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Abstract: In high-speed free-space optical communication systems, the received laser beam
must be coupled into a single-mode fiber at the input of the receiver module. However,
propagation through atmospheric turbulence degrades the spatial coherence of a laser beam
and poses challenges for fiber coupling. In this paper, we propose a novel method, called as
adaptive stochastic parallel gradient descent (ASPGD), to achieve efficient fiber coupling. To
be specific, we formulate the fiber coupling problem as a model-free optimization problem and
solve it using ASPGD in parallel. To avoid converging to the extremum points and accelerate its
convergence speed, we integrate the momentum and the adaptive gain coefficient estimation to
the original stochastic parallel gradient descent (SPGD) method. Simulation and experimental
results demonstrate that the proposed method reduces 50% of iterations, while keeping the
stability by comparing it with the original SPGD method.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Free space optical communication (FSOC), which is a high-speed alternative communication
technology between satellites, has attracted increasing attention of researchers [1–5]. In FSOC
system, the remote distance between satellites and the tiny shake occurring on the transmitter
result in severe jitter of the beam and degrade the spatial coherence of a laser beam, thus making
the quality of the link decrease dramatically [6]. Ideally, the received laser beam must be coupled
into single-mode fiber (SMF) at the input of the receiver module. If the beam fluctuates owing
to outer turbulence, the wavefront is introduced with tip/tilt aberration and mismatch with the
field of SMF. In consequence, the power of beam coupled into SMF, i.e., the coupling efficiency
(CE), is decreased [7–9]. Generally, adaptive optics is an effective method to compensate for the
wavefront aberration. The fast steering mirror (FSM) is the primary control unit for steering the
beam from the laser to improve CE in the fiber coupling system [10–13].
Due to the complexity of the system, it is challenging to formulate the fiber coupling system

explicitly. As a result, researchers usually treat it as a red-box system and formulate the fiber
coupling as a model-free optimization problem. Various approaches have been proposed to
perform fiber coupling. For instance, stochastic gradient descent(SGD) [14], hill climbing [15],
and random search methods [15]. However, these methods all optimize the controlling variables
sequentially, which dramatically limits its efficiency on fiber coupling.

In order to accelerate the optimization process, the stochastic parallel gradient descent (SPGD)
method is adopted to achieve fiber coupling in parallel. SPGD is firstly adopted by Vorontsov et al.
for adaptive optical problems in 1997 [14]. Since then, many applications of the SPGD method
have been presented [16–23]. However, the SPGDmethod may converge to local extremum points
and its converge speed can be extremely slow [22], which limits its application in real-world
applications, especially in complex systems. In recent years, a few attempts have been conducted
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to speed-up the convergence and/or avoid converging to the local extremum points. For example,
in 2012, Chen et al. improved the SPGD method for satellite-to-ground laser communication
links [18]. In 2013, Geng et al. proposed the divergence cost function method, where divergence
cost function was proposed as a merit function for SPGD method [19]. In 2015, Wu et al.
proposed the multi-perturbation SPGD method with faster convergence than the original SPGD
method [20]. In 2017, Yang et al. improved the SPGD method to avoid local extremum points for
incoherent beam combination [21]. In 2018, Huang et al. deployed the precisely-delayed SPGD
method for adaptive SMF coupling in the free space optical communication [22]. Although
these methods have achieved promising results, most of them were proposed for specific optical
problems and cannot be adopted to achieve efficient fiber coupling directly.

In this paper, we propose a novel method, called adaptive stochastic parallel gradient descent
(ASPGD), to achieve efficient fiber coupling. Specifically, inspired by the Adam optimizer
[24,25], which is widely used to optimize the connection weights of deep neural networks, we
integrate the momentum and the adaptive gain coefficient estimation to the original SPGDmethod.
The novelty and the main contribution of this work are two-fold: 1) An improved SPGDmethod is
proposed to solve the model-free optimization problem in parallel. It is capable of escaping local
extremum points and accelerating convergence. At the same time, it sets the corresponding gain
coefficients for different controlling variables adaptively, which makes ASPGD more robust to
the learning rate; and 2) we apply the proposed ASPGD method to achieve efficient fiber coupling
in a real-world system, which can further advance the FSOC research. Extensive simulation and
experiments have been conducted. The simulation and experimental results demonstrate that the
proposed method reduces not only 50% of iterations but also keeps the stability by comparing it
with the original SPGD method, which verifies the effectiveness and efficiency of our proposed
method.

