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Abstract—Federated Learning (FL) enables collaborative model
training across distributed participants without sharing raw
data, offering a privacy-preserving paradigm. However, recent
studies on gradient inversion attacks have demonstrated the
vulnerability of FL to adversaries who can reconstruct sensitive
local training data from shared gradients. To mitigate this threat,
we propose Gradient Dropout, a novel defense mechanism that
disrupts reconstruction attempts while preserving model utility.
Specifically, Gradient Dropout perturbs gradients by randomly
scaling a subset of components and replacing the remainder
with Gaussian noise, thereby creating a transformed gradient
space that significantly impedes reconstruction attempts. More-
over, this mechanism is applied across all layers of the model,
ensuring that attackers cannot exploit any unperturbed gradients.
Theoretical analysis reveals that the perturbed gradients can be
kept sufficiently distant from their true values, thereby providing
safety guarantees for the proposed algorithm. Furthermore, we
demonstrate that this protection mechanism minimally impacts
model performance, as gradient dropout and the original training
dynamics remain effectively bounded under certain convexity
conditions. These findings are substantiated through experimental
evaluations, where we show that various attack methods yield low-
quality reconstructed images while model performance is largely
preserved, with less than 2% accuracy reduction relative to the
baseline. As such, Gradient Dropout is presented as an effective
solution for safeguarding privacy in FL, providing a balanced
trade-off between privacy protection, computational efficiency,
and model accuracy.

Keywords—Inversion attack, deep leakage, data privacy, federated
learning

I. INTRODUCTION

Federated learning (FL) [[L] is a collaborative machine
learning framework in which decentralized participants col-
laboratively train models without disclosing their local raw
data. Specifically, participants transmit only model updates,
i.e., weight parameters or gradients, to a central server, rather
than sharing their raw data. This framework is particularly
important in privacy-sensitive domains, such as healthcare [2-
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4] and banking [} 16l], where regulations strictly prohibit the
sharing of personal medical records or financial transactions.

Despite its privacy-preserving design, FL remains sus-
ceptible to various security and privacy threats, particularly
those that exploit shared model updates. Recent studies have
demonstrated several attack vectors that can compromise the
confidentiality of local training data, including membership
inference [/H11l], property inference [[12-14], class representa-
tive attacks [[15], and reconstruction attacks [16-24]. Among
these, reconstruction attacks pose a particularly severe threat
by enabling adversaries to reconstruct private training samples
directly from shared gradients. These reconstruction attacks
leverage gradient-based optimization to infer local training
data. Typically, these attacks initialize synthetic (or “dummy’)
images with random noise and iteratively refine them by
optimizing the dummy gradients to match the shared gradi-
ents [16H19]. Advanced methods further leverage generative
models to enhance reconstruction fidelity [20H22]], often pro-
ducing high-quality images that closely resemble the original
training data. The success of such attacks depends critically on
the consistency and completeness of gradient information [25]:
gradients encode fine-grained, spatially-structured information
about input data, enabling attackers to reliably match dummy
gradients to true gradients across all parameter dimensions.

To mitigate these threats, it is essential to develop techniques
that secure model updates by preventing the leakage of sen-
sitive information, while maintaining the overall performance
of the FL system. To protect training data from reconstruction
attacks, various approaches have been proposed, including
differential privacy methods [26H28] and encryption tech-
niques [29, 30]]. In particular, differential privacy protects the
trained gradients or model weights by adding randomly gener-
ated noise, making the original data and the perturbed outputs
indistinguishable within a defined privacy bound. This method
allows participants to manage their privacy bound through a
privacy budget, allowing them to balance the trade-off between
privacy and model accuracy. However, our studies, along with
findings from [16} 31], reveal that the level of noise required to
defend against reconstruction attacks is considerable and often
leads to notable degradation in model performance. Recent
work has further demonstrated that even with differential
privacy defenses in place, adaptive learning-based attacks can
still successfully invert gradients [32]]. In contrast, encryption-
based methods conceal the trained gradients by ensuring their
original values remain hidden from both participants and the
central server [30, 33} 34]. Unlike differential privacy, encryp-
tion methods do not introduce noise, thereby preserving model
performance. However, recent studies [18) 21] have shown
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that even when individual participants’ gradients are encrypted,
aggregated gradients can still reveal sufficient information for
attackers to reconstruct training images. Moreover, encryption-
based methods impose additional computational overhead.
Gradient sparsification and compression techniques [35] [36],
while reducing communication costs, similarly fail to address
reconstruction vulnerabilities, as the retained gradients still
maintain their data-aligned structure [37].

This paper addresses privacy concerns in FL by proposing
Gradient Dropout, a novel defense mechanism that protects
local data from reconstruction attacks while minimizing impact
on model performance and computational cost. As shown in
Figure |1} Gradient Dropout perturbs gradients layer by layer by
scaling a selected portion with a predefined scaling factor (%)
and replacing the remaining gradients with random numbers
drawn from a Gaussian distribution. This perturbation creates a
distinct gradient space that effectively mitigates reconstruction
attacks. By introducing scaling and noise, the gradients are
displaced from the data-aligned subspace, reducing their align-
ment with specific features of the training data. Consequently,
attackers attempting reconstruction are constrained to operate
within this altered gradient space, resulting in distorted or
inaccurate representations that do not resemble the original
data.

The design of Gradient Dropout is grounded in a principled
understanding of both reconstruction attack mechanics and gra-
dient utility. Our key insight is that reconstruction attacks re-
quire consistent gradient matching across all dimensions [25].
By randomly selecting a subset of gradients and replacing
them entirely with Gaussian noise sampled from the same
value range as the original gradients, we inject irreducible
uncertainty into the attacker’s optimization objective. Unlike
differential privacy’s uniform additive noise, our replacement
strategy ensures that the attacker cannot distinguish between
true gradient values and decoy values, as both fall within the
same statistical distribution. This transforms the reconstruction
problem from a well-posed inverse problem into an ill-posed
one with multiple plausible solutions. Furthermore, we theo-
retically demonstrate that under specific convexity conditions,
Gradient Dropout ensures that the training dynamics remain
bounded, allowing the model to maintain performance while
safeguarding its training data. This strategy achieves a superior
privacy-utility trade-off: strong protection through complete
obscuration of a gradient subset, combined with preserved
learning capacity through the scaled retention of remaining
gradients.

To validate the effectiveness of our proposed defense algo-
rithm, we present comprehensive experimental results compar-
ing Gradient Dropout with existing defense methods against
various reconstruction attacks. Additionally, we assess the
impact of each defense method on model performance within a
federated learning setting. The results demonstrate that Gradi-
ent Dropout effectively mitigates reconstruction attacks while
preserving model performance, with only minimal degrada-
tion. Notably, our experiments include high-resolution datasets
such as ImageNet and NIH Chest X-ray, demonstrating that
our method effectively protects training data even in these
challenging scenarios. An ablation study further highlights

the robustness of our method, showing negligible impact on
model performance across various scaling factors and noise
levels. Overall, our method achieves strong data protection
with minor performance trade-offs, successfully safeguarding
against reconstruction attacks.

