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Abstract—Deep neural networks have demonstrated impressive
results in medical image analysis, but designing suitable archi-
tectures for each specific task is expertise-dependent and time-
consuming. Neural architecture search (NAS) offers an effective
means of discovering architectures. It has been highly successful
in numerous applications, particularly in natural image classifica-
tion. Yet, medical images possess unique characteristics, such as
small regions and a wide variety of lesion sizes, that differentiate
them from natural images. Furthermore, most current NAS
methods struggle with high computational costs, especially when
dealing with high-resolution image datasets. In this paper, we
present a novel evolutionary neural architecture search method
called Multi-Scale Training-Free Neural Architecture Search to
address these challenges. Specifically, to accommodate the broad
range of lesion region sizes in disease diagnosis, we develop a new
reduction cell search space that enables the search algorithm to
explicitly identify the optimal scale combination for multi-scale
feature extraction. To overcome the issue of high computational
costs, we utilize training-free indicators as performance measures
for candidate architectures, which allows us to search for the
optimal architecture more efficiently. More specifically, by con-
sidering the capability and simplicity of various networks, we
formulate a multi-objective optimization problem that involves
two training-free indicators and model complexity for candidate
architectures. Extensive experiments on a large medical image
benchmark and a publicly available breast cancer detection
dataset are conducted. The empirical results demonstrate that
our MSTF-NAS outperforms both human-designed architectures
and current state-of-the-art NAS algorithms on both datasets,
indicating the effectiveness of our proposed method.

Index Terms—Neural architecture search, evolutionary opti-
mization, training-free architecture search, medical image clas-
sification

I. INTRODUCTION

DEEP neural networks have achieved remarkable success
in various tasks, including image classification [1]–[3],

object detection [4], [5], and segmentation [6], [7] in both
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natural and medical research domains. The success of these
networks can be attributed, in part, to well-designed archi-
tectures such as AlexNet [8], ResNet [9], and SENet [10],
which have achieved top performance in the ImageNet Large-
Scale Visual Recognition Challenge for the classification task.
These human-designed methods incorporate effective struc-
tures to enhance model performance. However, in the context
of medical image analysis, different architectures often yield
vastly different performances on various datasets and diseases.
Therefore, designing architectures tailored to specific datasets
and tasks becomes crucial to account for medical image
characteristics, such as small regions of interest and a wide
range of lesion sizes, in order to further improve disease de-
tection performance. Additionally, the manual design of neural
networks is a trial-and-error process that requires numerous
attempts and relies heavily on expert experience [11], [12].

In contrast to human-designed methods, neural architecture
search (NAS) automatically identifies the optimal architecture
within a given search space [13]. The search space contains all
possible architecture combinations, making it challenging to
find the optimal one in a limited time. For instance, the DARTS
search space encompasses approximately 1018 candidate ar-
chitectures when searching for normal and reduction cells
simultaneously. Thus, an effective search algorithm is essential
to expedite the process of finding the optimal architecture.
Currently, NAS methods employ three categories of search
algorithms: reinforcement learning [14] (RL), evolutionary
algorithms [15], [16] (EA), and gradient-based methods [17].
Most of the existing NAS methods are validation-based meth-
ods. Specifically, during the search process, these methods
must train each candidate model for several epochs and test
it on a validation set to obtain the approximate performance
of this model. Obviously, there will be hundreds of thousands
of candidate architectures during the search procedure. The
process of training and validating each model can be time-
consuming and computationally expensive.

To mitigate the time cost of the search process, a
training-free-based approach has been recently proposed [18].
Training-free-based methods utilize performance estimators to
approximate performance on a specific dataset by forwarding
a small batch of data or backward the gradients of weights.
Performance estimators are usually computed by defining
different kinds of indicators that measure the effect of different
combinations of the operations of the search space after
building the operation into an architecture. By replacing the
training and validation processes with indicators, the time cost
of the NAS search algorithm has been significantly reduced.
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Fig. 1. Multi-scale lesion regions vs. multi-scale pooling. Several sample
images from the CBIS-DDSM dataset exhibit a wide range of breast cancer
lesion sizes. Different pooling operations summarize information from differ-
ent regions with different perception scopes.

However, most of the existing training-free methods are de-
signed for natural image classification. The key difference
between medical images and natural images may cause the
performance drop of existing methods. Specifically, medical
images have a small region of interest and a wide variety of
lesions.

In this paper, we present a novel evolutionary neural
architecture search method called Multi-Scale Training-Free
Neural Architecture Search (MSTF-NAS) to search for an
architecture with a multi-scale ability that can perform well
on medical image datasets with a large range of lesion region
sizes. In our method, “multi-scale” refers to the utilization of
multiple pooling kernel sizes designed to summarize features
from feature maps while preserving essential information. To
achieve this goal, we design two different search subspaces:
one for normal cell searching and another for reduction cell
searching. The normal cell search space is similar to existing
search spaces like the commonly used DARTS search space.
The reduction cell search space is designed to extract and
summarize the information from different scales of input
features. We employ different pooling operations with different
pooling sizes to perceive input features in various scales.
A toy example of different pooling operations is shown in
Fig 1, from which we can see that different pooling sizes and
types make a different summary of input features. It is highly
advantageous to extract the features from the data which have
a small region of interest and a large range of lesion sizes.
Moreover, by considering the capability and simplicity of
various networks, we formulate a multi-objective optimization
problem that involves two training-free indicators and model
complexity to search for promising candidate architectures
efficiently.

We outline the novelty and main contributions of this work
as follows:

• We propose a novel multi-scale training-free neural ar-
chitecture search (NAS) method specifically designed for
effectively searching for the optimal architecture within
medical image datasets, even when dealing with high-

resolution images. By adopting this approach, we are able
to identify suitable architectures that effectively address
the challenges posed by medical image data.

• We introduce a novel search space that incorporates
various pooling operations with diverse pooling sizes,
which enables the exploration of architectures that can
effectively capture and retain multi-scale information.
Our method addresses the challenge of small regions of
interest and accommodates a wide range of lesion sizes
present in medical images.

