. Note that there
is a trade-off challenge between GPU memory usage and training
time cost. On Wikipedia, NUS-WIDE, and MS-COCO, the serially
training strategy can reduce 7.78% GPU memory usage with more
training time (about 5%). However, for more modalities, i.e., PKU
XMedia, the serially training strategy can simultaneously reduce
33.45% GPU memory usage and 15.98% training time because of
no inter-modality cost compared with the traditional joint strategy.
Similarly, the parallel training can reduce much training time with
more GPU memory usage. Overall, our SDML is much efficient in
terms of the GPU resource usage and training time cost.

To further investigate the advantages of scalability, we compare
our method with other multimodal methods in terms of the training
GPU memory and time cost with the same runtime configuration
on the PKU XMedia datasets. For new modalities, our method only
trains the corresponding modality-specific networks instead of the
whole model. However, the existing cross-modal methods should
retrain the whole model. We report the time costs and the memory
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Figure 5: Cross-modal retrieval performance of our proposed method in terms of mAP with different values of 1 on the vali-

dation subset of the Wikipedia dataset.
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Figure 6: The losses vs. different numbers of epochs on the
Wikipedia dataset.

Table 6: Comparison of GPU memory usages and training
time costs among the three alternative baselines on the four
datasets.

Method  Cost PKU XMedia Wikipedia NUS-WIDE MS-COCO
SDML-1 Memory  1,375MiB 797MiB 797MiB 797MiB
Time 244.22s 45.10s 907.09s 1,756.46s
SDML-2 Memory  915MiB 735MiB 735MiB 735MiB
Time 205.19s 47.41s 948.22s 1,835.60s
SDML-3 Memory  3,519MiB 1,326MiB 1,326MiB 1,326MiB
Time 102.20s 31.88s 599.45s 1,160.66s

usages of the tested methods in Table 7. From the experimental
results, we can see that our SDML can reduce 75.04% ~ 99.75%
training time compared with the traditional multimodal methods
for a new modality.

5 CONCLUSION

In this paper, we proposed a novel approach (SDML) to indepen-
dently learn the common representations for cross-modal retrieval.
The proposed model is equipped with three parts, i.e, multiple in-
dependent modality-specific encoders, the corresponding modality-
specific decoders, and a predefined label projection. The auto-
encoder helps the model to extract underlying features that facili-
tate accurate prediction of each modality. The predefined common
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Table 7: Comparison of GPU memory usage and training
time cost on the PKU XMedia datasets.

Method Cost Image Text Audio 3D Video
Memory 1,065MiB

MVDNTI0] gy 347.80s
Memory 1,065MiB

MVLDAN ] pype 2,681.42s

SDML Memory 773MiB  737MiB  599MiB  815MiB  773MiB
Time 86.80s 69.36s 6.64s 10.64s 20.96s

label projection allows us to project all modalities into the pre-
determined common subspace independently. Different from the
existing methods, our SDML can train different modality-specific
networks independently and be scalable to the number of modalities.
Therefore, our SDML is more efficient and has broader application
scenarios. Comprehensive experimental results on four widely-used
multimodal datasets have demonstrated the effectiveness of our
proposed method by comparing with 12 state-of-the-art methods.
As for the future work, we attempt to extent our method to achieve
the universal actual retrieval tasks, which usually do not have a
predefined set of categories.
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