The key novelties and main contributions of this work are
summarized as follows:

e We propose Gradient Dropout, a robust defence mech-
anism that perturbs gradients through selective scaling
and Gaussian noise replacement. Unlike differential pri-
vacy, which applies uniform additive noise across all
gradient components, our method strategically replaces
a subset of gradients with statistically indistinguishable
decoy values. This approach effectively safeguards train-
ing data while maintaining high model performance.

e We provide a theoretical analysis demonstrating that
Gradient Dropout transforms the reconstruction problem
from a well-posed to an ill-posed inverse problem.
Specifically, we derive certified safety guarantees by
bounding the discrepancy between original and recon-
structed gradients. Moreover, we prove that under spe-
cific convexity conditions, our method ensures bounded
training dynamics whilst maintaining convergence prop-
erties.

o Extensive experiments on CIFAR-10, ImageNet, and
the NIH Chest X-ray dataset validate the effectiveness
of our method against advanced reconstruction attacks,
achieving strong privacy protection with minimal impact
on model accuracy. Our method outperforms existing
defenses including differential privacy and data rep-
resentation perturbation in the privacy-utility trade-off,
particularly in medical imaging scenarios where privacy
requirements are most essential.

II. RELATED WORK

In this section, we review different types of data leakage
from local participants in centralized federated learning, with a
particular focus on reconstruction attacks that allow adversaries
to extract sensitive training data from shared gradients. We also
examine key defense mechanisms designed to mitigate recon-
struction attacks, including gradient perturbation techniques
using differential privacy, gradient encryption, the Soteria
framework, and regularization methods such as dropout layers.
These methods aim to obscure gradient information, limiting
attackers’ ability to reconstruct the original data accurately.
Furthermore, we analyze the effectiveness of these defenses
across different scenarios, highlighting the trade-offs between
privacy protection and model accuracy.

A. Reconstruction Attacks

FL is highly susceptible to reconstruction attacks since
trained gradients often encode sensitive training data. Deep
Leakage from Gradients (DLG) [16] demonstrates that training
data can be reconstructed in federated learning (FL) frame-
works by exploiting access to the global model parameters
w and the gradients Vw. It generates a dummy image z’
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Fig. 1.

Overview of our defense framework against reconstruction attacks. Scaling the blue gradients by (1/p) and replacing the remaining gradients with

Gaussian noise to ensure that L2 distance between trained gradients and protected gradients is greater than g

and computes dummy gradients Vw using the global model
parameters w and the corresponding labels y. To reconstruct
the original images =z, it iteratively adjusts z’ to minimize
the L2 distance between dummy gradients Vw’ and trained
gradients Vw, as described in Eq. (I)).

X'+ argmin ||V’ — V||, (1)
X’

A key limitation of DLG is its reliance on modifying the
model architecture by replacing ReLU with Sigmoid activation
functions to guarantee twice differentiability. To overcome
this limitation, Inverting Gradients (IG) [18] introduces en-
hancements including the use of cosine similarity as a loss
function, Adam as an optimizer, and a total variation regu-
larization term. These improvements facilitated reconstruction
on medium batch sizes without requiring modifications to
the model architecture. However, IG faces challenges when
applied to large batch sizes and high-resolution images. To
address these limitations, See-Through Gradients [19] utilizes
prior information, such as the mean and standard deviation
from the batch normalization layers, to enhance reconstruc-
tion. Although this approach successfully reconstructs large
batch sizes and high-resolution images, the dependency on
batch normalization statistics raises privacy concerns, as such
information is inherently private and not typically accessible
through shared gradients in FL. Some studies [20H22]] further
demonstrate the effectiveness of using generative models, such
as those from Generative Adversarial Networks (GANs), to
update dummy images instead of directly adjusting pixel
values.

Recent research has explored the adaptive attacks for data
reconstruction from gradients [38]]. These attacks are explicitly
designed to remain effective even when gradients are modified
by common defense mechanisms, such as noise injection,
clipping, or pruning. For example, Liu er al. [32] proposed
Mjolnir, a diffusion-based gradient leakage attack that adap-
tively denoises perturbed gradients through reverse diffusion,
posing a direct challenge to perturbation-based defenses such
as differential privacy and gradient perturbation. Similarly,

advances in multi-modal federated learning have revealed
additional privacy vulnerabilities. MGIA [39] exploits cross-
modal information leakage in multi-modal federated learning
settings, while subsequent work [40] further investigates the
impact of noise injection on privacy preservation across dif-
ferent modalities. Zhang et al. [41] provided an extensive
overview of the evolving landscape of gradient inversion
attacks and defences. These recent developments underscore
the importance of designing robust defences that can withstand
adaptive adversaries, which motivates our work on Gradient
Dropout that strategically replaces gradients with statistically
indistinguishable decoy values rather than simply adding noise
to the original gradients.

B. Defense Methodologies

1) Differential Privacy: Differential privacy (DP) is one of
the most widely adopted methods for preventing information
leakage in federated learning, offering strong theoretical guar-
antees for protecting sensitive training data. In deep learning,
DP-SGD [42] ensures privacy by injecting random noise into
gradients, effectively obscuring specific details and making
it difficult for attackers to extract meaningful information.
The noise level is controlled by a privacy budget, denoted
as €, which governs the trade-off between privacy and model
accuracy: a smaller e provides stronger privacy but introduces
more disruptive noise that degrades model performance.

To address this trade-off, Xue et al. [28] proposed an
adaptive noise mechanism that dynamically adjusts noise levels
during training. While this strategy reduces unnecessary accu-
racy degradation compared to fixed-noise approaches, it still
fundamentally relies on noise injection, which inherently limits
model performance under strong privacy guarantees. Prior
studies [16]] and our research demonstrate that in federated
learning, the substantial noise required to prevent reconstruc-
tion attacks has a significant adverse effect on model accuracy.
Also, You et al. [31] demonstrated that local differential
privacy (LDP) alone is insufficient against sophisticated recon-
struction attacks. Their work shows that training samples can
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be successfully reconstructed even from clipped and perturbed
gradients protected by LDP, as gradient compression and
sample denoising techniques can circumvent these defenses.
These findings highlight that while DP provides theoretical
privacy guarantees, achieving robust protection against recon-
struction attacks without significantly compromising model
utility remains an open challenge.