• In contrast to existing training-free NAS approaches,
our methodology extends beyond solely assessing the
capability of candidate architectures. We introduce a
novel perspective by integrating the simplicity of ar-
chitectures into the search process and formulating a
new multi-objective optimization problem. By adopting
this comprehensive approach, we can search for optimal
architectures that not only possess superior capability but
also demonstrate reasonable simplicity, ultimately aiming
to achieve promising levels of diagnostic accuracy.

The remainder of this paper is organized as follows: We
review related work in Section II. In Section III, we present the
details of our proposed method. The experimental setup and
results are reported in Section IV. Finally, Section V concludes
the paper.

II. RELATED WORK

This section provides a detailed review of the most relevant
research studies related to our proposed method. Specifically,
we will delve into the topics of multi-scale feature extraction,
neural architecture search, and training-free indicators.

A. Multi-Scale Feature Extraction

Multi-scale feature extraction methods aim to extract fea-
tures from input images with different scales of perception.
Various methods involve resizing the input image into different
sizes and using a backbone to extract the different scale
features. For instance, Chen et al. proposed a scale-aware
attention-based model that improves segmentation perfor-
mance. This method resizes the input image into different sizes
and employs a shared backbone to extract features from the
different-sized images. Then, an attention mechanism is used
to softly fuse the different scales of features [19]. Similarly,
Fang et al. proposed a multi-scale feature abstraction method
with a pyramid convolutional structure [20]. By resizing the
input image into different sizes, the model can learn different
scale global features, which has improved the organ segmen-
tation performance. Besides resizing the input image to obtain
the multi-scale features, MIMS-CNN is a method that resizes
the feature maps of the backbone into different sizes, then uses
a convolutional layer to learn the multi-scale features [21].
Unlike resizing either input image or feature maps, Su et al.
proposed a multi-scale U-Net for medical image segmentation
by employing multiple kernel sizes for extraction of semantic
features from images. Multi-scale features also make features
diverse [22].
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Unlike these methods, we utilize different pooling kernels to
construct a reduction cell to summarize the multi-scale feature.
Furthermore, the reduction cell is searched automatically with
our proposed NAS algorithm.

B. Neural Architecture Search

NAS is an approach that discovers the optimal neural
architecture automatically from a predefined search space,
including various operations [14], [15], [17], [23]–[26], such
as 3 × 3 convolutional layers, pooling layers, and dense
connections. Most NAS methods are based on the gradient
optimization strategy, which treats the architecture search as
an optimization problem. This method relaxes the discrete and
non-differentiable architecture representation into continuous
and differentiable [17], [27], [28]. Besides, some NAS meth-
ods use EA to generate the optimal architecture by the iterative
crossovers and mutations of the population [15], [29]–[32] or
use the RL algorithm as the controller to build the optimal
architecture by exploring and exploiting the performance of
different architectures [14], [33], [34]. To enable the candidate
architectures to have multi-scale feature learning ability, Yan et
al. proposed multi-scale NAS (MS-NAS) for medical image
segmentation. In MS-NAS, a multi-scale framework with a
multi-scale cell search space and multi-scale feature fusion
is defined. Similarly, CLEARER is proposed to search the
multi-scale architecture for image restoration [35]. NAS-count
proposes a way to search a series of cascaded pooling layers
and constructs an SPPLoss to resolve the scale variation
problem in counting-by-density [36]. Wong et al. propose a
NAS method to discover the optimal combinations of 3D pool-
ing operations to reduce computational resource consumption,
and each reduction layer contains one of the pooling opera-
tions [37]. Furthermore, only a limited number of training-free
indicator-based NAS methods have been introduced. FreeREA
leverages an optimized combination of training-free metrics
to rank architectures during the search process [38]. Yang et
al. introduce a lightweight training-based metric for search-
ing high-performance architectures with fewer parameters by
integrating training-free indicators [39]. Additionally, Do et
al. propose a multi-objective NAS approach that employs
the neural tangent kernel, number of linear regions, and
FLOPs as three distinct objectives [40]. However, these NAS
methods are designed for either natural image or medical
image segmentation, and few works have studied the NAS
application in automated disease diagnosis. Bae et al. propose
a new search space containing different 3D pooling operations
with different kernel sizes and multiple 3D convolutional
operations and try to reduce the search time and computation
resources. Kwasigroch et al. introduced NAS with the hill-
climbing search strategy to search for the specific architecture
for malignant melanoma detection with less computational
cost on a real-world dataset. Zhang et al. proposed a multi-
objective evolutionary zero-shot NAS framework for medical
image classification [41].

Different from these multi-scale NAS methods and NAS
for medical image classification, we present a new multi-scale
search space for reduction cell search and aim to search for

a model that can effectively handle the large range of lesion
region sizes.

C. Training-Free Indicators

For NAS, a key challenge is the high computational costs,
as candidate architectures need to be trained and validated
to evaluate their performance. To tackle this challenge, one
way is to build a performance estimator that predicts the
performance of candidate architectures [24], [42], [43]. How-
ever, extra training is required to train the predictor to predict
the model’s performance accurately. Recently, training-free
or training-free proxies NAS have been studied to reduce
computational costs. They typically define an indicator or
measurement to estimate the performance of candidate archi-
tectures instead of training and validating them on a specific
dataset. For example, Chen et al. proposed using the number
of the neural tangent kernel (NTK) and the number of linear
regions to estimate the architecture performance [44]. Then,
using a pruning-by-importance strategy to find the optimal
architecture. Mellor et al. estimated the architecture’s perfor-
mance at the initial state by computing the Hamming distance
between the binary codes of two inputs [45]. By combining
the Hamming distance, which can reflect how dissimilar the
two inputs are, with a simple search strategy, the architecture’s
performance is estimated by computing a single forward pass
with a batch of data. Abdelfatta et al. adopted a series of prun-
ing indicators that use just a batch of training data to estimate
the performance of candidate architectures. They then used
RL, EA, and predictor-based search algorithms to search for
the architecture. The indicators include snip [46], grasp [47],
synflow [48], fisher [49], and jacobian covariance [45].

