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a b s t r a c t 

Cross-modal retrieval aims at retrieving relevant points across different modalities, such as retrieving 

images via texts. One key challenge of cross-modal retrieval is narrowing the heterogeneous gap across 

diverse modalities. To overcome this challenge, we propose a novel method termed as Cross-modal dis- 

criminant Adversarial Network (CAN). Taking bi-modal data as a showcase, CAN consists of two parallel 

modality-specific generators, two modality-specific discriminators, and a Cross-modal Discriminant Mech- 

anism (CDM). To be specific, the generators project diverse modalities into a latent cross-modal discrimi- 

nant space. Meanwhile, the discriminators compete against the generators to alleviate the heterogeneous 

discrepancy in this space, i.e. , the generators try to generate unified features to confuse the discrimi- 

nators, and the discriminators aim to classify the generated results. To further remove the redundancy 

and preserve the discrimination, we propose CDM to project the generated results into a single common 

space, accompanying with a novel eigenvalue-based loss. Thanks to the eigenvalue-based loss, CDM could 

push as much discriminative power as possible into all latent directions. To demonstrate the effectiveness 

of our CAN, comprehensive experiments are conducted on four multimedia datasets comparing with 15 

state-of-the-art approaches. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In numerous real-world applications, it is highly expected to re- 

rieve the “similar” samples across various modalities for a given 

uery because an object is usually described by multiple modal- 

ties, e.g. , text, video, image, and voice [1–3] . The key of such a

o-called cross-modal retrieval problem is narrowing the hetero- 

eneous gap/discrepancy which is caused by the fact of different 

odalities might lie in completely distinct spaces [4] . 

During past decades, many cross-modal approaches have been 

roposed to alleviate the heterogeneous discrepancy, which aim at 

rojecting diverse modalities into a single unified space via shal- 

ow [5–7] or deep models [8–10] . In brief, the pioneer methods at- 

empt to project multimedia data into a latent single unified space 

sing shallow modality-specific transformations, which could be 

urther categorized into unsupervised [11,12] and supervised meth- 

ds [13–16] . The unsupervised models eliminate the heterogeneous 

iscrepancy by maximizing the correlations between cross-modal 
∗ Corresponding author. 

E-mail address: pengdz@scu.edu.cn (D. Peng). 

c

a

g

ttps://doi.org/10.1016/j.patcog.2020.107734 

031-3203/© 2020 Elsevier Ltd. All rights reserved. 
airwise samples [17] . Alternatively, the supervised methods em- 

loy the semantic information to boost the performance by pre- 

erving the discrimination into the common space [4,18] . Although 

he traditional shallow approaches have achieved promising per- 

ormance, most of them are linear approaches and may be un- 

ble to capture the high-level semantics of real-world multimodal 

ata that are highly nonlinear. To alleviate the issue, some ker- 

el extensions [17] were proposed. However, it is still a daunt- 

ng task to choose an appropriate kernel function as pointed out 

n [19] . 

To adaptively capture the nonlinearity of data, several recent 

orks proposed using Deep Neural Network (DNN) for cross-modal 

nalysis [8,20] . Among these works, [21–23] adopt some vari- 

nts of Generative Adversarial Network (GAN) [24,25] to eliminate 

he modality discrepancy, which shows promising performance in 

ractice. Although GAN-based methods have achieved promising 

erformance, the redundant information may be preserved in the 

enerated representations due to adversarial learning. To be spe- 

ific, the GAN-based methods consist of discriminators and gener- 

tors as shown in 1 (a). The discriminators try to distinguish the 

enerated representations from the real ones. Meanwhile, the gen- 
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Fig. 1. A visual comparison between existing GAN-based cross-modal learning models including Adversarial Cross-Modal Retrieval (ACMR) [26] and ours. (a) The learning 

paradigm of most existing GAN-based methods. (b) Our CAN. In the figures, G 1 and G 2 represent the image and text generators, and D represents the discriminators. The 

major difference between the common paradigm Fig. 1 (a) and ours Fig. 1 (b) is that our generator does not learn a common space. Instead, it learns a discriminant space 

which could facilitate the cross-modal retrieval performance. In our method, W 

1 and W 

2 denote the modality-specific linear discriminant transformations, which are utilized 

to refine the discrimination from the generated features ( i.e. the discriminant space). (c) Our observation on the relationship between the redundancy of the representation 

and the retrieval performance. To be exact, we use the covariance to measure the redundancy following [27] , and show the average Mean Average Precision (MAP) achieved by 

ACMR on the Wikipedia database w.r.t. the corresponding covariance. One could see that the MAP of ACMR first increases with increasing covariance and then continuously 

decreases. In other words, ACMR needs a sufficiently high dimensional representation to contain the latent information. After that, a high dimensional representation will 

incorporate the redundancy and weaken the weight of discrimination, thus decreasing the MAP. More details on this experiment could refer to 4.5 . 

Fig. 2. The framework of our CAN, taking bimodal data ( i.e. , image and text) as a showcase. CAN consists of three parts: two modality-specific generators ( G 1 and G 2 ), two 

modality-specific discriminators ( D 1 and D 2 ), and a cross-modal discriminant mechanism (CDM). In the figure, R 1 and R 2 are the feedback for D 1 and D 2 , which are computed 

on the common space by our CDM and reflect the performance of CDM for cross-modal retrieval. c denotes the number of classes. The generators and discriminators compete 

with each other to eliminate the cross-modal discrepancy, while preserving the discrimination in the generated features. To further remove the redundancy and refine the 

discrimination, our CDM projects the generated features into a common space through W 

1 and W 

2 . Note that W 

1 and W 

2 could be solved analytically from the outputs of 

the generators through Eq. (10) . 
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marized as follows: 
rators try to generate the samples to confuse the discriminators. 

n such a way, the generators indirectly alleviate the heterogeneous 

iscrepancy with the help of the discriminators, instead of explic- 

tly capturing the distribution by the generators themselves only. 

herefore, some redundant information will be remained during 

he adversarial process, which may decrease the performance of 

ross-modal retrieval as shown in 1 (c). 

Based on the aforementioned observations, we propose a 

ross-modal discriminant Adversarial Network (CAN) which aims 

o eliminate the redundancy during adversarial learning. The 

roposed CAN consists of three modules, namely, two parallel 

odality-specific generators and discriminators accompanying a 

ovel Cross-modal Discriminant Mechanism (CDM) (see 2 ). As 

hown in 1 , the major differences of our method with existing ones 

re given in the following two aspects. On one hand, most existing 
2 
aradigms directly generate the common representations, whereas 

ur CAN employs CDM to project the generated features ( i.e. , the 

iscriminant space) into a latent common space via W 

1 , 2 . Thanks 

o our CDM, the redundancy could be alleviated and the discrimi- 

ation is refined from the generated features. In other words, the 

ross-modal discrepancy could be eliminated while incorporating 

he discrimination, thus improving the retrieval performance. On 

he other hand, our discriminators not only distinguish real/fake 

amples but also simultaneously perform classification on the real 

amples using the available label information as shown in 1 . In 

onsequence, the generators can encapsulate the label-induced dis- 

riminative information into the common space to improve re- 

rieval performance. The main contributions of this work are sum- 
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• CAN is proposed to learn a latent discriminant space for mul- 

timedia data, which is with a novel network structure and a 

novel learning mechanism (CDM). In brief, CDM projects the 

generated features of all modalities into a latent common space 

and gives the positive/negative feedback to adversarial learning. 