2) Multi-Party Computation: ~Multi-Party Computation
(MPC) [33, 43] is a widely used defense mechanism in
federated learning to enhance privacy and security during
model training. MPC offers a robust framework that allows
distributed participants to collaboratively compute arbitrary
functions without revealing while keeping their private gra-
dients. Generally, in standard federated learning frameworks
without defense mechanisms, local participants upload their
training parameters to a central server, which aggregates them
to compute global updates. With MPC, this computation is
securely performed without exposing private gradients. Specif-
ically, MPC preserves privacy by splitting sensitive model
updates from each participant into multiple secret shares,
which are then distributed among other participants. This
process ensures that no single participant can reconstruct the
original data from the shares they receive. Each participant
then aggregates the shares obtained from others with their own
and transmits the aggregated shares to the central server. The
server aggregates these to update the global model. At every
round of this process, the original training data and model
updates remain encrypted and inaccessible, ensuring privacy
protection.

A key advantage of Multi-Party Computation (MPC) over
methods like differential privacy is its ability to preserve model
accuracy by leveraging encryption and decryption, ensuring
that model updates remain precise and unaffected by noise.
This eliminates the performance degradation commonly as-
sociated with differential privacy. However, MPC is computa-
tionally intensive, particularly in large-scale federated settings,
where generating, transmitting, and processing secret shares
across numerous participants introduce substantial commu-
nication and computation overhead. Additionally, despite its
encryption-based security, MPC does not inherently prevent
information leakage, as attackers may still reconstruct training
data from aggregated gradients stored on the central server.

3) Gradient Perturbation and Transformation Methods:
Beyond differential privacy and encryption-based approaches,
various methods have been proposed that directly manipulate
gradients or training processes to thwart reconstruction attacks.
Sun et al. [44] proposed Soteria, which identifies fully con-
nected layers as the primary source of sensitive data repre-
sentation and selectively perturbs their input parameters while
leaving other layer gradients unchanged. Although Soteria pro-
vides theoretical guarantees for robustness and convergence,
attackers can still exploit the unperturbed gradients of other
layers to reconstruct training images. He et al. [435] leveraged
dropout layers to randomly deactivate neurons during train-
ing, thereby obscuring partial gradient information. However,
Dropout Inversion Attacks [46] demonstrated that this defence
can be circumvented by accessing or approximating dropout
masks.

More recent approaches attempt to fundamentally decou-
ple gradients from training data. Gao er al. [47] proposed
training local models using statistical information rather than
raw data, combined with knowledge distillation to transfer
knowledge to lightweight student models, ensuring that only
semantically meaningless information can be reconstructed.
Zhou et al. [48] introduced Shade, which generates alternative
shadow data using generative adversarial networks or diffusion
models to construct surrogate models that eliminate memory
of raw data. Ye et al. [49] analyzed the underlying causes
of gradient inversion vulnerabilities and proposed a plug-and-
play defense that augments training data using a designed
vicinal distribution, providing privacy protection. While these
methods offer stronger privacy guarantees, they introduce sub-
stantial computational overhead and implementation complex-
ity, limiting their practicality in resource-constrained federated
learning scenarios. In contrast, our proposed Gradient Dropout
achieves effective protection with minimal computational cost
by strategically replacing gradient subsets with statistically
indistinguishable noise, without requiring generative models,
knowledge distillation, or architectural modifications.

III. OUR PROPOSED METHOD

A. Problem Statement

In the FL system, the objective is to collaboratively train an
accurate global model M using distributed data from multiple
local participants or devices, denoted as Py, Ps, ..., P, Each
participant trains the model on their local dataset {X; | i €
[1,---,m]}, ensuring that the raw data remain on their device
throughout the training process. This decentralized approach
is designed to enhance privacy by avoiding the transfer of
sensitive data.

Although local data are never transferred directly in FL,
privacy leakage remains a significant concern due to recon-
struction attacks, in which shared gradients can be exploited to
reconstruct sensitive information from local devices. To protect
against such privacy breaches, various defense methodologies,
including encryption and differential privacy (DP), have been
developed. However, these methods have inherent trade-offs:
encryption incurs considerable communication overhead, while
DP reduces model accuracy by adding noise to safeguard
training data from reconstruction attacks.

B. Gradient dropout in Federated Learning

To prevent privacy leakage, it is essential to incorporate
randomness during the training process to obscure sensitive
information embedded within gradients. Yet, this incorporation
must not unduly compromise the overall training performance.
An effective defense algorithm should therefore achieve the
following key objectives:

1) Objective 1: Safeguard training data against reconstruc-
tion attacks by perturbing gradients in a manner that ensures
the deviation between the original and perturbed gradients
remains effectively bounded.
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2) Objective 2: Maintain model performance by ensuring
that the introduced perturbations have minimal impact on
accuracy.

To achieve these objectives, we propose a defense frame-
work called Gradient Dropout, which is designed to protect
training data from reconstruction attacks while maintaining
model performance. Specifically, after each training iteration ¢,
the local gradients Vw; are obtained by backward propagation.
Gradient Dropout randomly perturbs these local gradients by
scaling a subset with the gradients and replacing others with
random values drawn from a Gaussian distribution N (0, o).

Algorithm 1 Our Proposed Gradient Dropout
Input:
e L: Number of hidden layers in the neural network.
o Vw; = {Vw!,Vw?,...,Vwk}: Shared gradients at
round ¢, where Vw! is the gradient for layer i.
e p € (0,1]: Retention probability (i.e., the fraction of
gradient elements to be scaled).
e o2 Variance of the Gaussian noise distribution.
Qutput:
o Vi = {Vw}, V..., Vil}: Protected gradients.
1: for i <~ 1 to L do
2: Let Vw! be the gradient for layer i

3: Sample a matrix X* ~ (0, 1) with the same shape as
Vwy
4 Define the binary mask:
1, if Xi <p
skjp =< gk =
faskk {0, otherwise,
for all indices (j, k). _
5: for each index (j,k) in Vw}:
e if mask;; = 1: Set
; Vwilj, k
v, k) = VA
o else (ie, if mask;, = 0): Set
Vaylj, k] ~ N(0,07).
6: end for

7: return Vi,

Let L denote the total number of layers in the model M,
where ¢ € [1,..., L] representing the index of each layer.
Our proposed defense mechanism applies to the gradients of
each layer, Vw!. To protect these gradients, components of
the true gradient Vw! are randomly selected with probability
p, forming the set of scaling indices, denoted as [s], while the
remaining indices are categorized as noise indices, denoted as
[n]. For the scaling components Vw?|s], the original gradients
are scaled by a factor of 1/p. This preserves the gradient
direction, ensuring minimal impact on model performance,
while effectively obscuring the gradients from attackers. More-
over, as demonstrated in Eq. @]), this choice of scaling factor
ensures that the system retains gradient direction in expecta-

tion. For the remaining gradients Vw}[n], the gradient values
are replaced with random samples drawn from a Gaussian
distribution N (0, c?). Such randomization introduces noise in
both magnitude and sign, significantly increasing the difficulty
of reconstruction attacks and rendering the recovery of the
original gradients substantially more challenging.