Unlike existing training-free methods, our approach involves
designing a new multi-scale search space. We carefully analyze
both the features of the search space and the medical images to
determine the appropriate indicators for searching the optimal
architecture. Besides, we consider both the simplicity and
the capability of the candidate architectures to search for the
optimal architecture.

III. OUR PROPOSED METHOD

Given a dataset D = Dtrain ∪ Dvalid ∪ Dtest, we aim
to search the Pareto-optimal architectures by solving the
following bi-level optimization problem:

min
α∈Ω

F (α) = (f1(α;θ
∗
α), f2(α;θ

∗
α), · · · , fm(α;θ∗

α),

s.t. θ∗
α = argmin

θ∈Θ
L(θ;α),

(1)

where the upper-level problem defines an architecture can-
didate α in the search space Ω and minimizes m desired
objective functions f1, f2, · · · , fm simultaneously. The lower-
level problem is to search for the optimal weight parameters
for α via the loss function L(θ;α) on the dataset D.

To solve the above problem, we propose a novel method
called MSTF-NAS, as illustrated in Fig. 2. Our approach
utilizes an evolutionary search strategy framework, employing
EA as the search algorithm. It consists of three essential ele-
ments: the search space, the formulation of a multi-objective
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Fig. 2. The framework of our proposed MSTF-NAS algorithm. We adopt an evolutionary search strategy, which involves several key steps: randomly sampling
initial architectures from the search space, evaluating the candidate architectures’ performance by predefined objectives, generating candidate architectures by
EA procedure, and looping the steps until the last generation. By following this framework, we can efficiently explore the space of possible architectures and
identify those that best meet our desired objectives.

problem, and the evolutionary multi-objective architecture
search. To begin, we establish the search space and proceed
with the evolutionary search process. Within this process, we
generate initial architectures by sampling from the search
space. EA then generates the next generation by applying
mutation, crossover, and selection, where the selection is
guided by our designated objectives. We repeat the first two
steps until the maximum generation is reached.

A. Search Space

The search space encompasses all the operations utilized in
constructing neural architectures. An ideal search space should
encompass a wide range of potential high-performance archi-
tectures while maintaining a manageable number of candidate
architectures. This enables the search algorithm to discover
the optimal architecture efficiently. In many previous studies,
the search process simultaneously explores the normal cell
and reduction cell within the search space [15], [17].In this
study, we utilize the normal cell for feature extraction and the
reduction cell for dimensionality reduction of feature maps.
To effectively accomplish the objective of searching for a
multi-scale feature extraction cell, we divide the search space
into two distinct sub-spaces. In the normal cell search space,
we define oN = 8 operations, including 3 × 3, 5 × 5, and
7×7 separable convolutions, 3×3 and 5×5 dilated separable
convolutions, 7× 1 followed by 1× 7 convolutions, Identity,
and zero. In the reduction cell search space, oR = 6 different
pooling operations with different pooling sizes are defined,
which include 2× 2 max and average pooling, 3× 3 max and
average pooling, and 4× 4 max and average pooling. All the
pooling operations have a stride of two. By including different
pooling operations, we can construct a reduction cell in our
reduction search space that can summarize feature maps on
a multi-scale, thereby enhancing the diversity of features to
cover various sizes of lesions.

The structure of the normal cells is the same as previous
methods [15], [17], where the number of nodes in a normal
cell is nN = 5. The operation of each node is chosen from the

normal cell search space by the search algorithm. The input
of the normal cell is the feature maps from the last layer.
The search algorithm aims to find the optimal combination of
operations in the normal search space that allows the normal
cell to extract distinctive features.

The structure of a single reduction cell is shown in Figure 3.
Each reduction cell includes four nodes, i.e., nR = 4, and
each node is a searched pooling operation. The inputs of the
reduction cell are the output feature maps of the previous
layer, and its output consists of more feature maps that reduce
dimensionality. The search algorithm aims to find the optimal
pooling operation for each node. To maintain the same channel
dimensionality for both input and output feature maps, each
pooling operation includes two layers. The first layer is a
standard 2D pooling layer, and the second layer is a 2D
convolutional layer with a 1×1 kernel size and 1

4 the number
of input channel numbers.

During the architecture search process, two search strategies
are commonly employed: micro-search and macro-search.
Micro-search is a cell-based strategy that searches for one
normal cell, replaces several layers, and inserts the pooling
layer at predefined layers to construct the final architecture.
On the other hand, the macro-search strategy searches for
the entire architecture at once. Our approach is a macro-
based search method where all the blocks of the architecture
are individually distinct and undergo a search process. Each
block consists of a normal cell and a reduction cell. Assuming
there are nN nodes for each normal cell and nR nodes for
each reduction cell, the number of potential architectures for
a block, within our defined search space, can be calculated
as (oN )nN × nN ! × (oR)

nR , where oN and oR represent the
total number of operations in the normal and reduction search
spaces, respectively.

B. Formulation of Multi-Objective Problem

An optimal neural architecture should strike a balance
between effectively representing nonlinear complexity and
maintaining a reasonable simplicity. The network’s capability
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describes its ability to represent nonlinear complexity, while
simplicity implies that the network should achieve comparable
performance with fewer trainable parameters, thereby avoiding
the issue of over-parameterization. This is particularly crucial
for medical datasets, which often have limited samples [50].
The capability of neural architectures can be reliably estimated
using training-free indicators, as demonstrated by Abdelfattah
et al. [18]. The simplicity of a neural architecture is influenced
by the complexity of an architecture such as the number of
layers, parameters, and the choice of activation functions. By
considering the number of floating-point operations (FLOPs)
required by architecture as an accurate and reliable proxy for
network complexity [15], in our study, we utilize FLOPs of
architecture as an indicator to approximate the simplicity of
the network. During the architecture search process, we aim
to optimize the trade-off between the capability and simplicity
of architectures.