Therefore, our method could reduce the modality discrepancy, 

while preserving the discriminative information into the com- 

mon space. 
• To improve our CDM, a novel objective function is presented 

to learn a latent unified space wherein the within-class points 

could be compacted and the between-class points could be 

scattered. Furthermore, the transformations of the CDM can be 

analytically solved from the generated features, thus escaping 

from the trap of local minimal. 
• To avoid the trivial solutions of directly optimizing the CDM 

objective function, a novel logarithmic eigenvalue-based loss is 

proposed. Another advantage of the proposed loss is that it 

could push as much discrimination as possible into all latent 

directions of CDM’s transformations instead of only the domi- 

nant ones. 

. Related work 

To bridge the heterogeneous gap, numerous cross-modal learn- 

ng approaches are proposed in recent years. In this section, we 

ill briefly review some shallow and deep cross-modal represen- 

ation learning methods. 

.1. Traditional cross-modal approaches 

Most traditional methods [12,28] usually learn modality-specific 

ransformation matrices to project each modality into a latent sin- 

le unified space wherein the correlation of different modalities is 

aximized. To utilize the semantic labels for cross-modal repre- 

entation learning, [4,29,30] were proposed to learn a latent sin- 

le unified space with Fisher’s criterion. To further utilize avail- 

ble label information, [29] proposed Generalized Multiview Anal- 

sis (GMA) that simultaneously utilizes the label-induced discrimi- 

ative information and the pairwise-modality relationship to learn 

he common space. Moreover, [15] proposed Generalized Semi- 

upervised Structured Subspace Learning (GSS-SL) which models 

he correlations between different modalities by taking the label 

pace as a linkage. To better capture the nonlinearity of data, sev- 

ral kernel-based approaches have been proposed to nonlinearly 

odel the cross-modal correlation, e.g. , Kernel Canonical Correla- 

ion Analysis [17,31] . However, it is a daunting task to determine 

he kernel function since there is no golden criterion to choose the 

ernel function [19,32] . Moreover, the kernel methods are shallow 

odels which might be with the limited capacity of modeling non- 

inearity. 

.2. Deep cross-modal approaches 

During past years, DNN has been widely utilized to model 

he correlation between different modalities [21,33] . On one hand, 

ome unsupervised pioneers attempt to progressively learn some 

odality-specific nonlinear transformations to project the corre- 

ponding modalities into a latent unified space, while maximiz- 

ng the correlation between these modality-specific representa- 

ions in the learned space [34,35] . On the other hand, some ap- 

roaches propose to learn the common discriminant representa- 

ions by jointly modeling the intra- and inter-modality correla- 

ions [20,21] . In [8] , a Multi-view Deep Network (MvDN) approach 

s proposed to learn one discriminative single unified space by 

dopting the Fisher’s criterion into a feedforward DNN. 
D

3 
Recently, inspired by the great success achieved by the Gener- 

tive Adversarial Nets (GAN) [24] in capturing data distribution, 

ome GAN-based works propose to seek an effective representa- 

ions by using adversarial learning [22,36,37] . In [36] , Duan et al. 

reatively utilize numerous easy negatives to generate potential 

ard negatives as complements with adversarial learning to learn 

he representations. Moreover, Wang et al. proposed an Adversarial 

ross-Modal Retrieval (ACMR) approach to learn one single unified 

pace by utilizing adversarial learning, which incorporates a fea- 

ure extractor, a modality classifier, and a triplet constraint [26] . In 

21] , a GAN-based approach, termed Cross-modal Generative Ad- 

ersarial Networks (CM-GANs), is proposed to correlate the multi- 

edia data across distinct modalities. In [22] , a generative cross- 

odal feature learning framework is proposed, called GXN, which 

pplies generative-adversarial processes into the cross-modal rep- 

esentation learning. As mentioned above, some redundant infor- 

ation may be preserved in the learned common space during 

heir adversarial learning process. 

. Cross-modal discriminant GAN 

The overall pipline of our approach is shown in 2 . For the 

iscriminative model, the modality-specific discriminators aim to 

iscriminate the real and fake points. For the generative model, 

he modality-specific generators attempt to generate the modality- 

nvariant and discriminative representations to confuse our dis- 

riminator. The discriminators and generators compete with each 

ther so that the multimodal data is projected into a latent linear 

iscriminant space. Such a process could preserve as much dis- 

rimination as possible, while narrowing the heterogeneous gap 

f multi-modal data. Moreover, to remove redundancy, our CDM 

rojects these generated representations into a latent common 

pace. 

.1. Overview of the framework 

For ease of presentation, we first give some definitions as 

elow. We denote k -th labeled modality as X 

k = { (x k 
i j 
, � i ) | i =

 , 2 , · · · , c; j = 1 , 2 , · · · , N 

k 
i 
; k = 1 , · · · , m } , where x k 

i j 
denotes the j-

h point from the k -th modality of the i -th category, c is the 

umber of categories, N 

k 
i 

is the number of points from the k -th 

odality of the i -th category, and m = 2 denotes the total num- 

er of modalities. � i is a one hot vector with the length of c + 1 ,

here the i -th entry is with the value of 1 (see 2 for an exam-

le). Note that, each of the first c entires represent the category 

f the corresponding individual, and the (c + 1) -th entry indicates 

he fake/real label with the value of 1/0. The extra class entry of 

he one-hot vector is valid that corresponds to fake label, denoted 

s � f . Namely, 

 f = [ 0 , · · · , 0 ︸ ︷︷ ︸ 
c 

, 

Extra class 
↓ 

1 

] . (1) 

As shown in 2 , the proposed CAN consists of two generators 

nd two discriminators. The generators aim to extract modality- 

nvariant discriminative features with help of the discriminators. 

he generator and discriminator from the k -th view are respec- 

ively represented as nonlinear functions G k (·;�k 
G 
) and D k (·;�k 

D 
) , 

here �k 
G 

and �k 
D 

are their parameters. Mathematically, our ob- 

ective function is formulated as below: 

rg min ( L G + L D + λL W 

) , 
 1 , · · · , G m 

 1 , · · · , D m 

(2) 
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here L G , L D and L W 

denote the losses of generators, discrim- 

nators, and cross-modal discriminant analysis, respectively. More 

pecifically, the generators G 1 and G 2 aim at mapping the samples 

rom the corresponding modalities into the cross-modal discrim- 

nant representations via y k 
i j 

= G k (x k 
i j 
) . The generated representa- 

ions are expected to linearly map into a latent common space 

ith modality invariance and discrimination via z k 
i j 

= ( W 

k ) T y k 
i j 
, 

here W 

k is the k -th modality-specific transformation. Further- 

ore, the generators are pitted against the corresponding discrim- 

nators. Taking the bi-modal data as a showcase, the generators G 1 

nd G 2 play the following roles: 1) enforcing the generated rep- 

esentation to be separable and modality-invariant, 2) fooling the 

iscriminators D 1 and D 2 , and 3) making the common representa- 

ion discriminative. In the following section, we will elaborate our 

ethod. 