Overall, the framework presented in Algorithm (1| provides
a robust defense against reconstruction attacks by integrating
gradient scaling with controlled noise injection. This method
effectively obscures sensitive information embedded within
gradients while preserving model performance and ensuring
convergence guarantees, as demonstrated in the theoretical
analysis that follows.

C. Gradient Dropout Preventing Gradient Leakage

We first establish that the gradient dropout strategy can
effectively prevent deep leakage with an appropriate choice
of p in the following Theorem.

Theorem 1 (Expected Gradient Leakage Bound). Suppose an
attacker attempts to reconstruct the underlying ground-truth
data (x,y) by minimizing the discrepancy between the true
gradients and the surrogate gradients:

N
1 ; »
0= ¥ Z |Vw! — Vi, 2)

where i denotes the i-th component of the model. Then, it
suffices to require

= 3)

to ensure that the expected gradient matching loss is suffi-
ciently large:
Ew,B[E] > éo.

Remark: In Algorithm [I] any third party has access to the pro-
tected gradient Viw!. Theorem |1| establishes that by selecting
a sufficiently small probability p, the gradient Vw{ computed
on the true images remains sufficiently distant from such a
public gradient V!, exceeding a threshold £y. Consequently,
since the optimization process in deep leakage is designed
to minimize the loss—often driving it toward nearly zero,
as noted in [22]—the gradient dropout algorithm inherently
prevents convergence toward the ground-truth images under
these conditions. Note that the above analysis considers the
{5 distance between gradients; analogous results for cosine
similarity are provided in Theorem 4 in the Appendix.

D. Convergence Guarantee

Many existing algorithms can prevent gradient leakage by
establishing results similar to those in the above Theorem:;
however, they often do so at the expense of reduced model
performance. For example, the widely recognized Differential
Privacy (DP) algorithm [50] achieves protection by contin-
uously adding noise to the gradients, thereby safeguarding
local image data. However, this approach may potentially
compromise the overall model performance. In this section,
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we demonstrate that the impact of gradient dropout on training
performance can be effectively controlled within a small range
by rigorously analyzing the dynamics of the training process.

To proceed, we first interpret the training step index t as
a temporal variable |'| effectively transforming the model into
a continuous-time analogue, as explored in prior studies [51-
53]]. Under this perspective, the original discrete updates can
be approximated by a continuous function:

Eldd(t)] = =V (t)dt — (1 — p)odB(t). @)

This representation corresponds to a Stochastic Differential
Equation (SDE), where the term Vw(t)dt captures the gradient
dynamics, and (1 — p)odB(t) introduces a stochastic drift
component.

In a similar manner, we can express the original dynamics
using an ordinary differential equation (ODE):

dw(t) = —Vw(t)dt. Q)

Let 6(t) = E[w(t)] — w(t) represent the weight difference at
time ¢. Our goal is to analyze the dynamics of this term:

do(t) = — (Vi(t) — V(b)) dt — (1 — p)odB(t). (6)

This expression corresponds to another SDE, incorporating
the drift term dB(t), which introduces stochastically into the
dynamics. Then we are able to bound this term in the following
Theorems.

Theorem 2 (Weight Difference Bound under General Lips-
chitz Gradients). Consider the continuous-time approximation
of the parameter updates, where the discrete updates are
modeled by the differential equations in Eqs. @) and (). Let
§(t) = E[w(t)] — w(t) denote the weight difference between
the stochastic and deterministic dynamics. Suppose that the
gradient function V f is Lipschitz continuous with constant L,
ie.,

IVi(@) =Vl < Lz -yl foralz,y.

Then the evolution of the expected squared weight difference
satisfies

d
SEF ()] < 2LEF ()] + (1 - p)o®
Moreover, using Gronwall’s inequality, we obtain the bound
(1-p)*c?
B9 (0] < T (@ ).

Remark: Under the assumption that the gradient V f is Lips-
chitz continuous, Theorem [2] shows that the expected squared
weight difference E[6?(¢)] admits an upper bound determined
by the gradient dropout variance term (1 —p)20? for any fixed
time t. This result holds for general smooth (possibly non-
convex) objectives and thus applies directly to modern deep
neural networks.

'Throughout this paper, the symbol i indexes neural network layers, while
the variable ¢ represents optimization time in the continuous-time limit.

Theorem 3 (Weight Difference Bound under Strong Convex-
ity). In addition to the assumptions of Theorem [2] suppose
that f is p-strongly convex with parameter p > 0, ie.,

(Vf(x) = VW) (@ —y) = plla—yl* forallzy.

Then the evolution of the expected squared weight difference
satisfies

SR (1) < ~2uER(0)] + (1 - p)o”
Solving this differential inequality yields
1—p)2o? _
E[6? < (1-p)7o” 1—e 21,
0] < e (1= e

Remark: If, in addition, the objective f is u-strongly convex,
Theorem 3| further guarantees that E[6%(¢)] converges to a
steady-state bound

22
tim Ef52(r)) < L2
t—o00 2,[1,
This refinement demonstrates the asymptotic stability of the
dynamics under strong convexity, but we emphasize that such
an assumption is not required for the general applicability of
our method in typical federated learning settings.

In summary, the above theorems indicate that we can always
bound the expected weight difference between the gradient
dropout and the original training dynamics. In particular,
under the strong convexity condition, the gap is bounded by
A=p)*o® i implies that the weight difference does not grow
uncontrollably, and instead, it converges to a steady-state value,
demonstrating that gradient dropout maintains stability in the
training process, even in the presence of noise introduced by
the dropout mechanism.

IV. EXPERIMENTAL STUDY

To evaluate the effectiveness of our defense against re-
construction attacks, we conduct comprehensive experiments
comparing state-of-the-art defense methods, including DP-
SGD and Soteria, against four advanced reconstruction attacks:
iDLG, IG, GIAS [20], and CI-Net [22]. In addition, to assess
robustness against adaptive attacks, we conduct experiments
under the gradient inversion attacks of Mjolnir [32] and Learn-
ing to Invert (LTI) [38]. We consider an honest-but-curious
server as the adversary, who has white-box access to the shared
gradients and the global model parameters. However, batch
normalization statistics, such as the local mean and standard
deviation, are not assumed to be available to the attacker,
as this constitutes an unrealistically strong prior in practical
federated learning settings.