Specifically, we can adopt several types of training-free
indicators [18], such as grad norm, snip, grasp, synaptic
flow (synflow), fisher, and Jacobian covariance (jacob cov),
to measure the capability of an architecture. In addition, the
indicator of grad norm measures the architecture performance
by summing the Euclidean norm of the gradients computed at
initialization using a single minibatch of data. The indicators
of grasp, synaptic flow (synflow), fisher are defined as follows:

snip: Sp =

∣∣∣∣∂L∂θ ⊙ θ

∣∣∣∣ ,
grasp: Sp(θ) = −(H

∂L
∂θ

)⊙ θ,

synflow: Sp(θ) =
∂L

∂θ
⊙ θ,

fisher: Sz(z) = (
∂L
∂z

)2,Sn =

M∑
i=1

Sz(zi),

(2)

where L, θ, and z denote the loss function, weights of archi-
tecture, and output feature maps from the last convolutional
layer of architecture, respectively. H is the Hessian, and ⊙ is
the Hadamard product. It is worth noting that Sp calculated
the saliency according to each weight parameter. Abdelfattahet
al. used the sum of Sp over all N weights as the indicator
Sz(z) =

∑N
i Sp(θ)i. Similarly, the fisher uses the sum of Sz

in terms of all the feature maps zi for i ∈ [1, 2, . . . ,M ] as the
indicator, where M is the number of feature maps. Lastly, the
Jacobian covariance is computed as follows [45],

jacob cov: s = log |KH | , (3)

and

KH =

NA − dH(c1, c1) · · · NA − dH(c1, cN )
...

. . .
...

NA − dH(cN , c1) · · · NA − dH(cN , cN )

 ,

(4)
where NA is the number of rectified linear units, dH(ci, cj) is
the Hamming distance between two binary codes, which are
computed from two different inputs. The Jacobian covariance
represents the connection of activations in a network when
exposed to various inputs. All six indicators demonstrate a
positive relationship with the desired outcome, where larger
values indicate better performance.

From the definitions of these indicators, we find that
grad norm, snip, grasp, and synflow are directly related to
the weights of the architecture, with no explicit connections
to the feature maps. Considering our goal is to learn features
with multi-scale information, we propose to include at least
one indicator associated with the saliency of feature maps like
fisher or jacob cov. In this work, we retain fisher, grad norm,
synflow, and jacob cov as potential indicators when construct-
ing the objective functions for architecture search since some
previous studies [18] have verified that grasp and snip maybe
fail to estimate the performance of architectures.

It is important to note that optimizing the multiobjective
problem becomes increasingly challenging as the number of
objectives involved increases. There are two main reasons
for this phenomenon. Firstly, as the number of objectives
grows, the selection pressure towards the Pareto front during
the evolution process may diminish, leading to suboptimal
solutions. Secondly, the solutions become increasingly sparse
across the entire objective space, making it harder to find a
well-distributed set of optimal solutions. Based on this con-
sideration, we construct a problem that involves two training-
free performance indicators and model complexity estimator
(FLOPs) but with only two objectives defined as follows:{

f1 = −p1 − fflops,

f2 = −p2 + fflops,
(5)

where p1 and p2 are two performance indicators, and fflops
denotes the value of FLOPs for the architecture candidate.

As shown in Eq. (5), both model performance and complex-
ity have been taken into account during the search procedure.
We have verified that selecting two indicators is more precise
than the previous single indicator-based methods [18] in Sec-
tion IV-E. Moreover, we incorporate FLOPs into the objectives
and enforce the two objectives to be conflicting, making the
formulated problem suitable to be optimized with dominance-
based EAs. Since the values of indicators and FLOPs are on
different scales, we normalize the values of indicators and
FLOPs from the same generation into the range [0, 1] to ensure
an equal contribution from both indicators and FLOPs.

C. Search Algorithm

Operation encoding: MSTF-NAS is based on the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II) [51],
which is a multi-objective evolutionary optimization algorithm
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that has been successfully utilized for handling various multi-
objective problems [52], [53]. To leverage NSGA-II, we first
encode the operation into a genotype, which is how NSGA-
II searches for architectures. Since our method employs a
macro search-based approach, each architecture starts with
a predefined stem block [15]. Subsequently, it comprises
three blocks, which are determined through the macro search
strategy, with each block consisting of one normal cell and one
reduction cell. Finally, a global average pooling is utilized to
transfer the feature maps into a feature vector. The encoding of
each block is in the same manner and the length of the encoded
genotype of the entire architecture is three times of each block.
Each block is encoded by a (2 × nN + nR)-dimensional
vector. Each block includes a normal cell and a reduction
cell, so the genotype also encompasses these two parts. An
example illustration of one normal cell and a reduction cell is
shown at the top of Fig. 4. For genotype encoding, each node
is represented with two dimensions in the normal cell: one
denotes the operation, and another one denotes which node
this operation connects to. For the reduction cell, only one
dimension is used, and it represents the operation. Since all
the operations are used to reduce the spatial dimensions, we
concatenate all the nodes as the final output of the reduction
cell. As mentioned in Section III-A, there are oN = 8
operations in the normal cell and oR = 6 operations in the
reduction cell. Thus, we use 0 to 7 to represent the operations
of the normal cell and 0 to 5 to represent the operations of the
reduction cell. In our method, we set the number of nodes in
the normal cell and reduction cell to be nN = 5 and nR = 4,
respectively. Therefore, the genotype of our method is a 14-
dimensional vector.