.2. Cross-modal discriminant mechanism 

The generator G k aims to transform an input sample x k 
i j 

into a 

atent linear discriminant space as follows: 

 

k 
i j = G k (x 

k 
i j ) . (3) 

To eliminate the redundancy and further utilize the discrimina- 

ion, the generated representation y k 
i j 

is projected into one latent 

ingle unified space via z k 
i j 

= ( W 

k ) T y k 
i j 

by achieving within-class 

ompactness and between-class scatter. To the end, the within- 

lass compactness matrix is defined as 

ˆ 
 W 

= 

c ∑ 

i =1 

m ∑ 

k =1 

N k 
i ∑ 

j=1 

(
z k i j − μi 

)(
z k i j − μi 

)T 

= W 

T S W 

W , (4) 

 W 

is defined as below: 
 

 

( S W 

) 11 · · · ( S W 

) 1 v 
. . . 

. . . 
. . . 

( S W 

) v 1 · · · ( S W 

) vv 

⎤ 

⎦ , (5) 

here the (k, l) -th sub-matrix is in the form of 

 

S W 

) kl = 

c ∑ 

i =1 

( 

(k == l) 

N k 
i ∑ 

j=1 

y k i j (y l i j ) 
T − 1 

N i 

s k i (s l i ) 
T 

) 

, (6) 

nd k == l is a Boolean equation whose value is 1 if k = l and 0

therwise. s k 
i 

= 

∑ N k 
i 

j=1 
y k 

i j 
is the sum of all generated representations 

f the i -th category for the k -th modality. 

Like the within-class matrix, the between-class scatter matrix 

ould be formulated as follows: 

ˆ 
 B = 

c ∑ 

i =1 

N i ( μi − μ) ( μi − μ) 
T 

= W 

T S B W , 

(7) 

here μi = 

1 
N i 

∑ m 

k =1 

∑ N k 
i 

j=1 
z k 

i j 
is the mean of all obtained uni- 

ed features of the i -th class from all modalities, N 

k 
i 

is the 

oint number of the i -th category in the k -th modality, μ = 

1 
N 

∑ m 

k =1 

∑ c 
i =1 

∑ N k 
i 

j=1 
z k 

i j 
is the mean of all obtained unified features 

n all modalities, N i = 

∑ m 

k =1 N 

k 
i 

is the total point number of the i -th

lass in the mini-batch, and W 

T = 

[
(W 

1 ) T · · · (W 

m ) T 
]T 

is a com- 

ined matrix, which consists of all the modality-specific transfor- 

ations. 

Similarly, S B is a partitioned matrix with 

 

S B ) kl = 

c ∑ 

i =1 

1 

N i 

s k i (s l i ) 
T + 

1 

N 

s k i (s l i ) 
T , (8) 
4 
here N is the number of points in the mini-batch. 

With the above defined S W 

and S B , we have 

 

∗ = arg max 
W 

Tr 

(
W 

T S B W 

W 

T S W 

W 

)

= arg max 
W 

| W 

T S B W | 
| W 

T S W 

W | , (9) 

here Tr (·) and | · | are the trace and determinant operators, re- 

pectively. Eq. (9) could be equivalently reformulated as the gener- 

lized eigenvalue decomposition (GED) problem: 

 B w i = λi S W 

w i , (10) 

here λi and w i (i = 1 , 2 , · · · , m ) are the i -th largest eigenvalue

nd the corresponding eigenvector of the generalized eigenvalue 

ecomposition problem, respectively. w i is i -th column vector of 

he matrix W , and m � c − 1 is the objective reduction dimension. 

ote that, the upper bound of m is c − 1 since there are at most

 − 1 nonzero generalized eigenvalues [38] . Therefore, the common 

epresentation of a given sample x k 
i j 

can be obtained by 

 

k 
i j = (W 

k ) T G k (x 

k 
i j ) . (11) 

As the common space ( Eq. (11) ) cannot compute the gradient to 

ptimize the neural network, we use the common representations 

o produce the positive/negative feedback and give it back to train 

he networks. To obtain the feedback, we perform cross-modal 

atching among the computed common representations. Specifi- 

ally, the class centers of the k -th modality are used to predict the 

ross-modal matching probability for the l-th ( k � = l) modality. The 

robability of matching z l 
i j 

to the k -th modality is defined as 

p(z l i j | r; k ) = 

e −‖ z l 
i j 
−μk 

r ‖ 2 2 ∑ c 
r=1 e 

−‖ z l 
i j 
−μk 

r ‖ 2 2 

, (12) 

here μk 
i 

= 

∑ N k 
i 

j=1 
z k 

i j 
is the average vector of the common repre- 

entations of the i -th category from the k -th modality. 

With p(z l 
i j 
| r; k ) , we could compute the matched set via Ǔ 

kl =
 

x l 
i j 
| p(z l 

i j 
| i ; k ) � σ

} 

, where 1 
c < σ < 1 is a positive threshold and 

e empirically fix σ = 0 . 9 . Similarly, the mismatched set can be 

btained by ˆ U 

kl = 

{ 

x l 
i j 
| p(z l 

i j 
| i ; k ) < σ

} 

. Obviously, Ǔ 

kl and 

ˆ U 

kl sat- 

sfy Ǔ 

kl 
⋃ 

ˆ U 

kl = X 

l . This matching information could give the gen- 

rators and discriminators feedback to push more discrimination 

nto the common space, i.e. , R 1 and R 2 . More details about the 

eedback mechanism will be given in the following sections. 

.3. Modality-specific generators 

For a given data point x k of the k -th modality, our method 

ims to enforce that the generated representations are as similar 

s possible across different modalities, and meantime the discrimi- 

ators could classify the corresponding representation into the cor- 

ect category. 

To be specific, in the latent common space, the k -th modality is 

atched with another modality to produce the matched samples 
ˇ
 

kl (l � = k ) and the mismatched samples ˆ U 

kl (l � = k ) , where Ǔ 

kl and
ˆ 
 

kl are the sets of the matched and mismatched points in the l-th 

odality for the k -th modality respectively. Clearly, X 

l = Ǔ 

kl ∪ 

ˆ U 

kl . 

ote that, the discriminators not only performs classification on 

he generated representations, but also judges the representations 

atched or mismatched. Formally, the loss function of the genera- 

ors could be formulated as 

 G = 

m ∑ 

k =1 

c ∑ 

i =1 

∑ 

x k 
i j 
∈ V k 

H 

(
D k 

(
G k (x 

k 
i j ) 

)
, � i ) 

)
(13) 
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here V 

k = 

m ⋃ 

l � = k 
ˆ U 

kl denotes the fake samples containing all mis- 

atched samples from the other modalities, and H(·, ·) is a cross- 

ntropy loss used in the softmax layer. 

.4. Modality-specific discriminators 

The goals of the discriminator are twofold. On one hand, it will 

istinguish the real samples from fake ones. The real samples in- 

lude all samples generated by the corresponding generator, and 

he matched samples from the other modality-specific generators. 

n contrast, the false samples are the mismatched samples gener- 

ted by the other modality-specific generators. On the other hand, 

ur discriminators attempt to distinguish generated features from 

he real points into corrected categories. 

Specifically, the discriminator D k attempts to regard both the 

amples from its own modality X 

k and the matched samples 

rom other modalities Ǔ 

kl (l � = k ) as real individuals and categorize 

hem as their real classes. Moreover, it also distinguishes the mis- 

atched samples ˆ U 

kl from other modalities as fake � f , where Ǔ 

kl 

nd 

ˆ U 

kl (l � = k ) are the sets of matched and mismatched samples

rom the l-th modality for the k -th one, respectively. In summary, 

e can formulate the loss function for our discriminators as 

 D = 

m ∑ 

k =1 

c ∑ 

i =1 

N k 
i ∑ 

j=1 

H 

(
D k 

(
G k (x 

k 
i j 
) 
)
, � (x 

k 
i j 
) 
)
, 

.t. � (x 

k 
i j 
) = 

{
� i i f x 

k 
i j 

∈ V 

k , 

� f otherwise. 