Four datasets are used in our experiments, including the
CIFAR-10 (32 x 32 px) [54], FashionMNIST [55]], Ima-
geNet (256 x 256 px) [56], and NIH ChestX-ray (256 x 256
px) [57] [57] datasets. For the evaluations, we utilize a
modified ResNet-18 model in which the ReLU activation is
replaced with a Sigmoid activation by following the settings
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ResNet-18 with a batch size (BS) of 8. For the hyperparameter settings: in DP-SGD, o represents the standard deviation of the added noise; in Soteria, p denotes
the percentage of perturbation; and in our defense, p indicates the percentage of scaling gradients. The gradient of colors represents different hyperparameter
settings, where lighter colors indicate higher privacy, and darker colors indicate lower privacy levels.

in [16]]. We measure the defense effectiveness with three com-
plementary metrics: the Structural Similarity Index Measure
(SSIM) [58]], Peak Signal-to-Noise Ratio (PSNR), and Learned
Perceptual Image Patch Similarity (LPIPS) [59]. SSIM and
PSNR measure the structural and pixel-level similarity be-
tween reconstructed and original images, where higher values
indicate greater reconstruction accuracy. Conversely, LPIPS
captures perceptual dissimilarity, where lower values indicate
higher reconstruction quality. Also, we examine the impact
of the defenses on model performance to identify methods
that effectively balance privacy preservation and predictive
accuracy.

1) Peer Defense Methods: We compare our method with
two existing defenses: DP-SGD and Soteria. DP-SGD miti-
gates privacy leakage by adding Gaussian noise to the training
gradients, with noise configured to have a mean of 0 and
varying standard deviations as shown in our experiments.
Soteria perturbs intermediate representations before the fully
connected layer while leaving gradients in other layers un-

changed. This design restricts the defense’s effect to the
fully connected layer, with differences between the original
and protected gradients arising primarily from modifications
introduced in that layer.

2) Hyper-parameter setting: In the federated learning setup,
models are trained on the CIFAR-10 dataset using three
local participants unless otherwise specified, each receiving a
random data split. Training consists of 100 rounds, with one
local epoch per round, and SGD as the optimizer. The learning
rate is set to 0.1 for the first 50 rounds and reduced to 0.001
for the remaining rounds. Reconstruction attacks are performed
with a batch size of 8 for CIFAR-10 and 1 for ImageNet,
with 4,000 attack iterations. For GIAS, 800 iterations are
allocated for latent vector updates and 3,200 for generator
updates. The defense parameters are configured as follows:
DP-SGD: Implemented with a Gaussian mechanism, where
noise has a mean of zero and standard deviations ranging from
10~% to 1072, without clipping norms. Soteria: Perturbation
percentages are set to 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6,
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Fig. 3. The mean SSIM from CI-Net against the defense methods. In “Soteria
(excluding FC)”, the fully connected layer gradients are ignored in attack.

and 0.8. In our defense, we set the noise standard deviation
o = 5 x 1073, while the p values are varied as 0.96, 0.94,
0.92, 0.9, 0.8, 0.7, and 0.6.

A. Comparison with Peer Defense Methods

Figure |2 shows the trade-off between model accuracy and
privacy protection for three defenses under four reconstruction
attacks. Defenses positioned in the top-left region exhibit the
most favorable balance, achieving high model accuracy while
maintaining low SSIM scores. Our proposed defense method
is positioned near this optimal region, achieving an accuracy
of 88% compared to 89% for the baseline (without defense),
while maintaining an SSIM score below 0.2. This result
indicates that Gradient Dropout effectively prevents attackers
from reconstructing images while incurring only a minimal
accuracy reduction.

The strength of our method lies in its gradient perturbation
strategy, which combines scaling a portion of the gradients
and replacing the rest with Gaussian noise. This technique
generates diverse gradients that effectively prevent the recon-
struction of the original training data. In contrast, achieving a
similar SSIM score below 0.2 with DP-SGD requires injecting
substantial noise, which reduces model accuracy by at least
12%. This highlights the advantage of Gradient Dropout, in
achieving a superior balance between privacy protection and
model performance through precise noise calibration. While
Soteria achieves comparable accuracy to ours and can reach
SSIM < 0.2 when p > 0.4, it still allows attackers to
reconstruct images with moderate accuracy. Moreover, Soteria
only perturbs gradients in the fully connected layer, leaving
convolutional layers exposed. Consequently, attackers can ex-
ploit these unprotected gradients to successfully reconstruct
training data. In the figure, the pink marker represents the
scenario under the Soteria defense where the attacker excludes
gradients from the fully connected layer during optimization,
referred to as “Soteria (excluding FC)”. As expected, the SSIM
score in this case closely aligns with that of an unprotected
model, confirming a major limitation of Soteria: when only

the fully connected layer is perturbed, attackers can leverage
unprotected convolutional gradients to reconstruct training data
effectively.

To further evaluate the effectiveness of our method and other
defense mechanisms, we examine small batch-size scenarios,
which pose a higher risk of reconstruction than larger batch
sizes, as attackers can more easily reconstruct individual im-
ages. Following the previous experimental protocol, we reduce
the batch size to one and conduct 1,000 attack iterations using
the CI-Net attack. For each defense method, we select hyperpa-
rameter configurations from the top-left region of Figure 2] (a),
as these settings offer the best balance between data protection
and model performance.

For DP-SGD, we set 0 = 3 x 1073 and 5 x 1073, while
for Soteria, we set p = 0.8. In this experiment, we also assess
a scenario where the attacker ignores gradients from the fully
connected layer, denoted as “Soteria (excluding FC)”. For our
proposed method, we set p = 0.6 and 0 = 5 x 1073, Figurelé]
illustrates the data leakage process for the three defense
methods under the CI-Net attack, along with the corresponding
SSIM values. The results indicate that recalibrating the noise
level is critical for maintaining privacy when the batch size is
set to 1. DP-SGD fails to adequately protect training data in
this scenario, when applying small noise levels, rendering it
ineffective against reconstruction attacks. In contrast, both our
method and Soteria exhibit robust privacy protection. However,
in the “Soteria (excluding FC)” configuration, where attackers
ignore the fully connected layer gradients, the leakage process
closely resembles that of a model without defense. This
finding underscores that while prior analyses identify the fully
connected layer as a key source of data representation, other
layers retain sufficient information for attackers to reconstruct
images.

These findings highlight the importance of achieving a
balance between privacy and utility in FL. Our proposed
method provides a practical solution, offering strong privacy
protection while maintaining high model accuracy. This bal-
ance makes our approach particularly well-suited for privacy-
sensitive applications, such as healthcare and finance, where
safeguarding data confidentiality is essential.