Search procedure: To efficiently and effectively search
the architecture from the vast search space, we adopt a
similar search procedure as NSGA-NET [15]. It is an iterative
procedure that generatively produces architectures from the
initial generation to the maximum number of generations. At
the beginning of the search procedure, an initial population
is randomly initialized. One sample of the population is one
architecture. The population members compete with each other
to survive and produce the next generation. For each iteration,
some members are selected as parents to generate a certain
number of offspring, which are the new architectures that
comprise the new population. When generating the offspring,
crossover and mutation are employed to ensure a large diver-
sity among the offspring members. Crossover and mutation
are utilized to explore the search space. Simultaneously, an
exploitation procedure is used to exploit the existing well-
constructed structures in a block.

Detailed architecture construction: Figure 4 illustrates an
example of how an MSTF-NAS block is constructed, from the
encoding of operations to the final architecture. First, it obtains
the encoding genotype and then translates the genotype into
the phenotype according to the operations and connections
among different nodes. Next, it selects the nodes that need to
be concatenated. Finally, using the phenotype information, it
builds the architecture shown at the bottom of Fig. 4.
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Normal=[('sep_conv_3x3', 0), 
('dil_conv_3x3', 0), 
('dil_conv_5x5', 1), 
('dil_conv_5x5', 0), 
('sep_conv_3x3', 3)];

Normal_concat=[2, 4, 5]

Reduce=[('max_pool_2x2', 0), 
('avg_pool_3x3', 0), 
('avg_pool_4x4', 0), 
('max_pool_2x2', 0)];
Reduce_concat=[1, 2, 3, 4]

Phenotype

Mapping

Architecture

Fig. 4. Encoding of MSTF-NAS: The original architectures are represented by
a 14-dimensional vector genotype, with the first 10 dimensions corresponding
to the normal cell and the last 4 dimensions representing the reduction cell.
The genotype is then transformed into the phenotype according to the search
space mapping. Finally, the architecture is constructed based on the phenotype,
as shown in the bottom architectures.

TABLE I
THE DETAILED DATASET INFORMATION AND THE NUMBER OF

SAMPLES [54]. TR., VAL. AND TE. DENOTE THE TRAINING AND
VALIDATION AND TEST SETS, RESPECTIVELY.

MedMNIST Tasks (# Classes) # Samples # Tr. / Val. / Te.
Path Multi-Class (9) 107180 89996 / 10004 / 7180
Chest Multi-Label (14) 112120 78468 / 1219 / 22433
Derma Multi-Class (7) 10015 7007 / 1003 / 2005
OCT Multi-Class (4) 109309 97477 / 10832 / 1000
Pneumonia Binary-Class (2) 5856 4708 / 524 / 624
Retina Ordinal Regression (5) 1600 1080 / 120 / 400
Breast Binary-Class (2) 780 546 / 78 / 156
Blood Multi-Class (8) 17092 11959 / 1712 / 3421
Tissue Multi-Class (8) 236386 165466 / 23640 / 47280
OrganA Multi-Class (11) 58850 34581 / 6491 / 17778
OrganC Multi-Class (11) 23660 13000 / 239 / 8268
OrganS Multi-Class (11) 25221 13940 / 2452 / 8829

IV. EXPERIMENTAL STUDY

A. Datasets

To evaluate the effectiveness of our proposed method,
we employ a large medical benchmark dataset, MEDMNIST
V2 [54], and a mammography dataset, Curated Breast Imaging
Subset of the Digital Database for Screening Mammography
(CBIS-DDSM) [55]. MEDMNIST is the first large-scale med-
ical image benchmark for evaluating computer vision tasks,
including auto-machine learning algorithms. It contains twelve
pre-processed 2D datasets and six 3D datasets which include
diverse data modalities (such as X-Ray, OCT, Ultrasound,
CT and et al.), diverse classification tasks (binary/multiclass
classification, multi-label and ordinal regression) and different
data scales (from hundreds to hundreds of thousands) for
developing 2D and 3D neural network, respectively [54]. In
our experiments, we leverage all the 2D image datasets to
evaluate our method. The detailed dataset information and the
number of samples are shown in Table I. All the tasks of
MEDMNIST are classification tasks, including the ChestM-
NIST dataset, which is a multi-label binary classification task.
The size of the images in this benchmark is pre-processed
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to 28 × 28 pixels for standardizing the benchmark officially.
The CBIS-DDSM dataset is a standard version of the DDSM
dataset. There are 891 mass cases and 753 calcification cases.
Each case may have one or two mammography images, so
there are 3071 images in the CBIS-DDSM dataset in total,
with 1353 malignant images and 1718 benign/normal images.
The original images are stored in DICOM format, and the
resolution is around 3000 × 4000 pixels. The CBIS-DDSM
dataset has provided the official training (2489 images) and
test (645 images) sets. To search the CBIS-DDSM, we first
transform the DICOM image into JPEG format, then resize the
original image to 224× 224 pixels to search the architectures.
For evaluation, we resize the original image to 800 × 800
pixels, following the preprocessing method used by Shu et
al. [12].

B. Experimental Settings

1) Implementation Details: In searching for the optimal
network for each dataset from MEDMNIST and CBIS-DDSM,
we set the depth of the blocks to three and four, respectively,
since the images in the CBIS-DDSM dataset have high resolu-
tions. The NSGA-II settings are the same as those in NSGA-
Net [15]. After the search procedure, we select the architecture
with the highest value of the sum of the two training-free
indicators from the last generation as the optimal architecture
for further evaluation of classification performance. In the
evaluation procedure, we follow the official guidelines of
MEDMNIST [54] to train and evaluate the model’s perfor-
mance. For the evaluation of CBIS-DDSM, we employ the
same strategy as Shu et al. [12]. The initial channel number
for all architectures in our method search is set to 128, and
the channel number will double with each subsequent block.
Both the search and evaluation procedures are conducted on
a single DGX A100 GPU card with 40 GB memory, using
the PyTorch framework. For the training-free indicators in the
objectives, they are selected by employing an ablation study
as mentioned in section IV-E2. Finally, unless explicitly stated
otherwise, we utilize jacob cov and synflow to construct the
objectives to search the optimal architectures.