2. Our proposed approach

2.1. Problem formulation

In FSOC between satellites, the vibration of satellite platform where FSO terminals are mounted
induces wavefront tip-tilt aberration into the beam, degrading the beam coupling efficiency(CE)
into the single-mode fiber. Fortunately, the optical fiber coupling has proven to be a significant
technique for adaptive optical tasks [14], which can effectively improve the fiber CE of the
system. As shown in Fig. 1, after the reflection of the mirror and the disturbance of disturbing
fast steering mirror(FSM), the laser enters the energy meter after the correction of coupling
FSM. The disturbing FSM is used to simulate atmospheric turbulence and satellite, the vibration
of the satellite platform. The coupling FSM is the primary control unit for steering the beam
from the laser into SMF to improve CE in the fiber coupling system, power meter as the sensor
measures the coupling energy of optical fiber. The goal of fiber coupling is to control the FSM to
reach the maximal coupling energy by adjusting the controlling variables. To formulate this fiber
coupling system, we take the power meter measurement as the objective function J, which is
associated with the FSM voltage parameters u1 and u2 as J = g(u1, u2). Even the function of g is
not explicitly defined, its result can be obtained by reading the power meter, and it is assumed to
be differentiable w.r.t the FSM voltage parameters u1 and u2 [23]. Thus, the fiber coupling can
be achieved by searching the optimal FSM voltage parameters to maximize J.

2.2. ASPGD

The original SPGD method is widely used in AO for correcting the spot jitter error caused by
atmospheric turbulence and mechanical jitter at the receiving equipment to maximize the power
meter reading result. It is also can be used to solve our formulated fiber coupling problem.
In the original SPGD method, the gradient estimation of the objective function is realized by
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Fig. 1. A typical fiber coupling system. The laser enters the power meter after being reflected
by FSM, and the controller controls FSM to maximize the power meter measurement value.

applying random disturbances ∆u1,∆u2, . . . ,∆um to the controlling variables of the function,
u1, u2, . . . , um, simultaneously. The disturbances ∆u1,∆u2, . . . ,∆um have fixed amplitude, i.e.,
|∆uk | = ∆u for k ∈ {1, 2, . . . ,m}, where m denotes the number of the controlling variables.
Following [26], we define the change in objective function as

∆J = J(u1 + ∆u1, u2 + ∆u2, . . . , um + ∆um) − J(u1, u2, . . . , um). (1)

By using the Taylor expansion, we can rewrite Eq. (1) as follows:

∆J =
m∑

i=1

∂J
∂uk
∆uk + O([∆uk]), (2)

which yields the following approximation if we ignore the higher order terms:

∆J · ∆uk =
∂J
∂uk
(∆uk)2 +

m∑
i>0,i,k

( ∂J
∂uk
· ∆ui
∆uk
). (3)

Reference [26] points out that the last term of Eq. (3) has expectation value of zero for random
and independently distributed since the term (∆uk)2 is equally ∆u2. Thus, we can approximate
the gradient by disturbing all variables simultaneously as

gk =
∂J
∂uk
=
∆J · ∆uk

(∆u)2 . (4)

We note that the learning scheme of the original SPGD method can be very slow when there is
a long and narrow valley in the objective function surface. In such a situation, the direction of
the gradient is almost perpendicular to the long axis of the valley. Thus, the optimizer would
oscillate forth and back in the direction of the short axis and moves very slowly along the long
axis of the valley. Inspired by [27] and [24], we first introduce the momentum term into the
SPGD method to accelerate its convergence. Mathematically, we compute the first momentum of
the current time step as:

mt
k = β1m

t−1
k + (1 − β1) · gt

k, (5)

where mt−1
k stands for the momentum of the last time step, and β1 is a scalar hyper-parameter
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Fig. 2. The optimization trace of SPGD and our ASPGD for minimizing the objective
function in Eq. (12), which has many local minimum. SPGD falls into local minimum and
our method can find the global minimal (Best viewed in color).

