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Abstract—Domain generalization methods traditionally rely on
multiple source domains to achieve robust performance across
unseen target domains. However, single-domain generalization
(SDG) presents a more practical paradigm by learning from
a single source domain, addressing scenarios where access to
multiple domains is limited. While existing SDG approaches pri-
marily focus on data augmentation and style transfer techniques
to enhance model robustness, these methods often incur sub-
stantial computational overhead and may inadequately capture
the complexity of real-world domain shifts. In this paper, we
propose Path Flatness-aware Optimization (PFO), an optimiza-
tion framework that addresses the fundamental challenges of
SDG. Unlike conventional approaches that rely on synthetic data
generation, PFO identifies and exploits regions of flat minima
within the optimization landscape of deep neural networks.
The framework employs an iterative optimization strategy to
construct a path through the parameter space along which an
ensemble of candidate models achieves minimal empirical risk.
The initialization of this optimization path is achieved through
the strategic interconnection of model instances, each originating
from carefully selected anchor points that are computationally
determined through systematic analysis of classification decision
manifolds. This optimization path serves as a mechanism for im-
plicit distribution alignment between source and target domains
within the loss landscape, consequently enhancing the model’s
capacity for cross-domain generalization. Empirical evaluation
on multiple benchmark datasets demonstrates significant perfor-
mance improvements in cross-domain generalization, validating
the efficacy of our approach.

Index Terms—Single domain generalization, domain general-
ization, path flatness-aware optimization, deep model optimiza-
tion.

I. INTRODUCTION

ACHINE learning systems face a fundamental chal-

lenge when deployed in real-world environments: the
inherent discrepancy between training and testing data distri-
butions, commonly known as domain shift. While conventional
machine learning frameworks operate under the assumption
of Independent and Identically Distributed (IID) data across
training and testing sets [1], [2], this assumption frequently
proves inadequate in practical applications. The performance
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degradation resulting from domain shift has emerged as a crit-
ical concern in contemporary machine learning research [3]-
[5]. Domain Generalization (DG) has emerged as a promising
framework for addressing this challenge, focusing on training
models that maintain robust performance across both source
and unseen target domains [6], [7]. Current state-of-the-art
approaches in DG predominantly employ feature disentan-
glement techniques, which aim to isolate domain-invariant
features while minimizing the impact of domain-specific char-
acteristics [3]. While these methods have demonstrated consid-
erable success [8], their reliance on multiple source domains
presents a significant limitation for real-world applications
where such diverse training data may be unavailable.

In this paper, we address the more challenging yet practi-
cal paradigm of Single-Domain Generalization (SDG), where
models must generalize to unseen target domains using train-
ing data from only a single source domain [10]. SDG presents
two fundamental challenges: 1) the limited availability of
training samples for learning the underlying data distribution,
and 2) the absence of knowledge about the relationships
across multiple domains, hindering the training of a reliable
predictive model. Current SDG approaches primarily focus on
enhancing model generalization by diversifying source domain
data [11]. This is achieved through various data perturbation
techniques during training, including the addition of Gaussian
noise or the generation of new data via operations like shearing
and rotation. These techniques boost the model’s robustness
to disturbances and its adaptability to new domains, thereby
improving generalization in real-world scenarios. These meth-
ods emphasize data-centric solutions, specifically enlarging
the source domain dataset by creating more varied data. This
expansion broadens the source domain’s range but depends
heavily on the quality of the generated data [6]. The data
must be semantically coherent and recognizable, yet diverse
enough in domain characteristics, such as stylistic variations,
to be effective [12]. The challenge escalates with increasing
image size and complexity of data composition. Moreover,
generating synthetic data samples requires significant compu-
tational efforts for both model training and data generation.
As the dataset complexity grows, so does the computational
demand, posing a significant hurdle for practical implemen-
tations. However, the high computational cost of generating
synthetic data limits their practicality.This has motivated an-
other category of SDG strategies, which focuses on optimizing
deep neural networks by explicitly identifying broader and
flatter optimal solutions within the loss landscape to enhance
model generalization performance. For example, traditional
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Fig. 1: Comparison of our proposed method and the approach of Weight Averaging (WA) [9]. (a) Weight Averaging seeks
to improve model generalization by averaging multiple models’ weights along the optimization trajectory. The average of
local minimum weights around the global minimum is expected to approximate the global minimum. (b) Weight Averaging
may inadvertently result in a sub-optimal outcome under certain conditions. For example, such a situation can arise when the
models being averaged have significantly different learned representations, leading to a divergence that challenges the viability
of straightforward weight averaging between two local minima. (c) Our PFO strategy employs the concept of model connectivity
to improve generalization by optimizing the entire path of model states. Our method ensures consistent high performance not
just at individual points along the trajectory but throughout the entire learning process.

model averaging approaches, represented by Stochastic Weight
Averaging (SWA), improve generalization capability by av-
eraging model weights along the optimization trajectory, as
illustrated in Figure 1(a). As observed from the figure, this
approach averages multiple points along the stochastic gradient
descent (SGD) trajectory, achieving flatter minima compared
to conventional SGD. However, as depicted in Figure 1(b),
the SWA approach may inadvertently converge to suboptimal
solutions when averaging substantially different local minima,
thus impairing the generalization potential of the model.

To address this limitation, we propose a Path Flatness-aware
Optimization (PFO) approach. Unlike existing methods, PFO
explicitly constructs a continuous path connecting multiple an-
chor models within the weight space and ensures the stability
of the entire optimization trajectory via optimization tech-
niques. Consequently, the resulting model ensemble resides
within a consistently flat region. By identifying and stabilizing
such flat minima regions, our proposed strategy significantly
enhances the cross-domain generalization ability of models,
thereby facilitating a more robust alignment between source
and target domain distributions. Our PFO method comprises
two primary components: the preservation of flatness along
the learning trajectory and the application of constraints on
decision boundaries to generate diverse anchor models. These
elements substantially improve the model’s ability to general-
ize across various unseen domains. Specifically, PFO refines
the decision boundary formulation and employs angle-space
optimization to widen the decision boundaries, facilitating
the generation of models with distinct and diverse bound-
aries. This optimization modulates the cosine of the decision
boundary angle, leading to structurally coherent models with
enhanced diversity. Further fine-tuning the decision bound-
ary shift enhances the model’s task-specific performance,
increasing the diversity of models derived from varied initial
conditions. A connection path is then established between
these models to form an ensemble model. In our method, rather
than optimizing individual models, we directly optimize the

entire path, creating a flat landscape section to ensure robust
generalization of the final model. Comprehensive experiments
on four public benchmarks demonstrate the superiority of our
method over various competing methods, with particularly
notable improvements in complex scenarios.

The novelty and key contributions of this work are summa-
rized as follows:

1) We propose Path Flatness-aware Optimization (PFO),
a novel framework for single-domain generalization that
enhances cross-domain robustness by explicitly optimiz-
ing flat regions in the loss landscape, without relying on
data augmentation techniques.

2) We introduce a trajectory-aware optimization strat-
egy that constructs smooth parametric curves between
anchor models in the weight space. This design ensures
low-loss connectivity along the entire path, leading to
improved generalization beyond isolated model check-
points.

3) We develop a dual-anchor diversification mechanism
that integrates angular space optimization with bias
translation, enabling the construction of diverse yet
structurally coherent decision boundaries. This enhances
the model’s adaptability to complex domain shifts.

4) Extensive experiments on multiple public benchmarks
demonstrate that PFO achieves state-of-the-art perfor-
mance under challenging single-domain generalization
settings. Notably, it yields average accuracy gains over
prior methods on CIFAR-100-C, PACS and OfficeHome,
highlighting its robustness across diverse and complex
scenarios.

II. RELATED WORK
A. Domain Generalization and Single Domain Generalization

Domain Generalization (DG) tackles the problem of do-
main shift by training models on multiple source domains
to generalize effectively to unseen target domains. Existing
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DG methods are typically categorized into five paradigms:
alignment, regularization, data augmentation, meta-learning,
and feature disentanglement [13]-[15].