B. Convergence and Prediction accuracy

To demonstrate that our proposed method effectively
controls weight differences without causing uncontrolled
growth—thus ensuring stable training—we compare the con-
vergence speed and model accuracy of each defense method.
In the FL setup, the dataset is randomly partitioned in an IID
manner among three participants. Training is conducted over
200 iterations, starting with an initial learning rate of 0.01,
which decays to 0.001 after 100 iterations. A batch size of 16
is used for all experiments. For DP-SGD, Gaussian noise is
applied with a mean of 0 and standard deviations of 5 x 1073
and 1072. In our proposed Gradient Dropout defense, the
probability parameter p is varied from 0.1 to 0.8, while the
noise standard deviation is set to 5 x 1073,

Figure [4|illustrates the training stability and model accuracy
of ResNet-18 on the CIFAR-10 dataset under different defense
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Fig. 4. Comparison of Gradient Dropout with other methods in terms of training stability and model accuracy using ResNet-18 on the CIFAR-10 dataset. The
figure consists of two subplots: Training Accuracy vs. Test Accuracy, showing performance trends. Training is conducted with a batch size of 16.

methods over 200 training iterations. The training and testing
loss curves indicate that all models exhibit stable convergence.
From the accuracy curves, we observe that the baseline (No
Defense) achieves the highest accuracy, converging at approx-
imately 89%, which serves as the upper bound for model
performance. In contrast, DP-SGD demonstrates a significant
decline in accuracy as the noise scale increases. With a
standard deviation of o = 5 x 1073, DP-SGD converges to
approximately 72%. However, when the noise increases to
o = 1072, accuracy drops further and stabilizes at around
60%, highlighting the performance degradation caused by
excessive noise.

Our proposed Gradient Dropout method demonstrates su-
perior performance compared to DP-SGD while preserving
privacy. Specifically, for p = 0.8, 0.7, and 0.6, testing accuracy
converges near the baseline, reaching approximately 88%. This
corresponds only a minor accuracy reduction of less than 2%
compared to the baseline, despite gradient perturbation applied.
In contrast, when the replacement probability is largely re-
duced, e.g., p = 0.1, the final accuracy decreases by approxi-
mately 3%, indicating that excessive gradient replacement can
negatively impact model performance. These results highlight
the trade-off between privacy and utility governed by p: smaller
values provide stronger privacy protection but reduce model
utility, while larger values preserve accuracy at the cost of
weaker privacy guarantees.

To further demonstrate that the proposed defense maintains
model accuracy in federated learning settings with a larger
number of participants, we evaluate the classification per-
formance of ResNet-18 on CIFAR-10 with 16 participating
clients. We additionally vary the probability parameter p from
0.6 to 0.96, with a noise standard deviation of 5 x 1073, As
shown in Figure [3] the proposed defense preserves model
accuracy across a wide range of p values and maintains
performance close to the no-defense baseline. These results
demonstrate the effectiveness of the proposed approach in
practical federated learning scenarios.

No Defense
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Testing accuracy
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Fig. 5. Comparison of Gradient Dropout with varied probability p in terms
of training stability and model accuracy using ResNet-18 on the CIFAR-10
dataset with 16 clients. Training is conducted with a batch size of 16.

Overall, these results confirm that Gradient Dropout effec-
tively balances privacy protection and model performance. Un-
like DP-SGD, which experiences substantial accuracy degra-
dation due to excessive noise injection, Gradient Dropout
successfully reduces information leakage while maintaining
accuracy close to that of the baseline.

C. Privacy Leakage on Adaptive attacker

To evaluate the robustness of our proposed method, we
further conduct the experiments with adaptive attackers, in-
cluding Mj6lnir [32] and LTI [38]]. Mj6lnir employs a gradient
diffusion model to denoise protected gradients prior to inver-
sion, whereas LTI directly learns a mapping from gradients
to training samples using auxiliary data with distributions
similar to those of local clients. Experiments are conducted
on FashionMNIST for Mj6lnir and CIFAR-10 for LTI, both
using a LeNet-5 model with batch sizes of 1 and 4 respec-
tively, following the original experimental settings [32| 38].
We compare our proposed defence (p = 0.6, noise standard
deviation 5 x 1073) against gradient noise baselines with
standard deviations of 0.008 for Mj6lnir and LTI, as specified
in the original papers. From the results in Figure [6] we can



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

DP
(Gaussian)

Ground Truth No Defense Gradient Dropout

Mjolnir

Fig. 6. Comparison of reconstructed images from differential privacy and
our proposed method against gradient inversion attacks from Mjolnir and LTI

see that both Mjolnir and LTI are able to reconstruct the
training data when no defense is applied, and can roughly
recover the objects in the images under DP-SGD defense.
However, they are unable to reconstruct the training images
when our proposed method is applied. Notably, our defense
remains effective even when Mjolnir attempts gradient denois-
ing. Unlike DP-SGD, where the cumulative noise increases
with the number of training iterations, our method dynamically
changes the gradient positions that are scaled and replaced at
each iteration. This forces the attack model to identify and
compensate for varying noise locations, which is substantially
more challenging. For LTI, the attack assumes access to an
auxiliary dataset with a distribution similar to that of the local
clients. As a result, the reconstructed images roughly reflect
the global data distribution; however, they fail to recover fine-
grained details and accurate structures, capturing only coarse
color information. These results demonstrate that the proposed
defense remains effective against adaptive attackers such as
M;jolnir and LTI

D. Privacy Leakage on High Resolution Image Dataset

To evaluate the effectiveness of our defense approach on
high-resolution image datasets, we conduct experiments on
the ImageNet and NIH chest x-ray datasets with the CI-Net
attack, comparing our method to other defense mechanisms.
The experiments are conducted with a batch size of 1, and
the number of attack iterations is set to 30,000. For DP-SGD,
we apply two noise configurations, both with a mean of 0
and standard deviations of 102 and 10~3. For Soteria, the
probability parameter is set to p = 0.8, and for our proposed
method, we set probability p = 0.8 and a noise standard
deviation of o = 5 x 1073,

The mean and standard deviation of SSIM, PSNR, and
LPIPS are calculated over 10 experimental runs, with sample
reconstructed images presented in Figure [/| The results show
that our proposed method performs comparably to DP-SGD
with a large noise scale (10~2), effectively generating diverse
gradients that prevent data leakage from high-resolution im-
ages while maintaining model performance. In contrast, DP-

SGD introduces excessive noise at larger scales, significantly
degrading model performance, which highlights the challenge
of balancing privacy and utility.

Although Soteria offers partial protection, it proves less
robust than our proposed method. Soteria perturbs gradients
only in the fully connected layer, leaving convolutional layers
unprotected. As illustrated in the Soteria (excluding FC) col-
umn, attackers can accurately reconstruct training images by
disregarding the fully connected layer gradients, underscoring
the vulnerability of Soteria when gradient perturbation is
limited to a single layer.

To evaluate model performance when applying our defense
to a high-resolution dataset, we conduct training on the NIH
dataset in a federated learning setting with three clients. The
dataset is randomly partitioned across the three clients. We
use a batch size of 16 and train the model for a total of
50 iterations. The learning rate is initialized at 2 x 1072,
reduced to 2 x 10~3 at iteration 10, and further reduced to
2 x 1079 at iteration 20. Figure [8 shows that when the noise
scale varies from 5 x 1072 to 107!, the testing accuracy
remains comparable to the no-defense baseline. In contrast,
when the noise magnitude becomes excessively large, even
with a replacement ratio of 20%, model performance degrades,
and the accuracy decreases from 0.67 to 0.61. Notably, when
p = 0.8 and the noise scale is 5 x 1073, the proposed
defense preserves classification accuracy while protecting the
training data. Overall, the results indicate that appropriate
choices of the replacement ratio p and noise scale allow
the proposed defense to preserve model performance while
limiting reconstruction effectiveness.