controlling the decay rates of the past momentum. The momentum depends on both the current
gradient and the previous gradients. This manner helps average out the oscillation along the short
axis while adds up contributions along the long axis [27].
Furthermore, the original SPGD method adopts a united gain rate for all the optimizing

parameters. It would be difficult to search for a suitable gain rate value in the real-world fiber
coupling systems. By following [25], we adjust the gain rate for different parameters in SPGD by
involving a second momentum term as follows:

vt
k = β2v

t−1
k + (1 − β2) · (gt

k)2, (6)

where vt
k stands for the second momentum of the past time step and β2 is a scalar hyper-parameter

controlling the decay rates of the second momentum in the last step. This term sums up the
weighted square results of the past gradients, which indicates the uncentered variance of the
gradients. In the learning process, we adjust the learning step by dividing the second momentum
term. In consequence, we update the parameters as follows:

ut
k = ut−1

k − αmt
k/(

√
vt

k + ε), (7)

where ε is a small number to avoid numerical problems, and we typically set it as 10−8.
It can be seen that the updating rule in Eq. (7) makes the momentum biased towards the initial

value of the momentum at t = 0, especially when β1 and β2 close to 1. To address this issue, [25]
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Fig. 3. Comparison between SPGD and ASPGD under different parameter settings. The
ASPGD method can quickly converge to the global minimum under different parameters.
However, the SPGD method converges to the local extrema or does not converge under all
the three settings.

has proposed a correction strategy to estimate the bias-corrected estimates of the momentum
values as:

m̂t
k = mt

k/[1 − (β1)t],
v̂t

k = vt
k/[1 − (β2)t].

(8)
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The derivation of Eq. (8) can be find in [25]. Let us initialize the momentum value as zero. Then,
the first momentum at time step t can be written as:

mt
k = (1 − β1)

t∑
i=1

β1 · gt
k,

vt
k = (1 − β2)

t∑
i=1

β2 · (gt
k)2.

(9)

Taking expectations of the both sides of Eq. (9), we have

E(mt
k) = E

[
(1 − β1)

t∑
i=1

β1 · gt
k

]
;

E(vt
k) = E

[
(1 − β2)

t∑
i=1

β2 · (gt
k)2

]
,

(10)

which gives
E(mt

k) = E(gt
k) · [1 − (β1)t] + η1;

E(vt
k) = E

[(gt
k)2

] · [1 − (β2)t] + η2, (11)

where η1 = 0 if the true first momentum is stationary; otherwise η1 can be kept small [25].
Similar result can be obtained for η2. To correct the discrepancy between E(mt

k),E(vt
k) and

E(gt
k),E[(gt

k)2], we need to conduct the initialization bias correction via Eq. (8).
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The derivation of Eq. (8) can be find in [25]. Let us initialize the momentum value as zero. Then,
the first momentum at time step t can be written as:

mt
k = (1 − β1)

t∑
i=1

β1 · gtk,

vtk = (1 − β2)
t∑

i=1
β2 · (gtk)2.

(9)

Taking expectations of the both sides of Eq. (9), we have

E(mt
k) = E

[
(1 − β1)

t∑
i=1

β1 · gtk
]
;

E(vtk) = E
[
(1 − β2)

t∑
i=1

β2 · (gtk)2
]
,

(10)

which gives
E(mt

k) = E(gtk) · [1 − (β1)t] + η1;
E(vtk) = E

[(gtk)2] · [1 − (β2)t] + η2, (11)

where η1 = 0 if the true first momentum is stationary; otherwise η1 can be kept small [25].
Similar result can be obtained for η2. To correct the discrepancy between E(mt

k),E(vtk) and
E(gtk),E[(gtk)2], we need to conduct the initialization bias correction via Eq. (8).

Algorithm 1 The procedure of our proposed ASPGD method
Require: The gain rate α, the exponential decay rates for the moment estimates β1 and β2, the

stochastic objective function J(u1, u2, . . . , um), the amplitude ∆u, and the maximal number
of learning iterations T .