(14) 

here V 

k = 

m ⋃ 

l � = k 
Ǔ 

kl 
⋃ 

X 

k is the real set containing the k -th modal- 

ty and the corresponding matched samples from other modali- 

ies. The positive/negative (matched/mismatched) feedback is used 

o bridge discriminators and the common space by cross-modal 

atching. 

.5. Logarithmic eigenvalue-based constraint 

To further push more discriminative information into the la- 

ent common space, the cross-modal discriminant analysis is in- 

roduced into the adversarial learning process, which can enhance 

he performance of our CDM. The loss of the cross-modal discrim- 

nant analysis is defined as 

 W 

= − ln (J W 

) (15) 

here ln (·) is the natural logarithm operator and J W 

= | ̂ S −1 
B 

ˆ S W 

| is 

 criterion function in Eq. (9) . However, directly optimizing this 

quation or Eq. (9) will produce some problems as pointed out 

n [39,40] . To better discuss these problems, we rewrite Eq. (15) as 

n eigenvalue-based formulation through the following theorem. 

heorem 1. Let λi (0 < λ1 < · · · < λc−1 ) and w i are respectively the 

 -th largest positive eigenvalue and the corresponding eigenvector of 

he GED problem Eq. (10) , then ln (J W 

) is equivalent to: 

c−1 
 

i =1 

ln (λi ) . (16) 

roof. Firstly, the Eq. (9) can be rewritten as: 

 W 

= | ̂ S −1 
B 

ˆ S W 

| = 

∣∣W 

−1 S −1 
W 

S B W 

∣∣ = 

∣∣S −1 
W 

S B 
∣∣ (17) 

bviously, λi | c−1 
i =1 

are also the eigenvalues of S −1 
W 

S B . Then, the 

n (J W 

) is equivalent to: 

n ( 
c−1 ∏ 

i 

λi ) . (18) 
5 
herefore, ln (J W 

) can be rewritten as 

c−1 
 

i =1 

ln (λi ) , (19) 

�

Based on Theorem 1 , the loss of the cross-modal discriminant 

nalysis can be formulated as: 

 W 

= − 1 

c − 1 

c−1 ∑ 

i =1 

ln (λi ) . (20) 

owever, it would result in trivial solutions if we directly op- 

imize the above problem, e.g. , the optimizer will overempha- 

ize the largest eigenvalues that will produce higher rewards in 

ack-propagation than the minor ones. Specifically, the overem- 

hasis problem make the optimizer focus on mainly maximizing 

he large between-class distance between apart points for classifi- 

ation, leading big overlap among neighboring categories [39–42] . 

ntuitively, to tackle this issue, we should weaken the weight of 

ominant eigenvalues in the optimization process, and maximize 

he minor ones’. To achieve this goal, we maximize the n lowest 

igenvalues and filter the dominant ones to optimize the genera- 

ors. Thus, the amount of each eigenvector direction ( i.e. , the value 

f the corresponding eigenvalue) could be maximized during the 

enerator optimization. The corresponding loss function is formu- 

ated as follows: 

L W 

= −1 

n 

n ∑ 

i =1 

ln (λi ) , 

s.t. n = � q (c − 1) 	 , 
(21) 

here � x 	 is a mathematic operator to round each decimal value 

f x to equal its nearest integer, and q (0 < q < 1) is a positive

alance parameter to obtain the n lowest eigenvalues. From the 

ormulation, one could see that the bottom of eigenvalues will 

e maximized without overemphasizing dominant ones during the 

etwork optimization process. Therefore, the generators could en- 

apsulate discriminative variances among the c − 1 representation 

irections ( i.e. , eigenvectors) to the common space as much as pos- 

ible, avoiding the overemphasis problem. That is to say, the opti- 

izer pushes as much discrimination as possible into the unified 

pace. Furthermore, Eq. (21) could be optimized with an end-to- 

nd manner. 

From the above, all losses of CAN have been formulated in 

q. (2) . The generators and discriminators are optimized in an ad- 

ersarial learning manner, which could ensure the generated rep- 

esentations are modality-invariant and the discriminative infor- 

ation is preserved in the latent common space. Compared with 

ther adversarial learning approaches, the supervised labels for op- 

imizing our generators and discriminators are different as shown 

n 1 , which are adopted to optimize the generators and discrim- 

nators in an alternative manner. The optimization process of our 

AN is summarized in 1 . 

. Experimental study 

To comprehensively evaluate the effectiveness of our CAN, some 

xperiments are conducted on four widely-used databases, namely 

ikipedia [43] , Pascal Sentence [44] , NUS-WIDE-10K [45] and 

MediaNet [46] datasets. 

.1. Datasets 

Here we briefly introduce four multimedia databases utilized in 

ur experiments, including Wikipedia, Pascal Sentence, NUS-WIDE- 

0K, and XMediaNet databases. We split each dataset as 3 sub- 

ets, namely training, validation, and test sets. The statistics of four 
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Algorithm 1 Optimization procedure of CAN. 

Input: The training data X 

k | m 

k =1 
, the dimensionality of the gener- 

ated representations d, batch size N b , positive balance parame- 

ters λ and q , positive integer N s , and learning rate α. 

1: while not converge do 

2: Calculate the modality-specific linear transformations 

{ W 

i } m 

i =1 
by Eqs. ( 3 −10 ) on the training set. 

3: Compute the mean of the common representations of the i - 

th class for each modality by μk 
i 

= 

∑ N k 
i 

j=1 
z k 

i j 
. 

4: for N s steps do 

5: Randomly select N b samples for each modality from 

{X 

i } m 

k =1 
to construct the corresponding modality-specific 

minibatch. 

6: Cross-modal matching is conducted on all modality- 

specific minibatches to obtain the matched and mis- 

matched sets by Eq. (12). 

7: Update the parameters of the discriminators by minimiz- 

ing L D in Eq. (14) with descending their stochastic gradi- 

ent: 

�k 
D 

= �k 
D 

− α ∂L D 
∂�k 

D 

(k = 1 , · · · , m ) 

8: Update the parameters of the generators by minimizing 

L G + λL W 

in Eq. (13) and Eq. (21) with descending their 

stochastic gradient: 

�k 
G 

= �k 
G 

− α
(

∂L G 
∂�k 

G 

+ λ∂L W 

∂�k 
G 

)
(k = 1 , · · · , m ) 

9: end for 

10: end while 

Output: Optimized CAN model. 

Table 1 

General statistics of the four adopted datasets in our experiments, where “∗/ ∗/ ∗”

in the “Instances” column denotes the sample number of training/validation/test 

subsets, c is the number of categories, D img and D txt denote the dimensionality 

of image and text modalities, respectively. 

Dataset Instances c D img D txt 

Wikipedia 2,173/231/462 10 4,096D 2 , 891 × 300 D 

Pascal Sentence 800/100/100 20 4,096D 102 × 300 D 

NUS-WIDE-10K 8,000/1,000/1,000 10 4,096D 60 × 300 D 

XMediaNet 32,000/4,000/4,000 200 4,096D 849 × 300 D 

d

g

4

e

c

d

e  

a

l

4

e

t

c

o

t  

p

p

r

4

[

N

i

a  

a

4

fi

3

e

p

o

t

p

4

c

d

V

g

3

W

s

n

t

t

r

c

t

v

b

l

3

c

S

3

M

b

t

t

C

o

t

u

c

λ
d

a

c

a

N

r

G

t

4

(

atabases are summarized in 1 . The details of these datasets are 

iven as follows. 