Overall, our proposed Gradient Dropout method effectively
mitigates reconstruction attacks on high-resolution images,
achieving a superior trade-off between privacy and accuracy
compared to both DP-SGD and Soteria.

E. Distribution Comparison of Original Gradients and Noise
Replacements

To demonstrate that the distributions of the original gra-
dients and the noise replacements are statistically similar,
we empirically analyse the gradient distributions in the first
layer before and after applying the defense. The experimental
settings follow those described in Section [[V-D. As shown in
Figure [0} the gradient distributions exhibit substantial overlap,
making it difficult in practice for an attacker to separate in-
jected noise from genuine gradient information. While formal
indistinguishability is not claimed, this observation supports
the effectiveness of the proposed defense against gradient
reconstruction attacks.

V. CONCLUSION

In this paper, we presented Gradient Dropout, a novel
defense framework designed to safeguard training data against
reconstruction attacks in FL systems. By integrating gradient
scaling with Gaussian noise, our method constructs a distinct
gradient space that effectively mitigates reconstruction attacks
while maintaining high model accuracy. A key contribution
of this work is the provision of safety guarantees, ensuring
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Fig. 7.

Sample reconstructed images from the ImageNet and NIH Chest X-ray datasets using CI-Net under various defense methods, including No Defense,

DP-SGD, Soteria, and Soteria (excluding FC), compared to the proposed Gradient Dropout. The mean and standard deviation of the Structural Similarity Index
(SSIM) are reported for each method, demonstrating their effectiveness in mitigating reconstruction attacks.

that the protected gradients remain sufficiently distinct from
the original gradients, thereby preventing data leakage. Ad-
ditionally, we establish convergence guarantees for convex
problems, enabling participants to balance privacy protection
and model performance effectively. Comprehensive experi-
ments on the CIFAR-10 and ImageNet datasets demonstrate
that Gradient Dropout achieves an excellent trade-off between
privacy and model performance. Specifically, it outperforms
existing defense mechanisms like DP-SGD and Soteria, of-
fering high levels of data protection with minimal impact on
accuracy. Moreover, our method does not require parameter
optimization during each training iteration, resulting in reduced
computational cost. These findings underscore the practical
applicability of Gradient Dropout in privacy-sensitive domains
such as healthcare and finance, where both data confidentiality
and model performance are essential. While Gradient Dropout

offers significant advantages, its effectiveness depends on
the choice of noise scale and probability parameters, which
influence the balance between privacy and utility. Future
research could explore adaptive parameter tuning strategies
to further optimize this trade-off across diverse distributed
learning scenarios. Additionally, while our current evaluation
focuses on convolutional neural networks, investigating the
effectiveness of Gradient Dropout on Transformer-based archi-
tectures represents an important direction for future research,
given the distinct characteristics of attention mechanisms.

APPENDIX
A. Proof for Theorem

Proof: Let us consider the gradient leakage case, where
the attacker use some images (Z,7) to generate Vw; and
minimize its gap with the true gradient Vuw;:
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where ¢ denotes the i-th component of the model.

Note in the ideal case where (Z,7) = (x,y), we have an
zero total loss and the attacker fully reconstructs the hidden
images.

But with gradient dropout, each component of ¢ can be
obtained by:

= {JlrTu Tl e p ©
+lloBy — Vw|?,  wp. 1—p,
where B; ~ N(0,1).
Ey[0'] = (s = D[V |* + (1 = p)lloBi = V|
1 (1-p)? 1
e R L1
1
—2(1 = p)oB; - Vws + N(l — )2V ||?,

12
Consequently,
i 1 (1 —p)2 2 1 2 2
E, pllff] = — P/ ~(1-p)o’E|B
ol6) = 5w+ L - poEl B
1
(= Ve
1
—(1— 2
> ~(1-p)o
To guarantee E,, p[l] > {p, it is sufficient to have
Lo
1——.
p< o2
| ]

B. Proof of Theorem

Proof: A fundamental tool to analyze the dynamics of
stochastic differential equations is It6’s formula [60]. Consider
a stochastic process X (t) governed by the Itd process

dX (t) = u(t) dt + o(t) dB(t),

where p(t) is the drift term, o(t) is the volatility term, and
B(t) is a Brownian motion. For a twice differentiable function
F(X(t)), Itd’s formula states

A(X(0) = s AX O+ 5 5 AX (O

Using (dB(t))? = dt, this becomes

__or
T X (1)

() dt + (1) aBO)+ 5 2L o) a
o - YY)
a 20X (1)2
We now apply this to the weight dynamics. Let §(t) =
E[w(t)] — w(t) denote the difference between the stochastic
and deterministic trajectories at time ¢. From the continuous-
time approximations in Egs. () and (5), we obtain

dé(t) = = (Vf(w(t)) — Vf(w(t))) dt — (1 —p)o dB(t).

Consider the squared norm of the weight difference 6%(t) :=
16(¢)||?. Applying 1t&’s formula to (&) = ||§]|? yields

do>(t) = 26(t)ds(t) + (d5(t)) " do(t)
= —2[E[w(t)] - w(t)]" [VF(@(t) - Vf(w(t))] dt
—2(1 - p)o [Bl@(t)] — w(t)] " dB(t) + (1 - p)%o? dt
= [~26()T (VS (@(1)) ~ VS (w(t))) + (1 = p)*o?]dt

—2(1 — p)a?s(t) TdB(t).

We have used the standard properties of Brownian motion:
dt-dt =0, dB(t)-dt=0, dB(t)-dB(t)=dt.

Taking expectations on both sides and using the fact that
the stochastic integral has zero mean, we obtain

SR (1)] = 2B [5() (VI (@(0) — VFw(®)] + (1~ pPo?.
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Now assume that V f is Lipschitz continuous with constant
L>0,ie.,

[Vf(x) =Vl <Lz -yl forall z,y.
Then we have
—28(t) T (Vf(@(t)) = V f(w(t)))
<2[6)|| [|[Vf(@(t) = Vf(w(®))||
<2L[6(1)|1* = 2L%(t),
and therefore
i]E[é‘Z(t)] <2LE[6*(t)] + (1 —p)®0”.

dt
This is a linear d1fferent1a1 inequality of the form y'(t) <

2Ly(t) + (1 — p)?0? with y(t) = E[62(t)]. By Gronwall’s
inequality, we obtain
2 (1-p)c* o
Bl < L2 (an )
This proves Theorem [ |

C. Proof of Theorem

Proof: We start from the same expression for the dynam-
ics of E[62(t)] obtained in the proof of Theorem

LB (0)] = 2B [5() (VS@(0) VT (w(t)] +(1-p)0?