Ensure: The optimal parameters u1, u2, . . . , um.
1: m0 ← 0 . Initialize the first moment vector
2: v0 ← 0 . Initialize the second moment vector
3: ε ← 10−8
4: Randomly initialize the parameters u01, u

0
2, . . . , u

0
m.

5: for t = 1, . . . ,T do . Different time steps
6: Randomly generate the values of ∆u1,∆u2, . . . ,∆um based on the value of ∆u.
7: ∆J ← J(ut−11 + ∆u1, u

t−1
2 + ∆u2, . . . , u

t−1
m + ∆um) − J(ut−11 , ut−12 , . . . , ut−1m )

8: parfor k = 1, 2, . . . ,m do . Parallel for loop
9: gtk ← ∆J ·∆ukt

(∆u)2
10: mt

k ← β1mt−1
k + (1 − β1) · gtk

11: vtk ← β2vt−1k + (1 − β2) · (gtk)2
12: m̂t

k ← mt
k/[1 − (β1)t]

13: v̂tk ← vtk/[1 − (β2)t]
14: utk ← ut−1k + αm̂

t
k/(̂vtk + ε)

15: end parfor
16: end for

The details of the learning procedure of ASPGD are summarized in Algorithm 1. It is notable
that the code block in Lines 9 - 14 is executed in parallel for different values of k. The maximal
number of learning iterations is taken as the termination condition in this work and is typically
set as 100.

The details of the learning procedure of ASPGD are summarized in Algorithm 1. It is notable
that the code block in Lines 9 - 14 is executed in parallel for different values of k. The maximal
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number of learning iterations is taken as the termination condition in this work and is typically
set as 100.
To intuitively illustrate the effectiveness of the ASPGD method, we apply it to minimize the

objective function:
J = (u − 3)2 + sin(2πu) + 5. (12)

As shown in Fig. 2, it can be seen that it has many local minimum points, and its global minimum
value is 0. For comparison, we use SPGD to optimize the objective function J as well, and three
sets of parameters are evaluated for each method.
The values of the objective function obtained by the two methods during the optimization

process are shown in Fig. 3, where the left column shows the results of SPGD and the right column
shows the results f ASPGD, and different rows display the results under different parameter
settings. From the simulation results, we can see that the SPGD method can converge quickly
when the parameters are appropriately provided, but it falls into the local minimum (Fig. 3(a)).
When the parameters are changed from (∆u = 0.01 to ∆u = 0.003, ∆u = 0.001), its convergence
speed is reduced (Fig. 3(c) and Fig. 3(e)). In contrast, the ASPGD method can converge quickly
within 100 iterations and reach the global minimum under all the three parameter settings
(Fig. 3(b), Fig. 3(d) and Fig. 3(f)). The comparison demonstrates that ASPGD can accelerate the
convergence speed and improve the capability to reach the global minimum. Also, it shows that
the proposed method is robust to the hyper-parameter ∆u.

3. Simulation

3.1. SMF coupling efficiency

The scheme of SMF coupling is shown in Fig. 4. A beam propagates through an aperture with
a diameter of d located at plane A, and is focused via an optical lens with a focal length of f .
The tip of the stationary SMF is mounted at the focal plane signed as plane B. The SMF mode
field at plane B can be approximated as a Gaussian beam with 1% error. The symbol of λ is the
wavelength of the laser beam and ω0 is the the radius of SMF field. For convenience we consider
the calculation of coupling efficiency η in plane A, which is defined as follows [28]:

η =

�����
∬

A

√
2

πω2
α

exp(− r2

ω2
α

− jφ(r, θ))drdθ

�����
2

=
2

πω2
α

(a2r + a2i ),
(13)

where ar =
∬

A exp(− r2
ω2

α
)cos[φ(r, θ)]drdθ , ai =

∬
A exp(− r2

ω2
α
)sin[φ(r, θ)]drdθ and ωα = λf

πω0
.