In contrast, Single Domain Generalization (SDG) presents
a more challenging scenario, where models must generalize
from only a single source domain. The absence of domain
diversity makes learning robust invariant features substantially
more difficult. To address this, SDG methods predominantly
rely on data augmentation to simulate domain shifts and in-
crease generalization. SDG approaches are generally grouped
into adversarial and style-based augmentation. Adversarial
methods perturb source images to generate hard examples,
often by maximizing classification loss or entropy [10],
[11]. Representative works include ADA [16], which injects
adversarial examples during training, and ME-ADA [10],
which expands domain coverage by maximizing prediction
entropy. Style-based approaches, by contrast, synthesize out-
of-distribution samples using generative models [17], [18].
M-ADA [6] leverages Wasserstein Auto-Encoders to increase
style diversity, and CADA [19] employs angular center loss
to generate samples that deviate from class centers. Additional
techniques such as random convolution [20] introduce stylistic
variation through texture alteration, while Crafting-Shifts [21]
provides a principled framework for modeling domain shifts
via synthetic distribution generation with theoretical guaran-
tees. Moreover, MetaCNN [12] introduces meta-convolutional
layers to decompose features into reusable and task-relevant
components, effectively filtering out domain-specific noise.
SRCD [22] introduces semantic reasoning with compound
domain representations to enhance single-domain generalized
object detection by bridging visual and semantic spaces,
achieving superior performance on unseen categories. While
these SDG methods have shown promising results, they often
depend on computationally intensive, data-centric strategies,
which may still fall short in capturing the full complexity of
real-world domain shifts. This underscores the need for more
efficient and theoretically grounded solutions for practical
deployment.

B. Flatness-Aware Optimization

Enhancing model generalization under distributional shifts
remains a fundamental challenge in domain generalization
(DG). Recent advances have highlighted flatness-aware op-
timization as a promising strategy for improving model ro-
bustness, often complementing traditional model averaging
approaches that implicitly promote flatness in the loss land-
scape. Model averaging techniques, which consolidate check-
points along training trajectories to converge toward flatter
loss regions, have demonstrated considerable success. Stochas-
tic weight averaging (SWA) and its domain-adaptive variant
SWAD [9], [23] exemplify this approach. The "Model soups”
methodology [24] further extends this paradigm by employing
weight averaging algorithms to achieve superior performance
across multiple tasks. Additionally, DiWA and EoA emphasize
the importance of model diversity in the averaging process to
enhance generalization capabilities [25], [26]. Despite their
efficacy, these methods may underperform when averaged
solutions fall between poorly aligned optimization modes.

From another perspective, explicit flatness-aware optimiza-
tion directly pursues solutions residing in broad, low-loss val-
leys. Sharpness-Aware Minimization (SAM) [27] pioneers this
approach by introducing a surrogate objective that minimizes
neighborhood sharpness, subsequently inspiring several DG-
specific extensions. Gradient-Aligned Minimization (GAM)
[28] integrates gradient alignment with flatness objectives,
while Sharpness-Aware Group Minimization (SAGM) [29]
enforces sharpness minimization across heterogeneous do-
mains. Inconsistency-Aware Domain Adaptation (IADA) [30]
mitigates domain inconsistencies through adversarial pertur-
bations, indirectly promoting flatter minima. Zhang et al.
[31] proposed a unified Flatness-Aware Minimization (FAM)
framework to penalize sharp loss directions, while Li et al.
[32] refined the loss landscape to identify consistent flat
minima shared across domains, thereby improving general-
ization performance and training stability. Advancing beyond
pointwise solutions, trajectory-based approaches optimize con-
tinuous low-loss paths connecting multiple models, ensuring
smoothness throughout the parameter space while directly
regulating the solution geometry [33], [34]. These methods
often incorporate diversity constraints to enhance functional
complementarity between models along the trajectory. Build-
ing upon this perspective, our proposed Path Flatness-aware
Optimization (PFO) framework learns a parameterized path
across diverse models while enforcing uniform flatness along
the entire trajectory. Our approach yields more robust and
transferable representations for unseen target domains, ad-
dressing a critical challenge in SDG.

III. OUR PROPOSED METHOD

We present a novel method to improve the model gener-
alization by constraining the training error based on the flat
path. Different from the common multi-source domain gener-
alization, the number of source domain is one and there may
exist more than one target domains. The model cannot rely on
relationships between different domains to obtain the domain
invariant representation to improve its generalization. By chan-
neling attention towards the model’s intrinsic improvement,
significant advancements in performance can be achieved. The
prevailing consensus in the domain of optimization affirms that
using multiple models in a collection process helps to combine
the advantages of multiple models, making the loss function
of the collection model superior to the local minimum of each
model. This set-based approach can be regarded as a means
to achieve model flatness, which prompts us to explore a new
method to achieve single-domain generalization by expanding
the minimum value region in the landscape of the deep neural
networks.

A. Preliminaries

We denote X as the input space of images, Y the label
space and the given one source domain Dg = {xi,yi}f\fl
where S is the training (source) domain with distribution
Psg. And the Dy = {xz,yl}f\fl is one test (target) domain
with distribution Pr. We define the model F(;6) trained
on the source domain as where model parameter § € ©
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and £(-,-) can be generalized for any bounded loss function.
Then, we consider Es(0) £ E(, ) ps[((fo(z?),y")] as the
optimization objective, where f(-;6) is a model with 6 as
a parameter. Let 6* denote the optimal parameter minimiz-
ing Es(0). During one-time training, we may obtain one
model with parameter 6; locating nearby the 6*. In practice,
ERM, i.e., by argming Es(f) constrains the training process
to make an approximate 6* by optimization. For domain
generalization task, we then expect that this optimal solution
can also perform well on the target domain, i.e. it can be the
lowest risk E7(6%) £ E(, ,)p. [((fo- (z'),y")] on the target
domain. However, because of the differences in distribution
between domains, the 6* that minimises risk on the source
domain is often not guaranteed to minimise risk on the
target domain. The differences can be shown in Eq. (1).
The divergence metric, denoted as Div(Pg, Pr), is defined
as sup 4 |Ps(A) — Pr(A)|, where Pg and Pr represent the
marginal distributions of the source and target domains and
A represents the set of can-be-identified samples, respectively.
This metric serves as a quantification of diversity shift between
the two distributions [23]:

Er(9) < %Div(Ps,PT) +E5(0), (1)

1
E7(07) < 5 Div(Ps, Pr) + E3(07) + Lo, @)

B (vk[In(Ng/vg) + 1] 4+ In(n/0))
Loy = max\/ K 5 kQNS , 3)

where £X(6*) is the robust empirical loss on the source
training dataset Dg from S of size Ng. It is defined as
the maximum value attained over parameter perturbations
A within a specified v-radius. Mathematically, this can be
expressed as:
Y(p*F) 2

L) Hgllﬁgv Es(+A), 4
where Es(6 + A) represents the empirical loss on Dg for
parameters 0+ A, where E(, e pg [€ (fo+a(7);y)] quantifies
the expectation of the loss ¢ over the source domain S.
The maximization is performed over parameter perturbations
within the ~-radius, capturing the range of variations that
maintain robustness in the face of potential adversarial per-
turbations.

Model averaging has emerged as an effective strategy to
enhance generalization by exploiting the geometry of the loss
landscape. Wang et al. [13] demonstrated that averaging the
weights of 7 models, 6* = H,q(6;) for i = 1,...,7, can
approximate an optimal solution that generalizes well to target
domains. Our method extends this idea by constructing a more
powerful ensemble, S, which improves upon conventional
direct averaging to further enhance generalization efficiency.

The generalization behavior of the averaged model 6* is
governed by three key factors, as described in Eq. (2): (a)
the robust empirical loss £4(0*); (b) the divergence between
the source and target distributions; and (c) the confidence
bound L., which depends on the neighborhood radius
and the source sample size Ng as defined in Eq. (3). This

decomposition can be theoretically grounded in the PAC-
Bayesian framework [35], which links flat minima to robust
generalization. The generalization bound can be expressed as:

1
ET(G*) < iDiV(PS; PT> + ]Eg(e*) + Ly, (®)]

where Div(Ps, Pr) denotes the domain divergence, and
E%(6*%) is the robust empirical risk defined by:
EL(0%) £ max Eg(0* + A). (6)
A<~y
In the single-domain generalization (SDG) setting, we lack
access to the target distribution Pr, making it infeasible
to directly minimize Div(Ps, Pr). Therefore, we focus on
reducing EZ(6*), which captures the worst-case loss under
parameter perturbations within a radius ~y. Models located
in flatter regions of the loss landscape are inherently more
robust to such perturbations, yielding lower values of E(6*)
and thus better generalization. To explicitly pursue such flat
solutions, we propose the Path Flatness-aware Optimization
(PFO) method. PFO constructs a curve ¢y(t) connecting two
anchor points w; and we via a learnable control point 6.. By
minimizing the training loss along this continuous path, we
ensure:

max Es(oppo + A) < max ]ES(GSGD + A), (7)
A<~y A<~
which lowers the worst-case perturbed risk relative to standard
optimization approaches.