Now assume that f is p-strongly convex with parameter
w>0,ie.,

(Vi) = Vi) (@ —v) > plle —y|? forallz,y.
By choosing x = w(t) and y = w(t), we have
(VA@(£) = VF(w(®) " (@) = w(t)) > plw(t) - wE)]

Recalling that §(¢) = E[w(t)] — w(t) and treating 6(t) as the
difference variable in the bound, we obtain

=28(t) " (Vf(@(t) -V f(w(t) < —2ull6@)|* =

Taking expectations yields

—2u6%(t).

%EW( )] < —2uE[5*(1)]

Let y(t) =E
y'(t) < —2uy(t) + (1 —p)’o”.

The corresponding equality ODE y'(t) = —2uy(t)+
has solution

Assuming y(0) = 0 (i.e., the two trajectories start from the
same initialization), we obtain

+ (1 —p)?o2.
[62(t)]. The inequality above has the form

(1-p)20?

y(t) < w

=T, (1=,

and thus

E[6*(t)] <
which proves Theorem [3] ]

Theorem 4 (High-Dimensional Cosine Similarity Bound under
Gradient Dropout). Let g € R? be a deterministic gradient
vector with ||glla > 0, and suppose it satisfies the regularity
conditions

ad < g3 < Bd,  lglle < G, ©9)

for some fixed constants 0 < o < [ < oo and G > 0
independent of d. Let § € R be the perturbed gradient
produced by the gradient dropout mechanism with retention
probability p € (0,1) and noise variance o* > 0, i.e., for
each coordinate j =1,...,d,

&, with probability p,
gi=437P

€,  with probability 1 —p

where e ~ N (0,0%), and all {(m;,e;)}4_, are independent.
Define the cosine similarity between g and g as

(9,9)
lgll21lgll2"

Then, for any € > 0, there exist constants ¢ > 0 and dy € N
(depending only on «, B, G, p, o, e but not on d) such that, for
all d Z do,

P(cos(g,§) > p+e) < de (10)

In particular, since p < 1, the cosine similarity between the
original and perturbed gradients is strictly bounded away from
1 with probability tending to 1 as d — oc.

cos(g,g) :=

Proof: Throughout the proof we condition on the fixed
vector g satisfying (9), and all expectations and probabilities
are with respect to the randomness in the masks and noise.

a) Step 1: Expectations of numerator and denominator.:
Define the per-coordinate random variables

X =935, Y;=q;, Jj=1....d

Then
d

d
9.9 =%, lalz=>"v;
j=1 j=1

By the definition of the mechanism,

__ fagilp
9; = {E]_/ ’
IE

with £; ~ N(0,0?) and independent of the Bernoulli mask.
Hence

with prob. p,
with prob. 1 — p,

- g
E[g; Ig]=p~;j+(1—p)-0=gj,

and
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Therefore,
d
[(9,3) | 9] = ZEX 191 => g E[g; | g] = llgl3,
j=1
41
Ell313 | 9] = me > (0 + (1 -p)0?)

j=1
= ];Ilgllz +d(1 - p)o”

Define the empirical averages and their expectations:

o1 . lgll3
: 32 o mi=EXa| gl = T5F,
d
1 > 1gll3 2
==Yy =E[Yy| gl = —"22 + (1 - p)o?.
d; Gy M2 [Ys | 9] b d +(1-p)o

By (9), we have

B 2
-+ 1—pa]
, T

b) Step 2: Sub-exponential tails and concentration.:
Using the boundedness of ¢ in {,,, we can bound the tails
of X; and Y;. Specifically:

e X, =g;g; equals gjz/p with prob. p and g;e; with prob.
(1 —p). Since |g;| < G, the Gaussian part g;¢; is sub-
Gaussian, and thus X; is sub-exponential with a ;-
norm bounded by a constant K x < oo depending only

JOS [Oé,ﬁ], M2 € [% + (1 _p)UQa

on G,p,o.
e Yj = g; equals (g;/p)* with prob. p and &3 with prob.
(1- pg. Gaussian squares are sub-exponential, so Y;

is also sub-exponential with ;-norm bounded by a
constant Ky < oo depending only on G, p, o

By Bernstein’s inequality for sub-exponential random vari-
ables, there exist absolute constants c1, ca > 0 (depending only
on Kx, Ky) such that, for all ¢ > 0,

P(le — | =t ’ g) < 2exp ( —cidmin (/K% t/Kx))7
P<|Yd — pg| >t ’ g) < 2exp ( — codmin (*/ K7y, t/Ky)).
Fix § > 0 small (to be specified later). For sufficiently large

d, the quadratic term dominates, and there exists ¢ > 0 such
that

P(|Xd — il =0 ‘ g) < 27,

P(|Yd —p2| >0 ‘ g) < 2e~d
Define the high-probability event

&= {\Xd — | <dand |Yy — po| < 5}-

By union bound,

P(E5 | g) < de . (11)

c) Step 3: Bounding the cosine on the event £;.: On &g,

we have

(9.9) = dXq < d(un +96), 3|3 = dYa > d(uz — 9).

Therefore,
(9,9) d(p1 +9)
cos(g,9) = <
lgll2llgllz ~ llgll2n/d(p2 — 6)
p+0
~ (lglla/va) iz =
Using @), [lg]l2/v/d > /& and 1 < B, hence
B+4
cos(g, §) < on &;. (12)
Vaim =
From the bounds on uo, we have
«
Mo 2y =t (1—p)o®.

Choose § > 0 small enough such that ps — 9§ > H2/2 > 0.

Then
\/MZ*(;Z \/H2/27

and implies
B+4

— 20— 5, on &, (13)
va/u,/2

cos(g,g) <

The constant C5 depends only on «, 3, p, o, 4.
Next, consider the function

S

u > 0.

P(u) = ,

For any u > 0,

SO Sup,~¢(u) < /p. Moreover, for u € [a,f], ¢(u)
is continuous and thus attains a maximum on that compact

interval. Denote

By the definitions of pq and po, ¢(uy1) corresponds to the
“ideal” (no-fluctuation) cosine constructed from the expecta-
tions pq and po. As § — 0, Cs in converges to a constant
no larger than ¢* < ,/p. Hence, for any fixed € > 0, we can
choose § > 0 sufficiently small such that

9
Cég\/ﬁ+§.
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d) Step 4: High-probability bound and conclusion.: With

this choice of 9, and for d large enough so that holds, we
obtain

P(cos(g,g) <\p+e ‘ g) >P&ilg)>1— 4e~c?,

Equivalently,

P(cos(g,9) = Vb +2|g) < de7,

for all d > dy, where dy is large enough (depending on
o, 8,G, p,o,¢). This proves and completes the proof. M
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