In adaptive optical systems, Zernike polynomial is generally adopted to decompose the
wavefront phase with distortion to the sum of weighted orthogonal polynomials, which represent
various types of aberrations. The wavefront phase φ(r, θ) can be expended as [28]:

φ(r, θ) = a0 + a1Z1(r, θ) + a2Z2(r, θ) +
∞∑

i=3
aiZi(r, θ) (14)

where Zi(r, θ) denotes the ith Zernike polynomial and ai is the corresponding coefficient of
polynomials. In the Zernike polynomials, the 0th term with coefficient a0 represents piston that is
insignificant to SMF coupling, while Z1(r, θ) and Z2(r, θ) represent the tilt aberrations along x
and y directions, respectively.
Tip/tilt error accounts for 87% of the total wavefront aberrations caused by the atmosphere

turbulence [28]. In addition, the tracking system is based on the optical communication link
in space with a thin atmosphere. Thus, in this work, we ignore the high-order aberrations and
compensate only tip/tilt error caused by vibration and atmospheric turbulence.
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Fig. 4. The scheme of the SMF coupling system. The vibration of satellite platform and
atmospheric turbulence affect the CE of the optical fiber.

3.2. Simulation analysis

In order to imitate slight atmosphere turbulence and inherent aberrations of the lens, Zernike
polynomials with 10 terms is fabricated as the distorted wavefront. The initial coefficients
for a1 to a10 are given as 2, 2, 0.34, 0.2, 0.15, 0.12, 0.13, 0.16, 0.08 and 0.09, respectively. In
the simulation, λ is set to 1550nm, f is 0.71m, ω0 is 5.2µm and d is set to 0.15m. Since the
control voltages of FSM have an approximately linear relationship with the coefficients a1 and
a2, we regulate a1 and a2 to equivalently simulate tip/tilt control of FSM. The normalized CE
is used as the index rather than the absolute value of CE to observe the feature of the method
more intuitively, and x-label is set as the motion times of FSM because of the fixed control
frequency. The wavefront before the compensation is shown in Fig. 5(a) and the wavefront
after the compensation is shown in Fig. 5(b). The normalized CE value obtained by using the
compensation is 67.8%, which is much larger than the value of 3× 10−4 before the compensation.
PV means the peak value, and RMS is the root mean square. Clearly, most of the distortion has
been well compensated. Note that to facilitate our observation, the simulation results treat the
optimization objective as normalized coupling efficiency.

Fig. 5. The results of the warefronts with/without compensation. (a) The wavefront before
the compensation. (b) The wavefront after the compensation.
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In the simulation, we use Eq. (13) as the optimization goal of SPGD and ASPGD, and control
FSM by optimizing a1 and a2 of the Zernike coefficients. By considering the randomness of the
method, we execute each method 200 times. First of all, we do experiments on two parameters β1
and β2 introduced by SPGD to find the optimal parameters. As shown in Fig. 6(a) and Fig. 6(b),
we can see that the minimum convergent numbers under β1 = 0.2 and β2 = 0.999. Then, we
use the setting of β1 = 0.2 and β2 = 0.999 for ASPGD and compare it with the SPGD in the
simulation. Figure 7(a) and Fig. 7(b) show the optimization curves of SPGD and ASPGD under
their optimal parameters, respectively.

Fig. 6. The simulation results of convergent iteration and convergent normalized CE
obtained by ASPGD under different β1 and β2 values.

Fig. 7. Simulation comparison of SPGD and ASPGD on fiber coupling.

From Fig. 7, the SPGD method converges after at least 20 iterations, and in the worst case,
it converges after up to 65 iterations, averaging at the number around 52 iterations. ASPGD
converges to a fixed point after at least 11 iterations, and maximally 27 iterations. The average
number of iterations for the convergence of ASPGD is about 22, which less than half of the
SPGD method. In addition, the results of SPGD merely depend on the random disturbance at
each iteration and the current gradient, which fluctuates greatly. While the ASPGD method not
only considers the current gradient information in the iteration process, but also the historical



Research Article Vol. 28, No. 9 / 27 April 2020 / Optics Express 13150

gradient, thus effectively reducing the impact of randomness. Overall, ASPGD converges faster
than SPGD, and it is more robust to the randomness of the disturbance.