2) Evaluation Metrics: To evaluate the searched architec-
ture’s performance, we use the metrics provided by the official
guideline [54] and then most popular used metrics on CBIS-
DDSM [11], [12], i.e., accuracy (ACC) and the area under
the receiver operating characteristic curve (AUC) for both the
MEDMNIST and CBIS-DDMS datasets. The values of ACC
and AUC can be computed as follows:

ACC =
TP + TN

TP + FP + TN + FP

AUC =

∫ 1

0

ROC(r) dr
, (6)

where TP, TN,FP , and FN denote the true positive, true
negative, false positive, and false negative, respectively. More-
over, ROC(r) represents the ROC curve (the true positive
rate against the false positive rate) as a function of the false
positive rate, and dr denotes the differential element of the
false positive rate.

C. Evaluation on MEDMNIST

To evaluate the effectiveness and efficiency of our pro-
posed method, we compare it with two human-designed ar-
chitectures, three auto-machine learning methods, four NAS
methods, and the random search strategy. Specifically, we
employ ResNet-18 and ResNet-50 [9] as the human-designed
models. These two models are evaluated on two different sizes,
i.e., 28 × 28 and 224 × 224. For the auto-machine learning
methods, Auto-sklearn, AutoKeras, and Google AutoML Vi-
sion are employed. Auto-sklearn is an auto-search method for
searching optimal classifiers, feature preprocessing methods,
and data preprocessing methods [56]. AutoKeras is a Bayesian
optimization-based NAS method for searching both neural
architectures and hyperparameters [57]. Google AutoML Vi-
sion is a commercial AutoML tool. All the results of these
mentioned models are provided by the MEDMNIST bench-
mark [54]. For NAS methods, we compare with DARTS [17],
SNAS [58], NSGA-Net [15], and HOPNAS [59]. DARTS,
SNAS, and HOPNAS are one-shot-based NAS methods that
search the architectures from a pre-trained supernet. DARTS
and NSGA-Net are designed for searching architectures for
natural images. HOPNAS searches architectures by reducing
the supernet dynamically for medical images. Additionally, the
random search strategy is a commonly used NAS baseline that
randomly selects architectures from the search space. Of all
these methods, NSGA-Net is the most related to our work.
However, the difference is that NSGA-Net is a validation-
based NAS method, which requires training and validating
each architecture on a specific dataset. In contrast, our method
only needs to forward compute a batch of data.

Table II and III report the detailed experimental results
in terms of accuracy and AUC score. The overall conclusion
from the results is that our proposed method outperforms
all other methods, as it achieved the highest average AUC
score and the best average accuracy over 12 subsets. When
comparing different types of methods, we find that human-
designed architectures can achieve better performance com-
pared to AutoML methods and can also outperform some NAS
methods, such as DARTS and SNAS. The potential reason
is that none of these methods are designed specifically for
searching architectures for medical images. The domain gap
between natural images and medical images leads to these
results. Among all the NAS methods, the performances of
one-shot-based methods (DARTS, SNAS, and HOPNAS) are
inferior to the validation-based method (NSGA-NET) and our
proposed method. The main reason for this phenomenon is
that one-shot-based methods estimate candidate architectures’
performance using a pre-trained supernet, which may not be
well-trained. However, NSGA-NET estimates each candidate
architecture by training and validating on the dataset, making it
more precise, but at the cost of higher computational and time
expenses. For our method, even though we estimate candidate
architectures without training and validating on the dataset,
we use multiple indicators to comprehensively estimate the
performance of the candidate architectures. It is worth noting
that the random search strategy based on our search space can
achieve a similar performance to the previous SOTA method,
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TABLE II
RESULTS OF DIFFERENT METHODS ON THE MEDMNIST BENCHMARK IN TERMS OF ACCURACY. AVG. DENOTES THE AVERAGE PERFORMANCE OVER

THE 12 SUBSETS.

Methods Path Chest Derma OCT Pneum Retina Breast Blood Tissue OrganA OrganC OrganS AVG.
ResNet-18 (28) 0.907 0.947 0.735 0.743 0.854 0.524 0.863 0.958 0.676 0.935 0.900 0.782 0.819
ResNet-18 (224) 0.909 0.947 0.754 0.763 0.864 0.493 0.833 0.963 0.681 0.951 0.920 0.778 0.821
ResNet-50 (28) 0.911 0.947 0.735 0.762 0.854 0.528 0.812 0.956 0.680 0.935 0.905 0.770 0.816
ResNet-50 (224) 0.892 0.948 0.731 0.776 0.884 0.511 0.842 0.950 0.680 0.947 0.911 0.785 0.821
auto-sklearn 0.716 0.779 0.719 0.601 0.855 0.515 0.803 0.878 0.532 0.762 0.829 0.672 0.722
AutoKeras 0.834 0.937 0.749 0.763 0.878 0.503 0.831 0.961 0.703 0.905 0.879 0.813 0.813
Google AutoML 0.728 0.948 0.768 0.771 0.946 0.531 0.861 0.966 0.673 0.886 0.877 0.749 0.809
DARTS 0.872 0.934 0.749 0.712 0.874 0.510 0.832 0.953 0.648 0.926 0.791 0.808 0.801
SNAS 0.850 0.938 0.737 0.708 0.871 0.515 0.811 0.946 0.708 0.918 0.891 0.778 0.806
HOPNAS 0.912 0.947 0.759 0.761 0.852 0.523 0.853 0.958 0.698 0.937 0.911 0.803 0.826
NSGA-NET 0.866 0.947 0.744 0.765 0.907 0.540 0.846 0.970 0.712 0.952 0.923 0.820 0.833
Random search 0.854 0.946 0.773 0.760 0.904 0.542 0.897 0.966 0.717 0.955 0.923 0.820 0.838
MSTF-NAS (Ours) 0.910 0.945 0.774 0.780 0.912 0.550 0.872 0.976 0.740 0.962 0.936 0.838 0.850

TABLE III
RESULTS OF DIFFERENT METHODS ON THE MEDMNIST BENCHMARK IN TERMS OF THE AUC SCORE. AVG. DENOTES THE AVERAGE PERFORMANCE

OVER 12 SUBSETS.