This path-based approach is inspired by recent insights
into mode connectivity, which show that flat minima are
often connected by low-loss trajectories in parameter space.
By leveraging this connectivity [33], the resulting ensemble
HC, benefits from enhanced robustness and generalization
compared to traditional weight-averaged models.

B. Flatness of Weight Paths Between Models

Inspired by practical ensemble learning techniques partic-
ularly Fast Geometric Ensembling (FGE) and grounded in
the concept of mode connectivity [33], our work introduces
a novel and efficient weight-averaging method specifically
tailored for single-domain generalization tasks. The theoretical
foundation for connecting anchor model weights via con-
tinuously piecewise smooth parametric curves stems from
recent studies on the mode connectivity in deep learning. The
mode connectivity hypothesis posits that independently trained
models, even from different initializations, often lie within a
shared low-loss region of the parameter space [36]. Therefore,
by leveraging non-linear, continuously piecewise smooth pa-
rameterized curves, we can effectively connect these models
in weight space, ensuring the path remains within a low-
loss region. This design facilitates improved generalization
by allowing explicit control over the flatness of the trajectory
during optimization, thereby optimizing model performance
across the entire path rather than isolated checkpoints. Such
a path-centric optimization strategy is particularly critical for
single-domain generalization, enabling the model to remain
stable under unseen domain shifts.
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By incorporating this trajectory-based training framework,
we systematically enforce flatness between the regions sur-
rounding the anchor models. This flatness serves as a robust-
ness guarantee, enhancing the effectiveness of the averaging
process. The dual constraints applied during path training
significantly improve the efficiency and resource economy of
single-domain generalization, without relying on explorative
ensemble construction. In our study, we define a trainable
model F parameterized by a set of weights 6. After a
single training process, we obtain an optimized weight set w.
Specifically, we consider two distinct weight sets, denoted as
wj and wo, both of which belong to the Euclidean space R
where | F| is the total number of parameters in the DNN. These
two sets represent independently trained neural networks, each
optimized with respect to the cross-entropy loss objective.

Furthermore, we introduce continuously piece wise smooth
parametric curves to simulate paths connected between an-
chors, denoted by ¢ : [0,1] — RI”I. The curve is parameter-
ized by the weights 6. A notable feature of this curve is its
boundary conditions: it is defined such that ¢»(0) = w; and
¢g(1) = wo, where wy and wo represent two trained models.
To instantiate ¢y, we adopt a quadratic Bézier curve defined
as:

do(t) = (1 —)%wy + 2(1 — t)th,. + t*wo, (8)

where 6. is a learnable control point that determines the shape
of the curve between the endpoints. This construction enables
us to control the geometry of the interpolation path and to
search for flatter solutions in the weight space. These boundary
conditions ensure that the curve originates at the point in the
weight space corresponding to wj, and terminates at the point
corresponding to w-. This delineation of boundary conditions
is not merely a mathematical construct; it serves as a critical
pathway in tracing the evolution of weights in the neural
network’s configuration space. By rigorously controlling ¢y,
we gain the capability to manipulate and monitor the transition
of neural network weights along a specified path. This path,
extending from one trained state (w;) to another (ws) via a
set of trainable parameters 6., is more than a simple path
in weight space. It ensures a period of flat areas ||A] < v
in the network’s learning process. By optimizing the path
parameters #, we manipulate and monitor the transition of
network weights along the curve. This path, extending from
wy to wy, aims to remain within flat regions of the loss
landscape (i.e., where ||A| < ), improving generalization
across domains.

For simplicity, we indistinctly introduce a loss function
across a parametric curve in the weight space of a neural
network. This evaluation is articulated in Eq. (9), which is
defined as follows:

(6) = /0 L(60()dt = Evovron Los(0), )

where L£(¢o(t)) represents the loss function evaluated along
the continuous piecewise smooth curve ¢g(t) in the weight
space. The variable ¢ ranges from O to 1 and follows a uniform
distribution U (0, 1). This distribution is pivotal as it ensures an
even sampling across the entire trajectory of the weight curve,

guaranteeing a full and fair estimation of the subsequent loss
landscape.

To optimize the model to achieve a period of flat region, we
first construct the loss function ¢(6) and then train it using an
iterative manner. Since this section of the region is continuous
cannot be optimized directly, we achieve this objective through
iterative optimization. In each iteration, a sample ¢ is drawn
from a uniform distribution U(0, 1). Subsequently, a gradient
descent step is performed on the weights 6 relative to the
loss function evaluated at ¢y (%), as shown in the following
approximation:

VoL (po(t)) ~ Eivrr0,1)VoL(Pa(t))
= VoEiv(0,1)L(¢6(t))
— Vol(0).

(10)

This method of random sampling on the path, with the
increase of sampling times, can be approximately regarded as
the operation of the whole path, so as to achieve the purpose of
optimizing the whole path. The iterative process is repeated
until convergence is achieved. This technique navigates the
complex landscape of the loss function in training. By integrat-
ing a random sampling strategy and iterative gradient updates,
this method facilitates a more flat landscape optimization
process, which is crucial for generalization.

C. Enhancing Diversity of Anchor models by Constraints on
the Decision Boundaries

In the progression of this study, following the construction
of a pathway interlinking various neural network models, our
research focus shifted towards the methodology for selecting
two distinct “anchor” models situated at the boundaries of this
pathway. This selection process is rooted in both observational
insights and a thorough analysis of prior research. During the
process of model weight averaging, a greater disparity in the
weights being averaged from the respective models tends to
yield more effective results post-averaging. We emphasize the
importance of model diversity in this process, particularly not-
ing that structural variations in model decision boundaries are
crucial for achieving enhanced post-averaging performance.

Leveraging insights from prior research [37], [38], we
develop a novel approach to enhance the diversity between
models. In this work, we achieve this by modulating the
decision boundaries of two distinct anchor models, according
to the critical role that decision boundaries play in shaping
model behavior. We observe that manipulating the boundaries
through angular space optimization and bias translation results
in greater diversity compared to conventional approaches that
rely solely on varying initialization.

Therefore, our method introduces a technique for optimizing
decision boundary operations within angular space, inspired
by [38]. We tailor the angular space to implement multiple
anchor model across a range of parameter configurations.
The core of this optimization is realized through a novel
redefinition of the decision boundary equation, expressed as:

fi = 1Wjllll]| cos(ay), (11)
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(b) Angle space optimization [38]

Fig. 2: Comparison of the results of decision boundary movements with two different strategies. In (a), the boundary movement
is achieved by adjusting the bias parameter of the network. The bias adjustment typically translates the decision boundary
without altering the relationship between samples, demonstrating how different bias values can lead to similar classification
outcomes for the same data points. In (b), the boundary is manipulated in angular space [38], achieving not just positional
translation but also rotational transformations, reflecting a more adaptive response to task-specific data distributions.

where f; denotes the activation of the fully connected layer,
W; is the weight vector, and «; is the angle between W; and
the input feature vector x for class j.

Angular space transformations enable a more controlled
and meaningful manipulation of the classification strategy
by maintaining a constant weight norm while diversifying
decision behaviors. Meanwhile, this highlights the pivotal
role of o; in governing the decision boundary. Unlike prior
methods that rely solely on bias shifting—as illustrated in
Figure 2(a)—angular adjustment offers more refined control
over boundary transformations, enabling a wider spectrum of
class-specific clustering behavior. Such transformations allow
the decision boundary of models like those shown in Fig-
ure 2(b). Unlike bias-induced movements, angular adjustments
alter not only the position but also the orientation of decision
boundaries, enabling compression of intra-class regions and
more complex adaptation to feature distributions. The resulting
expansion of the inter-anchor region significantly increases the
coverage of the model ensemble in high-dimensional feature
space. Ultimately, angular space optimization improves the
effectiveness of connectivity pathways. It strikes an effective
balance between maintaining structural consistency and pro-
moting diversity among models.