.1.1. Wikipedia dataset [43] 

Wikipedia is a widely-used benchmark dataset to evaluate the 

ffectiveness of multimodal approaches for cross-modal retrieval. It 

ontains 2866 image-text pairs. Each pair ( i.e. , an image and a text 

ocument) is classified into a label from 10 semantic categories, 

.g. , art, history, etc. We split the dataset into 3 subsets: 2,173, 231

nd 462 pairs for training, validation and test sets, respectively, fol- 

owing [47] . 

.1.2. Pascal sentence dataset [44] 

This dataset contains 10 0 0 image-text pairs. Each image is gen- 

rated by the 2008 PASCAL development kit, and its corresponding 

ext is generated by annotating Amazon Mechanical Turk. Each text 

ontains 5 independent sentences from diverse annotators. More- 

ver, each pair is classified into 20 classes. For a fair comparison, 

his dataset is also divided to 3 subsets following [47] , i.e. , 800

airs (40 samples per class), 100 pairs (5 samples per class), 100 

airs (5 samples per class) in the training, validation, and test sets, 

espectively. 
6 
.1.3. NUS-WIDE-10K dataset [45,47] 

This dataset is a subset sampled from the NUS-WIDE dataset 

47] , which is evenly selected from the 10 largest classes of 

US-WIDE, e.g. , animal, cloud, etc. NUS-WIDE-10K contains 10,0 0 0 

mage-text pairs. Like the aforementioned datasets, this dataset is 

lso divided to 3 subsets following [47] : 8,0 0 0 pairs, 10 0 0 pairs,

nd 10 0 0 pairs for training, validation, and test sets, respectively. 

.1.4. XMediaNet dataset [46,48] 

XMediaNet is a large-scale multimodal dataset that contains 

ve different multimedia types, i.e. , image, text, video, audio, and 

D model. In the experiments, only image and text are utilized to 

valuate the effectiveness of tested methods, i.e. , 40,0 0 0 image-text 

airs. Each pair of the dataset is classified into 200 categories, e.g. , 

wl, elephant, etc. Like other datasets, XMediaNet is also split to 

raining, validation and test sets which respectively contain 32,0 0 0 

airs, 40 0 0 pairs and 40 0 0 pairs following [21,46] . 

.2. Experiment setting 

For a fair comparison, all tested approaches utilize the same 

ross-modal features in our experiments. Specifically, 4,096- 

imensional image features are extracted by fc7 layer of 19-layer 

GGNet [49] , which is a pretrained PyTorch model on the Ima- 

eNet dataset. The words of text documents are represented as 

00-dimensional feature vectors that are extracted by a pretrained 

ord2Vec model [50] on Google News. Then each text is repre- 

ented by an 300 × s feature matrix, where s the maximal word 

umber of all texts in the dataset, and zero-padding is utilized for 

he short texts. For our method, sentence CNN is used to handle 

he text feature matrices, but other compared methods cannot di- 

ectly deal with the matrix inputs. Thus, each text feature matrix 

ould be reshaped as a 300 s -dimensional feature vector to feed 

o the other methods. However, the dimensionality of text feature 

ectors is too high to be handled for Wikipedia and XMediaNet 

y other approaches on our devices, since the datasets have much 

ong text documents, e.g. , 869,100 for Wikipedia. Following [15] , 

00-dimensional mean vectors of the 300 × s feature matrices are 

omputed to represent the texts. For the other datasets ( i.e. , Pascal 

entence and NUS-WIDE-10K), each text could be represented as a 

00 s -dimensional feature vector for the compared methods. 

For the shallow compared methods ( i.e. , CCA, MCCA, PLS, GMA, 

vDA, and MvDA-VC), the objective dimensionality is determined 

y the best accuracy of the corresponding methods on the valida- 

ion set traversing [1 : 250] for all dataset, and the other parame- 

ers use the default ones provided by the authors. For the proposed 

AN, the sentence CNN architecture is with the same configuration 

f [51] . Moreover, the dimensionality of the generated representa- 

ions is 32 for all datasets except for the XMediaNet dataset which 

ses 200. The ReLU activation function is used on all layers ex- 

ept for the final one that uses a linear activation function. q and 

are respectively set as 0.8 and 1 in all the experiments on all 

atasets. Learning rate α is set as 0.0 0 02 in all the experiments on 

ll datasets. Finally, the mean average precision (MAP) scores (cal- 

ulating on all returned results) of the cross-modal retrieval tasks 

re utilized to evaluate the effectiveness of the tested approaches. 

ote that the results of MCSM, CMDN, CCL, CBT and CM-GANs are 

eported by the authors with 4,096-dimensional fine-tuned VG- 

Net features and 300-dimensional pretrained sentence CNN fea- 

ures in the same datasets. 

.3. Evaluation metric 

We adopt cross-modal retrieval on four benchmark datastets 

 i.e. , Wikipedia, Pascal Sentence, NUS-WIDE-10K and XMediaNet) 
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Table 2 

Performance comparison of cross-modal retrieval in 

terms of MAP scores on Wikipedia. 

Method Img2Txt Txt2Img Average 

CCA [28] 0.141 0.139 0.140 

MCCA [11] 0.224 0.233 0.229 

PLS [12] 0.303 0.225 0.264 

GMA [29] 0.201 0.154 0.177 

MvDA [30] 0.315 0.281 0.298 

MvDA-VC [4] 0.374 0.345 0.359 

GSS-SL [15] 0.504 0.461 0.483 

DCCA [34] 0.361 0.326 0.343 

DCCAE [35] 0.372 0.335 0.354 

GXN [22] 0.318 0.280 0.299 

ACMR [26] 0.493 0.462 0.478 

MCSM [46] 0.516 0.458 0.487 

CMDN [52] 0.487 0.427 0.457 

CCL [20] 0.504 0.457 0.481 

CM-GANs [21] 0.521 0.466 0.494 

CAN 0.540 0.474 0.507 
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Table 3 

Performance comparison of cross-modal retrieval in 

terms of MAP scores on Pascal Sentence. 

Method Img2Txt Txt2Img Average 

CCA [28] 0.170 0.165 0.168 

MCCA [11] 0.571 0.574 0.573 

PLS [12] 0.459 0.384 0.421 

GMA [29] 0.544 0.565 0.554 

MvDA [30] 0.583 0.591 0.587 

MvDA-VC [4] 0.568 0.582 0.575 

GSS-SL [15] 0.624 0.623 0.623 

DCCA [34] 0.520 0.504 0.512 

DCCAE [35] 0.527 0.534 0.531 

GXN [22] 0.550 0.542 0.546 

ACMR [26] 0.606 0.567 0.587 

MCSM [46] 0.598 0.598 0.598 

CMDN [52] 0.544 0.526 0.535 

CCL [20] 0.576 0.561 0.569 

CM-GANs [21] 0.603 0.604 0.604 

CAN 0.697 0.691 0.694 

Table 4 

Performance comparison of cross-modal retrieval in 

terms of MAP scores on NUS-WIDE-10K. 