Methods Path Chest Derma OCT Pneum Retina Breast Blood Tissue OrganA OrganC OrganS AVG.
ResNet-18 (28) 0.983 0.768 0.917 0.943 0.944 0.717 0.901 0.998 0.930 0.997 0.992 0.972 0.922
ResNet-18 (224) 0.989 0.773 0.920 0.958 0.956 0.710 0.891 0.998 0.933 0.998 0.994 0.974 0.925
ResNet-50 (28) 0.990 0.769 0.913 0.952 0.948 0.726 0.857 0.997 0.931 0.997 0.992 0.972 0.920
ResNet-50 (224) 0.989 0.773 0.912 0.958 0.962 0.716 0.866 0.997 0.932 0.998 0.993 0.975 0.923
auto-sklearn 0.934 0.649 0.902 0.887 0.942 0.690 0.836 0.984 0.828 0.963 0.976 0.945 0.878
AutoKeras 0.959 0.742 0.915 0.955 0.947 0.719 0.871 0.998 0.941 0.994 0.990 0.974 0.917
Google AutoML 0.944 0.778 0.914 0.963 0.991 0.750 0.919 0.998 0.924 0.990 0.988 0.964 0.927
DARTS 0.975 0.732 0.913 0.953 0.965 0.742 0.912 0.994 0.901 0.987 0.969 0.910 0.913
SNAS 0.969 0.733 0.906 0.949 0.974 0.753 0.894 0.996 0.921 0.979 0.927 0.952 0.913
HOPNAS 0.987 0.763 0.899 0.948 0.971 0.770 0.907 0.996 0.913 0.995 0.998 0.975 0.927
NSGA-NET 0.979 0.779 0.915 0.958 0.965 0.759 0.857 0.999 0.942 0.999 0.993 0.978 0.927
Random search 0.980 0.774 0.923 0.956 0.963 0.750 0.921 0.999 0.944 0.999 0.994 0.982 0.932
MSTF-NAS (Ours) 0.990 0.791 0.934 0.968 0.963 0.755 0.930 0.999 0.951 0.999 0.996 0.983 0.938

TABLE IV
THE SEARCH TIME (MINUTES) COSTS OF DIFFERENT SEARCH ALGORITHMS ON THE MEDMNIST BENCHMARK. AVG. DENOTES THE AVERAGE TIME

OVER 12 SUBSETS.

Methods Path Chest Derma OCT Pneum Retina Breast Blood Tissue OrganA OrganC OrganS AVG.
Google AutoML 180 180 120 180 60 60 60 180 240 120 120 120 135
DARTS 1496 1184 121 1181 25 16 29 196 538 478 342 519 510
SNAS 691 585 45 443 11 7 13 474 1080 195 133 154 319
HOPNAS 465 390 38 372 8 5 8 55 985 152 92 112 224
NSGA-NET 2645 1067 223 3061 108 35 14 273 4147 799 280 281 1078
MSTF-NAS (Ours) 34 24 21 24 19 21 10 20 31 23 20 16 22

which shows the effectiveness of our search space. In an-
other aspect, SNAS, DARTS, and NSGA-NET were originally
designed for natural image classification and demonstrated
strong performance on datasets such as Cifar10 and ImageNet.
However, when tested on the 12 datasets included in the
MEDMNIST benchmark, they exhibited subpar performance
compared to our approach. Specifically, our method achieved
improvements of 1.7% in average ACC and 1.1% in AUC.
This performance disparity may be attributed to the fact that
our method was purposefully tailored to handle a wide range
of lesion size data, accomplished through innovative reduction
cell construction and more refined search objectives during the
search procedure.

Table IV demonstrates the search time of different search al-
gorithms on the 12 datasets. We compare our method with the
NAS algorithms that are mentioned in Table III and the most
commonly used auto-machine learning method, i.e., Google
AutoML. From Table IV, we can see that our method spends

the minimum average search time across the 12 datasets. It
has also been revealed that one-shot-based NAS and train-
validation-based NAS are highly dependent on the dataset size.
The larger the dataset size, the more time is spent searching
for architectures. For example, PathMNIST has more than
100000 samples in the training set, 10 times the number
of DermaMNIST, and the search time of these methods on
PathMNIST is also around 10 times that of DermaMNIST.
Our method has a weaker connection to the dataset size, and
it spends only 64 minutes on search time, which is at least
two times faster than other methods. The reduced search cost
and stable search time across the 12 datasets benefit from the
training-free search strategy, which only needs to feed one
batch of data to estimate the performance of each candidate
architecture. To further demonstrate the effectiveness of our
method in searching for architectures in high-resolution im-
agery, we conduct an evaluation on the CBIS-DDSM dataset,
setting the input image resolution to 224 × 224 pixels. We
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TABLE V
RESULTS OF DIFFERENT BACKBONE MODELS ON CBIS-DDSM DATASET.

‘W/’ AND ‘W/O’ STAND FOR WITH AND WITHOUT, RESPECTIVELY.

Model Setting ACC (%) AUC (%)
VGG-16

w/o pre-trained

57.21 62.17
ResNet-18 62.17 67.46
ResNet-34 65.43 70.10
ResNet-50 62.33 65.62
ResNet-101 62.17 67.84
DenseNet-121 62.48 68.37
ViT-B-16 59.69 62.10
ViT-L-16 61.24 63.79
MSTF-NAS (Ours) 66.67 70.56
VGG-16

w/ pre-trained

69.45 75.24
ResNet-18 65.89 73.82
ResNet-34 69.15 76.37
ResNet-50 66.98 76.27
ResNet-101 70.70 77.18
DenseNet-121 68.53 75.67
MSTF-NAS (Ours) 71.63 80.22

compare our method to our primary baseline, NSGA-NET, and
report the time required for 40 generations of both methods.
Notably, for NSGA-NET, we limit training to just five epochs
to estimate the performance of each architecture. The results
indicate a significant difference in time efficiency, with our
method taking 115 minutes and NSGA-NET requiring 870
minutes. It is worth noting that the time represents training
for only five epochs on a 2000 image training set. This stark
contrast highlights our method’s ability to accelerate the search
process by approximately 8 times compared to NSGA-NET,
confirming its effectiveness when dealing with high-resolution
image datasets.