To maintain the norm of W, we apply L, normalization,
setting ||W||||z|| to a constant n. This focuses the adjustment
of the decision boundary on the cosine of the angle, improving
category compactness. The cross-entropy loss is thus modified

as:
ef%

N Z log n

ncos(ayl i)

= — 1
Z 98 0 scosarn) Z 68 cos(ay,i)

(12)

and
T
Wj Z;
W [l
Moreover, by designing the decision function to depend
only on shared, normalized weights and angular cosine values,

cos(a;,i) = (13)

the inference remains consistent across both anchor and inter-
polated models. This structural consistency ensures efficient
model connectivity without extra modifications, while pre-
serving diversity through meaningful angular variation along
a smooth, differentiable path in the weight space.

u i)

Then introducing a shift parameter into the cosine term

refines the decision boundary:

N e’n,(COS(Oéyi,i)_s)

Z_log n(cos(ay, ;)—s ’ (14)
N e ( ( yi,l) )+Z];ﬁy )

‘ er cos(aj,i
i= i

which enables precise control over the decision boundary,
enhancing the model’s ability to differentiate categories more
effectively. The shift parameter “s” introduces flexibility, al-
lowing for the fine-tuning of the boundary to achieve diverse
model performance. Its control effect is shown in Figure 2 (b).
By optimizing this shift parameter strategically, we ensure
greater model variability and alignment with target clustering
metrics, paving the way for efficient pathway optimizations.
This methodology aims to maximize the variability in models
originating from diverse initial conditions. The adjustment of
the term cos(a) — s, with “s” set greater than 0, effectively
imposes more stringent criteria for the task at hand. Such a
configuration predisposes the models under these conditions to
develop a more distant landscape during their training phase.

This landscape is an anticipated phenomenon, aligning with
our preliminary objectives for the model’s path connections.
We employ a lower-loss anchor model, which serves as a
pivotal component in establishing pathways for model con-
nectivity. This strategy provides an advantageous initial state,
facilitating the expedited optimization of the entire path. More-
over, as our focus extends to optimizing the whole path, these
models contribute to the formation of a more robust model,
one that transcends the individual limitations of each anchor.
This ensemble model effectively disregards the shortcomings
inherent in its constituent parts, embodying a more efficient
learning mechanism.
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D. Convergence Analysis

We provide theoretical guarantees for the convergence of
our Path Flatness-aware Optimization (PFO) method to flat
minima. Let L(-) be a -smooth and L-Lipschitz continuous
loss function. We analyze the convergence behavior of the
iterative optimization process described in Algorithm 1, which
aims to minimize a path-integrated loss by optimizing a
parameterized curve ¢y(t) between two pretrained anchor
models w; and ws.

Theorem 1: Assuming (B-smoothness and L-Lipschitz con-
tinuity of the loss function L, and setting the learning rate
n = 1/, the PFO algorithm converges to a stationary point
of the path loss £(0) = E. y(o,1)[L(¢e(t))] at a rate of
O(1/V/T), where T is the number of iterations.

At each iteration, we sample ¢ ~ U(0, 1) and update 6 via:

Or+1 = O — Vo L(g, (1)) 15)

By the -smoothness of £(6), we have:

n*B

U(Ok+1) < L(0k)—n(VL(Ok), VoL (o, (1)) + 5

(16)
Taking the expectation over ¢ ~ U(0, 1) and using the identity
Ve(0r) = E[VoL(¢pg,(t))], we obtain:

E[l(0x+1)] < £(0k) =0l VE(0R) ] + %E[HWL(% (G)] g

17
By Jensen’s inequality:
IS0 < ENIVoL(0, (1)) 2], as)
which allows us to simplify:
Bl0111)] < €00 (1~ 27 ) B aL(on, O)IPL 19
With i = 1/, this becomes:
Bl((0h10)] < €600) — Bl VoL(n I (20
Summing over T iterations yields:
1= . 28(6(6,) — %) o

= 3 ElIVeL(6, (1)) 0=
k=0

where ¢* is the global minimum of ¢(f). This implies a

convergence rate of O(1/v/T) toward stationary points of

the path loss. In addition, the optimized parameter path fppo

satisfies a flatness condition. For any t1,t2 € [0,1] with

[t1 — ta] < 6, we have:

[L(¢o(t1)) = L(da(t2))| <, (22)

indicating that the loss remains nearly constant along the path,
and thus, the optimization converges to flat minima in the
parameter space.

IV (0, ()1

Algorithm 1 Path Flatness-aware Optimization (PFO) for
Single-Domain Generalization

Input: Source dataset Dg = {x;,y; il\fl, pretrained model

weights w; and ws, learning rate 7, maximal number of
iterations 7.
Output: Generalized model weights 6*
1: Anchor Training: Train two anchor models with distinct
decision boundaries by angular space optimization and
shift translation s:

fr= Wiz = |[Wi|[lz]/(cosa — 51),
f2= W3z =|We|z|/(cosa — s2)

2: Path Initialization: Construct a parametric Bézier curve
¢o(t) in weight space with endpoints:

¢0(0) = w1, Pp(1) = w2

where 6 parameterizes intermediate control points of the
Bézier curve.
3: Define Path Loss:

£(0) = Eov0,1)L(00(t)),
where L is cross-entropy loss on Dg

4: for k=1to T do

5: Sample interpolation factor ¢ ~ U(0,1)
6 Instantiate model weights along path: w; = ¢g(t)

7 L(w) =

Evaluate path loss:

CrossEntropy(f (w¢(z)), )
8: Compute path gradient via backpropagation:

VoL (po(t)) = Backprop(L(w;))
9: Update path parameters:
0 < 0 —nVeL(po(t))

10: end for
11: Model Fusion: Average the weights from both anchors
and optimized path center to obtain the final model:
L 1
0 = g(wl + wg + ¢9(05))
2: Return: Final generalized model weights 6*

—

IV. EXPERIMENTAL STUDY

A. Datasets

We verify the effectiveness of our proposed method on four
widely-used benchmark datasets that span a broad spectrum
of object recognition scenarios for SDG :
5-Digits. The 5-Digits dataset consists of five datasets:
MNIST [39], MNIST-M [40], SVHN [41], USPS [42], and
SYN [40], with 0 — 9 the 10 categories. Then following the
previous work [6], MNIST is utilized as the source domain,
and the remaining four datasets serve as the target domains.
Following prior work [19], the training comprises the initial
10,000 images from the MNIST training set. Then the trained
model is evaluated on the four target domains with various
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differences in the background, style, color and image quality.
To ensure that the model is generic, all the images are
converted to the 32 x 32 and 3 channel-wise like RGB.
CIFAR10-C. The CIFARI10-C dataset [43] denotes the cor-
rupted CIFAR-10 which is the test set of CIFAR-10 [44]
consisting of 19 types of corruptions to evaluate the robustness
of classification model. Each corruption has with five levels
of severity from 1 to 5 and they can be divided into 4
main categories, weather, blur, noise, and digital. The basic
CIFAR10 is employed as the source domain, while CIFAR10-
C is used as the target domains. Following [45], only 15
types corruptions of level “5” are used for evaluation, because
the most serious corruption can better demonstrate the model
generalization of performance.

CIFAR100-C. The CIFAR100-C dataset [43] is similar with
the CIFAR10-C dataset but with 100 categories. It also in-
cludes 19 types of corruptions with five levels of severity.
In accordance with the configuration presented in [45], CI-
FAR100 [44] is employed as the source domain and the
selection of 15 corruption types across highest severity levels
are used for evaluation.

PACS. The dataset serves as a domain generalization bench-
mark, encompassing four diverse domains: art painting, car-
toon, photo, and sketch. Across these domains, there are a total
of 9,991 224 x 224 images spanning seven categories. The
dataset’s complexity is rooted in the significant stylistic dis-
parities between domains. For training, there is classical split
that each of the four domains serves as the source domain and
the other three as the target domain. This structure generates
four distinct training and test domain pairs, highlighting the
dataset’s challenging nature.

OfficeHome. The dataset is a widely used benchmark for
domain generalization and domain adaptation, comprising four
visually distinct domains: Art, Clipart, Product, and Real
World. It consists of a total of 15,588 images, each belonging
to one of 65 object categories. The dataset’s inherent complex-
ity make it particularly valuable for assessing model robustness
across diverse domains in real-world applications. For training
and evaluation, the split involves using one domain as the
source domain while the remaining three serve as target
domains as PACS.