Method Img2Txt Txt2Img Average 

CCA [28] 0.114 0.114 0.114 

MCCA [11] 0.114 0.114 0.114 

PLS [12] 0.346 0.273 0.309 

GMA [29] 0.284 0.110 0.197 

MvDA [30] 0.499 0.506 0.503 

MvDA-VC [4] 0.445 0.465 0.455 

GSS-SL [15] 0.542 0.557 0.550 

DCCA [34] 0.435 0.441 0.438 

DCCAE [35] 0.435 0.449 0.442 

GXN [22] 0.280 0.310 0.295 

ACMR [26] 0.531 0.536 0.533 

CCL [20] 0.506 0.535 0.521 

CMDN [52] 0.492 0.515 0.504 

CAN 0.562 0.573 0.568 

Table 5 

Performance comparison of cross-modal retrieval in 

terms of MAP scores on XMediaNet. 

Method Img2Txt Txt2Img Average 

CCA [28] 0.343 0.351 0.347 

MCCA [11] 0.361 0.374 0.368 

PLS [12] 0.100 0.062 0.081 

GMA [29] 0.454 0.479 0.466 

MvDA [30] 0.502 0.491 0.496 

MvDA-VC [4] 0.467 0.431 0.449 

GSS-SL [15] 0.505 0.493 0.499 

DCCA [34] 0.289 0.311 0.300 

DCCAE [35] 0.290 0.310 0.300 

GXN [22] 0.120 0.129 0.125 

ACMR [26] 0.479 0.519 0.528 

MCSM [46] 0.540 0.550 0.545 

CMDN [52] 0.485 0.516 0.501 

CCL [20] 0.537 0.528 0.533 

CM-GANs [21] 0.567 0.551 0.559 

CAN 0.670 0.661 0.665 
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o evaluate the performance of all tested approaches. There are two 

inds of retrieval tasks: 

• Image query text (Img2Txt): retrieving relevant text samples in 

the test set ranked by calculated image-text similarity, using an 

image query. 
• Text query image (Txt2Img): retrieving relevant image samples 

in the test set ranked by computed image-text similarity, using 

a text query. 

The cosine similarity metric is utilized to compute the simi- 

arity scores across different modalities. A widely-used evaluation 

etric, i.e. , Mean Average Precision (MAP) score, is adopted to in- 

estigate the performance of all tested approaches on the datasets. 

AP is the mean value of Average Precision (AP) of all queries. The 

efinition of AP for the i -th query is 

P i = 

1 

R (n ) 

n ∑ 

k =1 

R (k ) 

k 
× P (k ) (22) 

here n is the number of retrieving points, and R (k ) counts the 

umber of the related points in the top k returned results. P (k ) is

 Boolean function that equals 1 if the returned sample of the rank 

 is a related point, and zero otherwise. In the experiments, the 

AP scores of all experiments are calculated on the all returned 

esults following [26] . Besides MAP, some precision-recall curves 

re plotted to visually evaluate the performance of the proposed 

ethod and its counterparts. 

.4. Comparisons with 15 state-of-the-art approaches on the datasets 

In this section, we evaluate our CAN with some related meth- 

ds, including CCA [28] , MCCA [11] , PLS [12] , GMA [29] , MvDA [30] ,

vDA-VC [4] , GSS-SL [15] , DCCA [34] , DCCAE [35] , MCSM [46] ,

MDN [52] , CCL [20] , GXN [22] , CM-GANs [21] and ACMR [26] .

ll experimental results are presented on our CAN as well as all 

he tested methods, on the following four datasets, i.e. Wikipedia, 

ascal Sentence, NUS-WIDE-10K and XMediaNet datasets. The MAP 

cores of the retrieval tasks (Img2Txt and Txt2Img) and their aver- 

ge scores on the four datasets are shown in 2 , 3 , 4 and 5 , respec-

ively. From the experimental results, one could see that our CAN 

chieves the best performance comparing with its 15 counterparts 

n the tested datasets. Among all the tested methods, we could 

ee that the GAN-based cross-modal approaches (GXN, CM-GANs 

nd ACMR) achieve promising results on the four datasets owing to 

he power of the adversarial learning. However, they can not com- 

letely outperform all traditional methods on all datasets. The rea- 

on may be their generated representations have some redundancy 
7 
or cross-modal retrieval. With our proposed cross-modal discrim- 

nant mechanism, the generated representations are projected into 

 single unified space to further reduce the modality discrep- 

ncy and preserve more discriminative information for cross-modal 

etrieval. Therefore, our CAN outperforms all tested cross-modal 

ethods. Although some traditional methods ( e.g. , GSS-SL) can 

chieve satisfactory performance on small datasets ( i.e. Wikipedia, 

ascal Sentence and NUS-WIDE-10K datasets), they are not so good 

t handling the big dataset ( i.e. XMediaNet dataset) comparing 

ith the supervised deep methods. In conclusion, our CAN out- 
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Fig. 3. Precision-recall and precision-scope curves for Img2Txt and Txt2Img on 

Wikipedia. 
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Fig. 4. Precision-recall and precision-scope curves for Img2Txt and Txt2Img on Pas- 

cal Sentence. 
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erforms all the tested approaches on both small and big datasets, 

hich indicates that our CAN is a good cross-modal learning ap- 

roach for cross-modal retrieval. More detail analysis is given as 

ollows. 

.4.1. Wikipedia dataset 

The experimental results of performance comparison are shown 

n 2 , which is in terms of MAP scores for cross-modal retrieval. 

rom this table, we could see that our CAN achieves the best re- 

rieval results comparing with 15 compared approaches. As can 

e seen, our CAN has improved the best competitor, CM-GANs, by 

.63% on average. CM-GANs also learn discriminative common rep- 

esentations by utilizing GAN to eliminate the modality discrep- 

ncy. Thus, this performance improvement clearly shows the ad- 

antage of applying CDM with GAN to extract more discrimina- 

ion. On one hand, GSS-SL achieves the best cross-modal retrieval 

AP score among the compared traditional approaches, which is 

loser to one DNN-based method MCSM. On the other hand, the 

 DNN-based approaches achieve greatly different retrieval MAP 

esults, while several of them are outperformed by some tradi- 

ional methods, e.g. , the average MAP scores of DCCA, DCCAE, GXN, 

MDN and ACMR are lower than GSS-SL, and the average MAP 

cores of DCCA, DCCAE and GXN are also lower than traditional 

ethod MvDA-VC. In detail, the proposed method outperforms 

SS-SL by 4.97%, MCSM by 4.11%, CM-GANs by 2.63% and ACMR 

y 6.07%, indicating that the proposed approach is a good mul- 

imodal learning method for cross-modal retrieval. In addition to 

valuating the performance of the tested approaches from MAP 

cores, some precision-recall and precision-scope curves are plot- 

ed for visual comparison as shown in 3 . The evaluated results of 

he precision-recall and precision-scope curves are consistent with 

he MAP results of cross-modal retrieval, where our CAN achieves 

he best performance comparing with its counterparts. 