To further compare the robustness of the two methods to the hyper-parameter ∆u, we evaluate
the two methods under the same setting as previous simulation except change the value of ∆u
from 0.01 to 0.015 and 0.005. The results are shown in Fig. 8, from which we can see that the
SPGD method is extremely sensitive to ∆u. When ∆u becomes 0.015, SPGD almost diverges
(Fig. 8(a)), while when ∆u is reduced to 0.005, the convergence speed of SPGD is reduced twice
(Fig. 8(c)). Differently, the ASPGD method still works well under ∆u ∈ 0.015, 0.005.

Fig. 8. Simulation comparison of SPGD and ASPGD under different values of ∆u.

To explore the limitation of the ASPGD method, we adjust ∆u form 0.00005 to 0.5. The
results of convergent iteration and the normalized CE obtained by ASPGD are shown in
Fig. 9, from which we can see that our ASPGD is able to converge to the optimal CE under
∆u ∈ {10−5, 10−4, 10−3, 10−2, 0.1} within 120 iterations, and it obtains the normalized CE of
80% under ∆u = 1. The results show that ASPGD works well under a large range of ∆u values,
which makes it easily be applied to real-world applications for the users.
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Fig. 9. The simulation results of convergent iteration and convergent normalized CE
obtained by ASPGD under different ∆u values.

4. Experiment

To further investigate the performance of ASPGD for fiber coupling, and verify the performance
in real-world application systems, we compare the SPGD method with our ASPGD on a fiber
coupling platform. It consists of a laser, an SMF, an FSM, and an optical power meter. The
scheme and the experimental setup are shown in Fig. 1 and Fig. 10, respectively.
As shown in Fig. 1, the power meter is designed for receiving a light beam from the laser.

The wavelength of the laser beam is 1550nm, the conversion coefficient of the optical power
meter’s output (voltage) and input (optical power) is measured to be 39.475V/mW, the diameter
of fiber core is 9m and the sampling frequency of the controller is 500Hz. The beam is reflected
by FSM and enters the optical power meter. According to the variation of optical power, FSM is
controlled to move tinily so as to calculate the gradient [4]. For a fair comparison, we evaluate
the performance of SPGD and ASPGD under the same initial conditions.
We set the same initial point for both tested methods, and report the results with their

corresponding optimal parameter values. The optimal setting for SPGD is ∆u = 1,α = 7000,
and the optimal setting for ASPGD is ∆u = 1,α = 50, β1 = 0.2, β2 = 0.999, ε = 10−8. The
experimental results are shown in Fig. 11, from which we find that the curve of the SPGD method
rises slowly at the beginning and reaches the maximum upon about 130 iterations. However, the
ASPGD method can dynamically adjust the gain according to the gradient value at the beginning
to achieve rapid convergence. Finally, it reaches the maximum after about 50 iterations, which is
much faster than SPGD.
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Fig. 10. A real-world fiber coupling system. It is constructed based on the fiber coupling
scheme shown in Fig. 1.
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Fig. 11. Comparison of SPGD and ASPGD on the real-world fiber coupling system. The
red curves indicate the results of SPGD, and the red curves indicate the results of ASPGD.

5. Conclusion

In this paper, an improved SPGD method (ASPGD) is proposed to achieve efficient fiber coupling.
By integrating the momentum and adaptive gain coefficient estimation into the original SPGD,
our proposed method is able to avoid converging to the local extremum points and accelerate
the convergence speed. The simulation results show that the ASPGD method can improve the
stability of the method and accelerate the convergence speed. Specifically, compared with SPGD,
the iteration number of ASPGD is reduced by 50%. At the same time, the method is robust to
parameter uncertainties and can converge for a wide range of parameters (∆u = 0.00005 − 0.5 ).
At last, the effectiveness of the method is also evaluated on a real-world fiber coupling system.
The experimental results show that our ASPGD converges much faster than the original SPGD
method as well.

In the future, as a general optimization method, we will investigate how to apply the ASPGD
method to more complex optical problems.
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