B. Implementation Details

In our study, the selection of neural network architec-
tures for different datasets follows established practices in
prior research [46]. Specifically, for the 5-Digits datasets, we
adopt the ConvNet architecture [47]; for the CIFAR10-C and
CIFARI100-C datasets, we use a l6-layer WideResNet [48]
with a widening factor of 4; and for the PACS and OfficeHome
datasets, we follow standard domain generalization bench-
marks by employing a pretrained ResNet50 backbone.

Data augmentations are widely adopted in existing studies,
such as Crafting-Shifts [21], and our method is fully com-
patible with various augmentation techniques. By following
[21], we apply the augmentation strategies to our method for
small-scale image datasets (i.e., 5-Digits and CIFAR10-C) in
our experiments. However, because these augmentations are

computationally expensive for large-scale datasets, we omit
them when evaluating our method on CIFAR100-C, PACS,
and OfficeHome.

In all experiments, we train our model on CIFAR with
SGD [49] and on all other datasets with AdamW [50]. For the
5-Digits datasets, the learning rate is set to 1 x 1072, weight
decay to 1 x 1073, and batch size to 128. For CIFAR10-C and
CIFAR100-C, the learning rate is 1 x 10!, weight decay is
1x 10~%, and batch size is 256, with the learning rate decayed
by a factor of 0.2 at the 200th, 300th, and 400th epochs.
For PACS and OfficeHome, the learning rate is 5 x 10~ and
weight decay is 1 x 1074,

In the dual-anchor setup, two single models are trained
independently with different random seeds and different shift
parameters (s = 0.2 and s = 0.25) to ensure sufficient
diversity in decision boundaries. The path ¢y (t) between these
models is parameterized using a cubic Bézier curve, where 6
controls the intermediate curve points. Training of the path
model involves sampling ¢ ~ U(0, 1), evaluating the cross-
entropy loss L(¢g(t)) on the source domain, and performing
backpropagation to update 6 using the learning rate 7. We set
n = 10~* and use a cosine annealing learning rate schedule
throughout the path optimization phase to ensure smooth
convergence to flat minima, consistent with our theoretical
analysis in Section IIL.D.

The final generalized model weights 6* are obtained by
averaging the weights of the two anchor models and the
midpoint model ¢(0.5) on the learned curve. This practical
procedure exactly mirrors the update and averaging steps
described in Algorithm 1 and the convergence proof.

C. Comparison with Peer Methods

We compare our method with a wide range of SOTA
SDG methods in different settings, following the experi-
mental setups of previous works to ensure fair compari-
son. The compared methods include foundational approaches
(e.g., ERM [51]), domain-invariant feature learning meth-
ods (e.g., CCSA [52], d-SNE [53], JiGen [54]), and data
augmentation-based strategies (e.g., GUD [16], M-ADA [18],
ME-ADA [55], PDEN [17], L2D [6], RC [20], RSDA [56],
RSC [57], ASR [58], FFM [45], CADA [19], MCL [59],
Crafting-Shifts [21], and PhysAug [60]). The results of these
methods are reported based on previous publications [19],
[45], [59].Building upon this, we further benchmark our
method against a unified set of strong and representative
baselines to ensure consistent evaluation across all datasets.
These include classical domain generalization methods (e.g.,
IRM [61], Mixup [62], VREx [63], and RIDG [64]), as
well as flatness-aware optimization approaches that aim to
improve generalization through gradient-based methods (e.g.,
SAM [27], GAM [28], SAGM [29], TADA [30], FSAM [65],
SSESAM [66], GCSAM [67], and SAML [68]). This unified
set of benchmarks is evaluated across all datasets, enhancing
the fairness, transparency, and comprehensiveness of our ex-
perimental analysis, and offering a rigorous assessment of our
method’s effectiveness in diverse SDG scenarios.

Evaluation on 5-Digits. Table I summarizes results when
training on MNIST and evaluating on SVHN, MNIST-M,
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TABLE I: Generalization Accuracy (%) for Single Domain
on Digits: Models trained on MNIST and tested on other digit
datasets.

Method Venue Year SVHN MNIST-M  SYN  USPS  Avg.
ERM [51] Springer, 2011 27.83 52.72 39.65 76.94 49.29
CCSA [52] ICCYV, 2017 25.89 49.29 37.31  83.72  49.05
d-SNE [53] CVPR, 2019 26.22 50.98 37.83 93.16 52.05
JiGen [54] CVPR, 2019 33.80 57.80 4379 7115 5314
ADA [16] NeurIPS, 2018  35.51 60.41 4532 7726  54.62

M-ADA [18] CVPR, 2020 42,55 67.94 4895 7853  59.49
ME-ADA [55] NeurIPS, 2020  42.56 63.27 50.39  81.04 59.32
RSDA [56] ICCV, 2019 47.40 81.50 62.00 83.10 68.50
RSDA+ASR [58] CVPR, 2021 52.80 80.80 64.50 8240  70.10

L2D [6] ICCV, 2021 62.86 87.30 63.72 8397 74.46

RC [20] CoRR, 2020 62.07 87.89 63.90 8439  74.56
FFM [45] WACY, 2023 64.11 82.25 6391 8356 7345
CADA [19] WACY, 2023 67.27 78.66 79.34  96.96  80.56
MCL [59] CVPR, 2023 69.94 78.47 7834 8854  78.82

Crafting-Shifts [21] ~ WACV, 2024 67.82 84.28 79.64 98.68  82.61
PhysAug [60] AAALI 2025 62.24 80.46 59.98 9537 7451
IRM [61] CoRR, 2019 56.85 63.68 4539  90.73  64.16
Mixup [62] CoRR, 2020 55.72 79.25 5328 9422  70.62
VREX [63] ICML, 2021 51.36 78.49 56.04  94.02  69.98
RIDG [64] ICCV, 2023 54.96 77.64 5532 9332 7031
SAM [27] ICLR, 2021 55.37 80.26 5531 9397 71.23
GAM [28] CVPR, 2023 54.38 77.93 54.65 94.02 7025
SAGM [29] CVPR, 2023 56.42 79.78 5499 9417 71.34
TADA [30] ICLR, 2024 65.13 81.45 6229 95.17 76.01
FSAM [65] CVPR, 2024 55.53 80.24 5859 9452 7222
GCSAM [67] TMM, 2025 5241 80.84 54.84 9412 7055
SSESAM [66] AAALI 2025 56.65 78.08 53.04 9342 7030
SAML [68] ICLR, 2025 54.47 74.67 58.69 92.18  70.00
PFO (Ours) 63.84 8232 70.60  88.39  76.29
PFO* (Ours) 68.25 79.88 8448 9576  82.09

SYN, and USPS. Consistent with prior observations, USPS is
the easiest task due to its high visual similarity to MNIST (sev-
eral methods exceed 95%), whereas SVHN remains the most
challenging because of its different color statistics and clut-
tered, real-world backgrounds. Augmentation-oriented meth-
ods such as Crafting-Shifts achieve the best overall average
(82.61%) and the strongest USPS score (98.68%). PhysAug
also performs well on USPS (95.37%) but is less stable on
synthetic domains (59.98% on SYN). SAM-family approaches
(e.g., FSAM, GCSAM) are competitive on average but gen-
erally lag on SVHN and SYN. Our PFO, even without data
augmentations, attains an average accuracy of 76.29%, outper-
forming several augmentation-dependent methods and yield-
ing balanced performance across SVHN (63.84%), MNIST-
M (82.32%), SYN (70.60%), and USPS (88.39%). When
augmented with the data augmentation strategy employed by
Crafting-Shifts (denoted as PFO*), our method achieves an
average accuracy of 82.09%, matching the best performance
reported by Crafting-Shifts. This improvement stems not only
from substantial gains on SVHN (+4.41 points) and SYN
(+13.88 points) but also from achieving competitive peak
results on USPS (95.76%) and MNIST-M (79.88%).
Evaluation on CIFAR10-C. Table II reports the perfor-
mance of our method on the CIFAR-10-C benchmark under
15 corruption types at severity level 5. Without data augmen-
tations, PFO achieves a strong average accuracy of 75.29%,
outperforming most classical DG and SAM-based approaches,
and showing strong performance across weather, blur, noise,
and digital-type corruptions. When equipped with the same
augmentation protocol as augmentation-driven baselines (de-
noted as PFO*), the average accuracy further improves to
78.64%, outperforming all peer methods. This gain is largely

attributed to substantial improvements under noise-related
corruptions (Shot: +11.53,) and glass blur (+11.26), while
maintaining competitive performance on weather and digital
distortions. Compared with the best augmentation-based base-
line FFM (77.77%), PFO* not only achieves a higher overall
score but also delivers a more stable and consistent perfor-
mance across diverse corruption types, avoiding large drops
in challenging settings. Notably, PFO demonstrates robust
resilience to weather-related distortions and excels under blur-
related corruptions, reflecting its ability to preserve semantic
representations under severe visual degradations. Among other
recent methods, FSAM (66.91%) and GCSAM (64.30%) show
promising results, particularly on digit-related corruptions.
Compared with these approaches, as well as representative DG
and SAM-based baselines such as SAML (64.48%), and IADA
(73.60%), PFO consistently ranks among the top performers.