.4.2. Pascal sentence dataset 

To evaluate the performance of our CAN, we also conduct ex- 

eriments on another widely-used dataset, i.e. , Pascal Sentence. 

irst, the retrieval MAP scores of all tested methods are shown 

n 3 . From the experimental results, we could see that our pro- 

osed CAN outperforms all the other 15 compared state-of-the-art 
8 
ethods. As we can see, our CAN has improved the best com- 

etitor, GSS-SL, by 11.40% on average. While GSS-SL also learns a 

iscriminative common subspace using the label information, our 

erformance improvement clearly shows the advantage of applying 

iscriminative adversarial learning for cross-modal retrieval. More- 

ver, the traditional method GSS-SL outperforms all the other com- 

ared DNN methods since the Pascal Sentence is too small (only 

00 pairs in training set) to boost the performance of these DNN 

ethods, which is to say that our proposed DNN framework can 

chieve better performance on small training data. To show more 

isualized results, we draw the cross-modal precision-recall and 

recision-scope curves in 4 . From these figures, we could see that 

he visualized results are consistent with the retrieval MAP results, 

here our CAN outperforms all counterparts. 

.4.3. NUS-WIDE-10K dataset 

The cross-modal retrieval results in terms of MAP scores are 

hown in 4 . From the table, one could see that our CAN outper- 

orms its 11 state-of-the-art counterparts on the NUS-WIDE-10K 

ataset. As shown in 4 , our CAN has improved GSS-SL from 0.550 

o 0.568 in terms of the average MAP score on the NUS-WIDE- 

0K dataset. It should be noted that GSS-SL achieves the best re- 

rieval results comparing other compared methods. That is to say, 

ur method can remarkedly improve cross-modal retrieval per- 

ormance. In detail, the proposed method outperforms GSS-SL by 

.27%, CCL by 9.02%, CMDA by 12.70% and ACMR by 6.57% on av- 

rage, indicating that the proposed approach is a good multimodal 

pproach for cross-modal retrieval. For additional comparison, the 

recision-recall and precision-scope curves are plotted in 5 . The 

xperimental results are consistent with the retrieval MAP results 

n 4 , where our CAN achieves the best performance. 

.4.4. XMediaNet dataset 

We also evaluate our CAN on the XMediaNet dataset for cross 

odal retrieval. The retrieval MAP results are shown in 5 . From 

he experimental results, one could see that the proposed method 

chieves the best retrieval MAP scores comparing with its 15 coun- 

erparts. From the results, we could see that our CAN has improved 

he best competitor, CM-GANs, by 18.96% on average. Although 

ome traditional methods ( e.g. , GSS-SL) outperform some DNN- 

ased approaches, DNN-based ones still maintain great advantages 
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Fig. 5. Precision-recall and precision-scope curves for Img2Txt and Txt2Img on 

NUS-WIDE-10K. 

Fig. 6. Precision-recall and precision-scope curves for Img2Txt and Txt2Img on 

XMediaNet. 
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Table 6 

Performance comparison of cross-modal retrieval in terms of MAP scores and co- 

variance with GAN-based methods. 

Dataset Method Covariance Img2Txt Txt2Img Average 

Wikipedia GXN [22] 480.862 0.318 0.280 0.299 

ACMR [26] 17.236 0.493 0.462 0.478 

CAN 1.541 0.540 0.474 0.507 

Pascal 

Sentence 

GXN [22] 313.247 0.550 0.542 0.546 

ACMR [26] 108.415 0.606 0.567 0.587 

CAN 3.161 0.697 0.691 0.694 

NUS-WIDE GXN [22] 713.829 0.280 0.310 0.295 

ACMR [26] 15.457 0.531 0.536 0.533 

CAN 1.047 0.562 0.573 0.568 

XMediaNet GXN [22] 794.343 0.120 0.129 0.125 

ACMR [26] 23.654 0.479 0.519 0.528 

CAN 6.705 0.670 0.661 0.665 
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n handling the dataset. Specifically, except for DCCA and DCCAE, 

he other DNN methods all outperform the traditional approaches, 

hich show the advantage of DNN to handling large-scale data. In 

etail, the proposed method outperforms GSS-SL by 33.27%, MCSM 

y 22.02%, CM-GANs by 18.96% and ACMR by 25.95% on average, 

ndicating that our method is a good cross-modal learning method 

or cross-modal retrieval on the XMediaNet dataset. As the pre- 

ious experiments, the precision-recall and precision-scope curves 

re plotted to investigate the effectiveness of different approaches 

or cross-modal retrieval on the XMediaNet dataset as shown in 6 . 

rom the visualized results, one could see that our CAN also out- 

erforms all the compared approaches, which is consisted with the 

etrieval MAP results. 
9 
.5. Redundancy analysis for GAN-based methods 

In the section, we discuss the influence of the redundancy on 

he performance of cross-modal retrieval for GAN-based meth- 

ds. We utilize the absolute magnitude of the covariance to mea- 

ure the degree of redundancy among different dimensions follow- 

ng [27] . The experimental results are shown in 6 . From the ta-

le, one could see that our method can efficiently remove the re- 

undant information from the generated features (the discriminant 

atent space) and improve retrieval performance. Note that, both 

he reconstruction process and the adversarial learning will lead 

o redundancy to GXN [22] . Although ACMR [26] try to extract dis- 

rimination, the redundant information is still preserved and thus 

ecreases the performance. By reducing the redundancy from the 

enerated features, our CAN achieves the best performance. 

.6. Parameter analysis 

In the section, the impact of the parameter λ is investigated 

or our CAN in terms of the average MAP scores of cross-modal 

etrieval on the Pascal Sentence and Wikipedia datasets. In our ex- 

eriments, the validation sets of these datasets are used to tune 

he hyper parameters. 7 shows the average retrieval MAP scores 

s . different value of λ. From the experimental results, one could 

ee that the average retrieval MAP scores of our CAN are impacted 

ust marginally (by about 1% ) when λ is within a scale of about 

our orders of magnitude (1 to 10,0 0 0). This verifies that the per- 

ormance of our CAN is insensitive to λ in a wide range. Further- 

ore, one could see that the average MAP scores are much higher 

han other results at λ = 0 . 0 0 01 , which indicates that L W 

is an im-

ortant term to improve the performance of our CAN. By default, 

e set λ = 1 in our experiments. 

Furthermore, we also investigate the influence of the threshold 

to the performance of cross-view retrieval in terms of the av- 

rage MAP scores on the validation set of Pascal Sentence. 8 illus- 

rates the average retrieval MAP scores versus different value of σ . 

rom the figure, one could see that the average MAP scores achieve 

table results from σ = 0 . 5 to σ = 0 . 9 . That is to say, the average

etrieval MAP scores of our CAN are insensitive to σ in a suitable 

ange ( e.g. , [0 . 5 , 0 . 9] ). 

.7. Convergence analysis 

We also investigate the convergence of the proposed approach 

n Wikipedia and Pascal Sentence datasets. Fig. 9 (a) plots the losses 

f generators and discriminators versus average MAP for cross- 

odal retrieval with the number of epochs increasing on the 

ikipedia dataset. Similarly, Fig. 9 (b) shows the losses versus the 

verage MAP on the Pascal Sentence dataset. From 9 , we see 

hat the proposed method converges in 200 ∼ 400 epochs and the 
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Fig. 7. Parameter analysis. Average MAP scores versus different values of λ for the cross-modal retrieval on the validation set of Wikipedia and Pascal Sentence, respectively. 

Fig. 8. Parameter analysis. Average MAP scores versus different values of σ for the 

cross-modal retrieval on the validation set of the Pascal Sentence dataset. 
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hanging rates are much faster before the 200-th epoch than later 

pochs in these figures. Moreover, the proposed method achieves 

atisfactory cross-modal MAP scores before the 200-th epoch on 
Fig. 9. Losses versus average MAP on 

10 
he validations of Pascal Sentence and Wikipedia as shown in 

ig. 9 (a) and Fig. 9 (b). Therefore, we set the maximum epoch as 

00 in all experiments to reduce the training time. 

.8. Ablation study 

In this section, we investigate the contribution of each compo- 

ent for cross-modal retrieval. We define the following three alter- 

ative baselines to study the influence of different components: 

• CAN-1 is one variant of our CAN without L W 

, which is used to 

investigate the effectiveness of the proposed L W 

to improve the 

performance of our CDM. 
• CAN-2 trains the model using only L W 

, which is adopted to 

investigate the effectiveness of GAN for cross-modal retrieval. 
• CAN-3 trains the model using the ratio trace in Eq. (9) , which 

is adopted to investigate the effectiveness of the proposed log- 

arithmic eigenvalue-based constraint. 
• CAN-4 is one variant of our CAN to directly learn a shared com- 

mon space without the proposed CDM, which is used to inves- 

tigate the effectiveness of our CDM. 

The optimization procedure and network architectures of these 

ariations are as same as our CAN. 7 shows the performance of 

AN and its four variations on the Wikipedia and Pascal Sentences 

atasets. We can see that both the discriminant GAN and cross- 

odal discriminant analysis contribute to the final retrieval scores, 

ndicating that simultaneously optimizing the L G and L W 

in the 

roposed model performs better than optimizing only one of them. 
Wikipedia and Pascal Sentence. 
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Fig. 10. Individual eigenvalues versus average MAP. The figure shows the evolution of individual eigenvalues and average MAP on the training set of the Wikipedia and Pascal 

Sentence datasets during the training stage. 

Fig. 11. The visualization for the test data on the Wikipedia dataset by using the t-SNE method [53] . In this figure, the different shape of markers represents its corresponding 

view, and the different colors denote their corresponding classes, respectively. 
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Table 7 

Performance comparison of cross-modal retrieval in terms of MAP 

scores utilizing each component on the validations of Wikipedia 

and Pascal Sentence. 

Dataset Method Img2Txt Txt2Img Average 

Wikipedia CAN-1 0.467 0.467 0.448 

CAN-2 0.532 0.463 0.497 

CAN-3 0.476 0.438 0.457 

CAN-4 0.411 0.374 0.392 

CAN 0.540 0.474 0.507 

Pascal 

Sentences 

CAN-1 0.649 0.666 0.658 

CAN-2 0.687 0.699 0.693 

CAN-3 0.579 0.631 0.605 

CAN-4 0.452 0.458 0.455 

CAN 0.697 0.691 0.694 

Table 8 

Inference time comparison on the test set 

of Pascal Sentence. 

Method Average Inference Time 

GXN [22] 1.337s 

ACMR [26] 0.008s 

CAN 0.065s 
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rom the experimental results, the eigenvalue-based discriminant 

erm L W 

obtains better performance than the discriminant GAN, 

ince L W 

aims to directly push discriminative information into the 

ommon space and the GAN achieves this goal with an indirect 

ay ( i.e. , an adversarial manner). Moreover, the performance of 

AN-3 is worse than our CAN, which indicates that overempha- 

izing problem produces poor discrimination in the learned repre- 

entations. Since CAN-4 achieves the worst performance compared 

ith the other variations and our CAN, we can draw the conclu- 

ion that the proposed CDM can effectively extract more discrimi- 

ative information from the generated rough features (the discrim- 

nant latent space) and improve the performance of the discrimi- 

ant GAN. 

To illustrate the relationship between eigenvalues and perfor- 

ance for cross-modal retrieval, we draw the curves about individ- 

al eigenvalues versus average MAP in 10 . From the experimental 

esults, we can see that the average MAP of cross-modal retrieval 

rstly increases as the eigenvalues become larger and larger. How- 

ver, CAN-3 then overemphasizes the largest eigenvalues and pro- 

uces worse performance, when the eigenvalues exceed a certain 

alue. Conversely, the proposed logarithmic eigenvalue-based loss 

an avoid overemphasizing the dominant eigenvalues and ignor- 

ng the discriminative variances in the minor eigenvalues, so our 

AN can achieve promising performance as shown in 10 , which is 

onsistent with the evaluations in 7 . Therefore, our CAN can push 

s much discrimination as possible to the common space without 

veremphasizing the dominant eigenvalues. 

.9. Inference time comparison 

To investigate the speed of the method in the real-world appli- 

ation scenario, we have conducted some comparison experiments 

ith prior GAN-based methods ( i.e. , ACMR [26] and GXN [22] ) on

he Pascal Sentence dataset. We run the trained model of each 

ethod to compute the inference time for 100 times on the test 

et of Pascal Sentence on 1 NVIDIA GeForce RTX 2080TI, respec- 

ively. The average inference time of each method is reported in 

 . From the experimental results, we can see that our CAN costs 

 bit more time ( i.e. , 0.057s) than ACMR and much less time ( i.e. ,

.272s) than GXN, indicating that our method can achieve better 

erformance with comparable efficiency. Therefore, our CAN can 

chieve sufficient efficiency in application scenario. 
12 
.10. Visualization of the learned representation 

To visually investigate the discrimination of common represen- 

ations learned by different cross-modal methods, we adopt the 

-SNE approach [53] to embed the samples from the Wikipedia 

ataset into a two-dimensional space as shown in 11 . From this 

gure, we could see that the learned representations of these 

ross-modal methods from different modalities can overlap with 

ach other indicating that they can project diverse modalities into 

ne latent unified space, expect GXN. GXN is an unsupervised 

ethod that ignores the discriminative information in the cross- 

odal samples. Therefore, the discrimination in the multimodal 

ata is important for cross-modal retrieval. From 11 , we could see 

hat these methods attempt to project diverse modalities into one 

nified space and separate the samples of different classes from 

ach other. Obviously, our CAN can make the different classes more 

cattered and the same ones more compact. That is to say, the 

roposed CAN can obtain more discriminative information from 

he cross-modal data, which is consistent with the retrieval MAP 

cores of Img2Txt and Txt2Img. 

. Conclusion 

In this paper, we propose CAN to eliminate the modality dis- 

repancy for cross-modal retrieval and alleviate the redundancy of 

dversarial learning. The advantages of our CAN are three-fold: 1) 

he generated features are modality-invariant, 2) the common rep- 

esentations are cross-modal matching consistent, and 3) the dis- 

riminative information could be preserved while alleviating the 

edundancy. On the other words, our CAN can project the cross- 

odal data into a latent common space in which the discrim- 

nation can be preserved as much as possible with eliminating 

he cross-modal discrepancy. With these advantages, our method 

an own the advantage of the adversarial learning with allevi- 

ting its redundancy, and thus improve the performance of the 

ross-modal retrieval. Extensive experimental results show that our 

ethod achieves superiority over recently proposed methods on 

our widely-used datasets. Some extensive analysis of our CAN 

emonstrates the effectiveness of the proposed components. Re- 

ently, machine learning is creatively utilized to address many 

roblems in healthcare ( e.g. , pulmonary disease [54–56] and brain 

ctivity [57] ), and more and more researchers are attracted to the 

ommunity. In the future, we will explore how to adopt cross- 

odal learning in healthcare. Moreover, our CAN is a supervised 

ethod, which needs all the training data to be labeled. However, 

t is time- and cost-prohibitive to obtain well-labeled data, which 

ill be more serious for multiple modalities. Therefore, as future 

ork, we plan to investigate how to apply our CAN in a semi- 

upervised setting under which only a few samples are labeled. 
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