Evaluation on CIFAR100-C. For CIFAR-100-C, similar
experimental conditions of CIFAR10-C are applied, with
summarized results presented in Table III. Our method
(PFO) registers an average accuracy of 62.88%, surpassing
classical DG approaches such as Mixup (49.36%), VREx
(49.74%), and RIDG (41.44%). PFO also exceeds recent
SAM-based methods like IADA (56.77%), FSAM (57.55%),
GCSAM (58.40%), SSESAM (53.60%), and SAML (54.11%).
Compared to CADA (59.96%), PhysAug (50.82%) and RC
(57.38%), which are among the strongest SDG baselines, PFO
demonstrates improved overall consistency and higher peak
performance across all corruption categories. Notably, PFO
achieves substantial improvements in challenging Weather
(65.34%) and Digital (65.95%) corruption categories, high-
lighting its exceptional robustness and consistent generaliza-
tion capability across various corruption types.

Comparing CIFAR-100-C with CIFAR-10-C, despite their
similarities, the complexity of tasks in CIFAR-100-C is no-
tably higher, raising the bar for methodological requirements,
particularly for those reliant on data augmentation. The in-
creased dataset complexity amplifies the challenges associated
with data enhancement, diminishing the relative impact of
such techniques compared to our method’s performance on
CIFAR-10-C. This underscores the nuanced demands placed
on augmentation-based algorithms as task complexity esca-
lates, highlighting areas where our proposed method retains
a comparative advantage. Its consistent effectiveness in both
CIFAR-10-C and CIFAR-100-C highlights its scalability and
adaptability to increasing task complexity, making it a sta-
ble solution for robust image classification in real-world,
corruption-rich environments.

Evaluation on PACS. The results on the PACS dataset are
reported in Table IV, where models are trained on one domain
and tested on the remaining three. PFO achieves the highest
average accuracy of 73.84%, surpassing previous state-of-the-
art approaches such as Crafting-Shifts (72.05%), PhysAug
(69.98%), IADA (71.83%), and FSAM (67.75%). While the
competitive performance of Crafting-Shifts benefits from its
extensive data augmentation strategies, PFO attains superior
results without relying on such techniques, demonstrating the
strength of its optimization-based design. Notably, PFO sets
a new SOTA on the challenging Sketch domain with an
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TABLE II: Generalization Accuracy (%) for Single Domain on CIFAR-10: Models trained on CIFAR-10 and tested on 15
different types of corruption at the severity level 5 in CIFAR-10-C.

Method Venue, Year ‘Weather Blur Noise Digit Avg.
Fog Snow  Frost Zoom Defocus Glass Motion Shot  Impulse Gaussian Speckle Pixelate Elastic  Brightness  Contrast

ERM [51] Springer, 2011 65.92 7436 6157 59.97 53.71 49.44  63.81 35.41 25.65 29.01 69.90 41.07 72.40 91.25 36.87 56.15
CCSA [52] ICCV, 2017 66.94 7455 6149 6196 56.11 48.46 64.73 33.79 24.56 27.85 69.68 40.94 72.36 91.00 35.83 56.31
M-ADA [18] CVPR, 2020 69.36  80.59 76.66  68.04 61.18 61.59 64.23 60.58 45.18 56.88 77.14 52.25 75.61 90.78 29.71 65.59
MEADA [55]  NeurIPS, 2020  60.07 81.72 82.10 7545 67.71 72.55 70.86 59.73 46.78 58.65 85.52 77.48 79.80 88.16 23.92 69.15
L2D [6] ICCV, 2021 69.21 7870 8135 72.86 64.58 61.53 68.52 78.32 13.61 74.81 8231 53.19 76.50 91.33 48.16 69.08
FFM [45] WACY, 2023 80.23 84.62 84.86 81.01 79.94 67.50 83.71 82.67 23.16 80.90 81.80 70.17 77.40 90.82 78.54 71.77
PhysAug [60] AAALI 2025 62.62 5998 60.68 63.52 64.66 48.76 63.78 47.38 41.20 43.73 64.89 58.65 59.88 72.84 28.34 56.06
IRM [61] Arxiv, 2019 39.73  41.68 38.66 4497 41.97 40.92 36.62 44.38 35.56 43.50 52.54 41.54 51.57 56.43 21.57 42.11
Mixup [62] Arxiv, 2020 71.79 6544 5546  63.09 62.14 4210 6227 43.92 37.64 44.00 67.17 50.16 64.14 82.29 64.15 58.38
VREXx [63] ICML, 2021 7198 61.69 5497 5851 56.32 45.59 62.87 47.74 48.76 45.18 67.00 51.36 61.74 81.70 64.56 58.66
RIDG [64] ICCV, 2023 68.64 60.06 5138 61.81 60.11 39.07 56.87 36.48 36.44 33.36 65.31 48.34 63.40 78.53 53.86 54.24
SAM [27] ICLR, 2021 75.61 6341 56.53  60.90 60.10 40.83 61.40 4139 42.28 39.16 67.34 47.23 65.48 82.59 66.74 58.07
GAM [28] CVPR, 2023 7240 62.83  53.10 63.62 59.55 40.37 62.32 40.23 39.54 37.50 65.34 49.10 64.00 80.59 60.68 56.74
SAGM [29] CVPR, 2023 7421 6510 5699 @ 63.12 62.76 43.81 64.24 4493 4421 40.76 64.75 44.93 64.07 82.75 67.03 58.91
IADA [30] ICLR, 2024 7634 7586 7452  79.14 79.52 57.27 76.07 71.61 64.18 69.22 71.97 72.05 69.35 86.73 80.15 73.60
FSAM [65] CVPR, 2024 7925 73.67 6454 75.89 74.63 48.68 73.64  48.80 48.32 46.33 73.94 54.71 69.42 89.39 82.38 66.91
GCSAM [67] TMM, 2025 7733 7099 59.76  72.70 70.83 46.33 71.51 44.07 47.88 39.98 72.80 51.82 69.18 88.52 80.77 64.30
SSESAM [66] AAAL 2025 6435 7612  69.44 69.73 78.30 59.60  66.37 48.75 51.08 36.82 73.03 52.18 60.24 74.10 79.49 63.97
SAML [68] ICLR, 2025 7875 7335 6697 78.66 65.67 41.86 70.72 5245 56.90 41.77 70.48 51.24 68.20 76.43 73.74 64.48
PFO (Ours) - 78.06 7786 71.76  81.96 81.32 55.94 7854 69.94 64.99 78.55 71.64 75.05 69.55 90.73 77.41 75.29
PFO* (Ours) - 71.83 79.68 81.11  82.67 82.87 67.20 78.52 81.47 74.03 80.22 80.95 77.66 73.88 86.16 81.34 78.64

TABLE III: Generalization Accuracy (%) for Single Domain
on CIFAR-100: Models trained on CIFAR-100 and tested on
the 4 main categories of corruption at the severity level 5 in
CIFAR-100-C.

TABLE IV: Generalization Accuracy (%) for Single Domain
on PACS: Models trained on one domain (Source domain) and
tested on the other three domains (Target domains).

Method Venue, Year Weather Blur Noise Digital Avg. Method Venue, Year Artpaint ~ Cartoon  Sketch ~ Photo  Avg.

- ERM [51 Springer, 2011 70.90 7650 5310 4220 60.70

ERM [51] Springer, 2011 24.67 4575 5500 56.00  46.78 RSC [[57]] ECC%,’ 2020 7340 7500 5620 4160 6180
ADA [16] NeurIPS, 2018~ 33.00 5175 5533 5820  50.97 ADA [16] NeurIPS, 2018 71.60 76.80 5240 4370 61.10
ME-ADA [55]  NeurIPS, 2020~ 52.67  53.00 5233 5620  53.93 ME-ADA [55] NeurIPS, 2020  71.50 7680 4620 4630  60.20
L2D [6] ICCYV, 2021 25.40 3791 4334 4607  38.18 RC [20] Arxiv, 2020 73.70 74.90 5540  46.80 62.70
FFM [45] WACYV, 2023 33.06 4951 5174 5198  46.57 L2D [6] ICCV, 2021 76.90 7790 5370 5230 6520
RC [20] Arxiv, 2020 56.99  57.17 5788 5748  57.38 RSC+ASR [58] CVPR, 2021 76.70 7930  61.60  54.60 68.10
CADA [19] WACYV, 2023 59.81 59.28  60.19  59.66  59.96 CADA [19] WACYV, 2023 76.30 79.10  61.60 5670  68.40
PhysAug [60] AAAL 2025 59.37 49.07 4542 4941 50.82 FFM [45] WACY, 2023 80.50 71.70 62.10  61.40  70.40
MCL [59] CVPR, 2023 77.13 80.14 6255 59.60 69.86

IRM [61] Arxiv, 2019 40.18 37.35  40.18  40.18 3947 Crafting-Shifts [21]  Arxiv, 2024 81.14 78.34 68.13  60.59  72.05
Mixup [62] Arxiv, 2020 51.22 4659 4647  53.14  49.36 PhysAug [60] AAAL 2025 79.04 81.28 62.16 5745 69.98
VREX[G] ICML20OLSLs 810 4503 03 40T RMO1 Aniv 20 TS 7652 20t 90 62
’ : : - : Mixup [62] Arxiv, 2020 80.51 83.01 6355 4970  69.19

SAM [27] ICLR, 2021 53.78 47.63 45.19 55.15 50.44 VREXx [63] ICML, 2021 79.03 81.25 62.74 56.25  69.82
GAM [28] CVPR, 2023 5104 4514 4346 5241 4801 RIDG [64] ICCV, 2023 80.44 81.05 6324 4873 6836
SAGM [29] CVPR, 2023 52.69 47.87 4473 5397  49.81 SAM [27] ICLR, 2021 80.75 83.02 66.98  57.03  71.95
TADA [30] ICLR, 2024 58.18  56.07 5394 5891  56.77 GAM [28] CVPR, 2023 81.20 81.99  60.89 53.10 69.29
FSAM [65] CVPR, 2024 59.27 5933 5110 6052  57.55 SAGM [29] CVPR, 2023 78.53 83.13 59.99 4835 67.50
GCSAM [67] TMM, 2025 60.10 60.13 51.89 61.48 58.40 TIADA [30] ICLR, 2024 80.49 80.28 65.64 60.94 71.83
SSESAM [66]  AAAI 2025 5539 5540 4682 5677  53.60 FSAM [65] CVPR, 2024 79.23 82.55 6040  48.83  67.75
SAML [68] ICLR, 2025 58.29 32.14 52.32 53.69 54.11 GCSAM [67] TMM, 2025 78.00 82.84 57.50 5035 67.17
SSESAM [66] AAAL 2025 77.14 82.08 6578 4672 67.93

PFO (Ours) - 6534 6035 59.86 6595  62.88 SAML [68] ICLR, 2025 68.18 81.45 63.89 49.53  65.77
PFO (Ours) - 81.38 82.67 6795 6334 73.84

accuracy of 67.95%, indicating strong adaptability to abstract
and texture-deficient representations. Although slightly trailing
the very best results in domains like Artpaint and Cartoon,
PFO maintains consistently high performance across all target
domains. These results highlight its robustness in handling
substantial domain shifts with limited source supervision and
reinforce its effectiveness as a general-purpose solution for
cross-domain image classification.

Evaluation on OfficeHome. We evaluate our method (PFO)
on the OfficeHome dataset under the single-domain general-
ization setting, where the model is trained on one domain and
tested on the remaining three. As shown in Table V, PFO
achieves the highest average accuracy of 58.42%, outperform-
ing all listed baselines. For example, the next-best method,
GAM, reaches 57.72%, while Crafting-Shifts and SAM obtain
57.31% and 55.24%, respectively. Although FSAM (57.34%)
and GCSAM (57.15%) achieve competitive results, they still

TABLE V: Generalization Accuracy (%) for Single Domain on
OfficeHome: Models trained on one domain (Source domain)
and tested on the other three domains (Target domains).

Method Venue, Year Art Clipart  Product Real World ~ Avg.
ERM [51] Springer, 2011 5428  51.68 49.22 60.06 53.81
Crafting-Shifts [21] WACY, 2024  59.77 5531 51.46 63.10 57.31
PhysAug [60] AAALI 2025 5430 5243 49.57 60.10 54.10
IRM [61] Arxiv, 2019 54.84  53.17 48.45 58.38 53.71
Mixup [62] Arxiv, 2020 5526  52.56 49.62 59.64 54.27
VREXx [63] ICML, 2021 57.06 5442 49.12 60.25 55.21
RIDG [64] ICCV, 2023 56.77 5475 50.34 63.07 56.23
SAM [27] ICLR, 2021 5473 5271 51.10 62.41 55.24
GAM [28] CVPR, 2023 59.53 5547 52.65 63.22 57.72
SAGM [29] CVPR, 2023 57.19  56.54 5221 61.69 56.90
TADA [30] ICLR, 2024 51.56  48.06 45.75 58.19 50.89
FSAM [65] CVPR, 2024 58.15 5641 52.59 62.20 57.34
GCSAM [67] TMM, 2025 56.86 5645 53.06 62.24 57.15
SSESAM [66] AAALI 2025 55.16  54.82 50.65 60.08 55.18
SAML [68] ICLR, 2025 4456  56.48 53.04 62.18 54.07
PFO (Ours) - 5823  55.96 55.56 63.93 58.42
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fall short of PFO due to domain-specific weaknesses, whereas
PFO delivers consistently higher and more stable accuracy
across all target domains. This stability is particularly evident
in challenging domains like Art, which exhibit significant
appearance shifts and high intra-domain variability. Further-
more, while the strong performance of Crafting-Shifts can be
attributed to extensive augmentation strategies, PFO achieves
superior results without relying on such techniques, high-
lighting the advantages of an optimization-based approach on
complex multi-domain datasets. These comparisons reinforce
the strength of PFO’s optimization strategy in navigating
cross-domain discrepancies without specialized augmentations
or domain-specific modules, underscoring its effectiveness in
learning transferable semantic representations and maintaining
robust generalization under distribution shifts with limited
source supervision.

In summary, although PFO does not achieve the highest
average accuracy across the five benchmarks, it demonstrates
strong cross-domain consistency across all target domains.
While augmentation-based methods often exhibit superior
performance in certain domains, they tend to suffer from
high cross-domain variance, which limits their robustness.
In contrast, PFO maintains stable performance across all
domains, indicating better generalization stability under the
single-domain generalization (SDG) setting. Moreover, al-
though augmentation-based methods perform well on visually
simple datasets such as digits, they struggle to scale effectively
to more complex benchmarks like PACS. In these more chal-
lenging domain shift scenarios, PFO and SAM-based methods
consistently outperform augmentation-based approaches, high-
lighting the advantages of model-centric optimization strate-
gies in achieving better scalability and broader applicability. A
recent example is Crafting Shifts, which surpasses prior SOTA
results by leveraging extensive data augmentation and object-
centric features. Nevertheless, on more complex datasets such
as PACS and OfficeHome, PFO and SAM-based methods
are able to match or even exceed its performance. This
finding further validates our motivation to reduce reliance on
handcrafted augmentations and instead prioritize model-centric
optimization as a more effective and generalizable solution.

TABLE VI: Compare the ACC(%) for different Settings on
5-Digits.

Method SVHN MNIST-M SYN USPS  Avg.
ERM 27.83 52.72 39.65 7694  49.29
ERM w/ s 27.35 52.38 3992 7521 4872
PFO w/o s 48.75 73.46 4931  81.23  63.19
WA 50.16 77.31 5533 8239  66.30
PFO (Ours)  63.84 82.32 70.60  88.39  76.29

TABLE VII: Compare the ACC(%) for different Settings on
CIFAR-10-C.

Method Weather  Blur  Noise Digital  Avg.
ERM 67.28 56.73  30.02 62.3 54.08
ERM w/ s 61.35 5413  31.89  61.81 5230
PFO w/o s 73.28 65.13  59.31 7293  67.66
WA 75.56 69.10 66.16 7091 70.43
PFO (Ours) 77.89 73.07  73.01 76.88  75.21

TABLE VIII: Compare the ACC(%) for the relationship be-
tween source-domain validation set and target-domain test set
in different Settings on CIFAR-10-C.

Method CIFAR-10 validation =~ CIFAR-10-C test Avg.
ERM 92.31 54.08
ERM w/ s 93.95 52.30
PFO w/o s 93.81 67.66
WA 94.10 70.43
PFO (Ours) 93.02 75.21

TABLE IX: Comparison of Training Resource Consumption
in different Settings on CIFAR-10-C.

Method #Training params (M)  Time cost (ms) per batch
ERM 1.55 9.1
ERM w/ s 1.55 9.6
PFO w/o s 4.51 10.3
WA 1.55 9.2
PFO (Ours) 4.51 11.1

D. Ablation Study and Analysis

In this subsection, we delve into the individual contributions
of each component within our methodology and scrutinize the
influence of hyperparameters on performance. Our compar-
ative analysis encompasses a variety of methods including
Empirical Risk Minimization (ERM), ERM augmented with
boundary shift (ERM w/ s), Path-Aware Flattening without
boundary shift (PFO w/o s), Weighted Averaging (WA), and
the full version of PFO.

The domain generalization performance, as detailed in Ta-
ble VI for digits recognition, reveals our method’s superior
capabilities across four image recognition datasets, achieving
a notable average accuracy of 74.71%. This outstrips the per-
formances of other techniques, with WA and PFO w/o s also
showing strong results with average accuracies of 66.30% and
63.19%, respectively. These findings underscore the efficacy
of model ensembles in single domain generalization tasks.

Table VII shows the assessment to robustness against image
corruptions on the CIFAR-10-C dataset, both WA and PFO
w/o s methods bolster robustness, reaching average accura-
cies of 70.43% and 67.66%. The variability in performance
enhancements across different domains underscores the dis-
tinct optimization focuses of each integration algorithm. Our
proposed method significantly boosts domain generalization
capabilities and resilience by amalgamating the strengths of
preceding strategies.

Further analysis reveals a correlation between source do-
main validation set outcomes and performance on unknown
target domains in Table VIII. While ERM w/ s may offer
marginal improvements over ERM in CIFAR-10, its efficacy

TABLE X: Compare the ACC(%) about impact of boundary
shift “s” on CIFAR-10-C.

Method Weather  Blur  Noise Digital  Avg.
(0.0, 0.0) 67.28 56.73  30.02 62.3 54.08
(0.0, 0.1) 69.91 6588 64.69  68.64  67.28
(0.0, 0.2) 76.81 7235 69.17  70.56 7222
(0.1, 0.1) 75.56 73.10 72.66 7535  74.16
(0.2, 0.2) 77.89 73.07  73.01 76.88  75.21
(0.3, 0.3) 76.16 7133  71.62 7248  72.89
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diminishes in CIFAR-10-C, potentially due to boundary shifts
compromising the model’s adaptability to corrupted data. Our
method’s exceptional performance on CIFAR-10-C suggests
a design emphasis on model flatness across pairs rather than
solely optimizing for clean data, highlighting the necessity for
machine learning models and domain adaptation techniques
that accommodate both pristine and corrupted data scenarios.

Table IX shows minimal differences in training resource
consumption across methods, with throughput ranging from
9.1 to 11.1 ms/batch. While PFO introduces slightly more
parameters due to the curve representation, the per-batch
training time increases only marginally, which approximately
increase +2ms compared to ERM). Despite these differences,
the computational overhead remains manageable. In contrast,
WA typically involves training a pool of candidate models
followed by an ensemble selection process, which incurs
substantial training and validation cost. PFO avoids this by
training only two anchor models and combining them through
a single-stage, differentiable curve optimization process.

As shown in Figure 4, our method also demonstrates faster
convergence during training. On the Real World domain of the
OfficeHome dataset, PFO achieves a significantly lower and
more stable training loss within fewer iterations compared to
ERM, SAM, and SAGM. This suggests that the flatness-aware
path optimization accelerates the model’s ability to capture
effective patterns, leading to both computational efficiency and
robust generalization.

Table X reports the results on the impact of different
boundary shift configurations, with s(0.1, 0.2) denoting the
boundary shift values “s”, which are 0.1 and 0.2 for two anchor
models. The performance of method s fluctuates considerably
across configurations and domains, with s(0.2, 0.2) achieving
the highest overall average of 75.21%. This indicates that a
balanced approach to diverse image domains is attainable with
specific settings, emphasizing the critical role of parameter
tuning in domain adaptation and image classification. The
variation in sensitivity to parameter adjustments among do-
mains, particularly in Noise domains, highlights the nuanced
gains achievable with different configurations. The model with
$(0.3, 0.3) is slightly less effective than s(0.2, 0.2) at 72.89%.
The potential reason is the over-fitting to source domain
characteristics. These results indicate that the setting of the
boundary shift has a high impact to the performance of the
model.

Visualization Analysis. We employed t-SNE [69] to project
the learned feature representations onto a 2D plane, enhanc-
ing our understanding of our method’s effectiveness. Fig. 3
illustrates the results yielded by our PFO method and the
ERM when trained with sketch images (source domain) and
applied to images from the cartoon domain (target domain).
Specifically, we take the outputs from the penultimate Layer
of a ResNet-18 Backbone as the feature representations of the
input images. The results reveal that the ERM’s representations
for certain categories may be more scattered or less defined,
showing possible overlaps between categories such as “Dog”
and “Horse”. Conversely, the feature representations derived
from our PFO method tend to be more compact for some
categories, suggesting improved separation of certain classes

compared to the ERM. The comparative analysis demonstrates
that the PFO method achieves better clustering performance,
forming clusters that are internally cohesive and distinctly
separated, when contrasted with the ERM.

V. CONCLUSION

In this study, we presented a novel approach to enhancing
model generalization in single-domain scenarios by leverag-
ing the path-aware flat minima, which form a more robust
ensemble. Our method emphasizes the optimization of model
connections to achieve the flatness of the learning path,
thereby significantly improving generalization across various
unseen domains. The introduction of diverse anchor models
through decision boundary constraints further contributes to
our method’s effectiveness, enabling the creation of models
with enhanced differentiation and generalization capabilities.
By focusing on the intrinsic characteristics of the model rather
than relying on extensive data augmentation, our approach
offers a robust and efficient solution to the challenges of
domain generalization. Empirical results on multiple public
benchmarks validated the superiority of our proposed approach
to current state-of-the-art methods, especially in complex
scenarios. In future, we will investigate how to identify the
elite model candidates and save them as an archive to guide
and seed up the optimal model searching process.

While our method substantially reduces the additional pre-
training time compared to Weight Averaging, it incurs in-
creased GPU memory consumption due to the requirement
of training multiple anchor models during curve learning.
Moreover, effective path optimization depends on the quality
of these anchor models, whose initialization currently relies
on diverse angle settings and sufficient training. As widely
acknowledged, there exists a trade-off between a model’s gen-
eralization ability and task-specific performance. If the anchor
models fail to reach a satisfactory initial state, optimizing the
entire path toward desirable performance becomes challenging.
To address these limitations, our future work will focus on
developing more rigorous theoretical guarantees to better un-
derstand the relationship between path flatness and generaliza-
tion capability. Additionally, we plan to explore integrating our
path-flatness method with complementary techniques such as
adversarial training or meta-learning. Building upon this foun-
dation, we aim to investigate more efficient parameterizations
of the connecting paths to reduce memory usage and improve
computational efficiency. Furthermore, we intend to extend our
approach to a broader range of scenarios by exploring how
path construction can be dynamically adapted to different tasks
and data modalities. Tailoring the path-building process based
on specific task and data characteristics represents a promising
direction for future research and may further enhance the
versatility of our method.
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