D. Evaluation on CBIS-DDSM

To further evaluate the effectiveness of our proposed
method, we search for and evaluate the optimal architecture on
the CBIS-DDSM dataset. As our MSTF-NAS is designed for
searching backbones, we leverage the most commonly used
backbones in breast cancer detection as our baselines. Specif-
ically, we compare our method with VGG-16 [2], ResNet [9]
series (ResNet-18, ResNet-34, ResNet-50, and ResNet-101),
DenseNet-121 [1] and vision transformer (ViT) series [60]
(ViT-B-16 and ViT-L-16). Since most previous studies have
verified that ImageNet pre-trained weights can significantly
improve the classification task on CBIS-DDSM [11], [12], we
also use pre-trained models to evaluate the performance of
all the models (with pre-trained). By pretraining our model
on the ImageNet dataset, our model achieved 75.13% of the
top 1 accuracy on the validation set. Additionally, we provide
the performance without pre-trained weights (without pre-
trained) to show the trainability of our searched architecture.
We only compare ViT without pre-trained weights, because
the ImageNet pre-trained ViTs require fixed input image size,
i.e., 224× 224, which is not fair compared with other models
which use 800 × 800 image as input. The results for all the
models are demonstrated in Table V. The accuracies of all the
models are based on the optimal threshold, which is selected
using the precision-recall curve.

From Table V, it can be observed that all models achieve
higher AUC scores when using pre-trained weights. The

AUC scores of all models with pre-trained weights improve
by approximately 6%-13% when compared to models with-
out pre-trained weights. More importantly, our MSTF-NAS
achieves the highest ACC and AUC scores among all seven
backbone models, both with and without pre-trained weights.
Specifically, MSTF-NAS achieves 0.4% and 3.04% higher
AUC scores than the best model of other backbones without
and with pre-trained weights, respectively. In the comparison
between ViTs and our approach, it becomes evident that
ViTs exhibit subpar performance on this dataset. Notably,
their performance surpasses that of VGG-16 only with respect
to accuracy (ACC) and the area under the curve (AUC).
Several potential factors contribute to this observation: 1) ViTs
excel at capturing global features within input images, yet the
presence of breast cancer lesions accounts for merely 1% of
the image area, rendering them relatively small for effective
recognition. 2) The training of a ViT model necessitates a
substantial volume of images, and our dataset comprising
2489 images falls significantly short of what is required for
comprehensive ViT model training [61]. On one hand, these
results illustrate the effectiveness and reasonable simplicity
of MSTF-NAS, where performance benefits from the well-
designed search space and the effective search algorithm. On
the other hand, the results reveal that backbones designed for
natural images may not perform as effectively as backbones
specifically tailored to the characteristics of medical data.

To assess the efficacy of classifying lesions of varying
sizes, we partition the test dataset from CBIS-DDSM into
three distinct subsets based on lesion size. The CBIS-DDSM
dataset comprises a substantial number of samples featuring
calcifications and masses, each exhibiting lesions spanning
a wide range of scales, from 0.182 to 2.08 × 10−5. This
scale range signifies the proportion of lesion area relative to
the entire image. Subsequently, we categorize the 645 test
samples into three subsets based on lesion area proportions:
large size (comprising 206 samples with proportions > 0.01),
medium size (encompassing 409 samples with proportions
ranging from 0.001 to 0.01), and small size (consisting of 30
samples with proportions < 0.001). We conduct evaluations
on these three subsets using seven models pre-trained on
ImageNet, with the AUC as the chosen evaluation metric,
as it remains unaffected by sample distribution disparities.
The specific classification outcomes are presented in Table VI.
Our experimental findings conclusively demonstrate that our
custom-designed model, MSZS-NET, achieves the highest
AUC score across all three subsets, as well as an impressive
average AUC score over the entire dataset. Our approach
exhibits notable improvements, increasing AUC scores by
2.85%, 2.67%, and 2.88% on the large, medium, and small
lesion size subsets, respectively. It has indicated that the lesion
sizes are smaller, and a higher improvement of our method was
achieved. These results substantiate the effectiveness of our
multi-scale search strategy in enhancing performance across
varying lesion sizes.

E. Ablation Study
To evaluate the effectiveness of each module of our pro-

posed MSTF-NAS, we conduct the following ablation studies
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TABLE VI
THE RESULTS OF DIFFERENT MODELS ON DIFFERENT LESION SIZE

DATASETS.

Model AUC
Large Medium Small Average

ResNet-18 72.32 71.82 95.19 79.78
ResNet-34 77.07 73.27 90.38 80.24
ResNet-50 78.69 71.57 96.15 82.14

ResNet-101 79.18 73.65 97.12 83.32
VGG-16 74.09 73.58 84.62 77.43

DenseNet-121 74.69 72.66 87.50 78.28
MSZS-NET (Ours) 82.03 76.32 100.00 86.12

TABLE VII
RESULTS OF DIFFERENT POOLING OPERATIONS IN TERMS OF DIFFERENT

LESION SIZES.

Pooling AUC
Large Medium small

2x2 average 74.69 74.18 77.05
2x2 max 76.36 74.32 80.13
3x3 average 80.29 73.58 83.61
3x3 max 77.84 76.89 82.49
4x4 average 76.82 71.28 83.78
4x4 max 73.25 74.81 77.72

on one dataset of MEDMNIST and CBIS-DDSM datasets. We
report the average performance over 12 subsets for the results
on MEDMNIST.

1) The effect of pooling sizes on the lesion sizes: To inves-
tigate the impact of various pooling operations and different
pooling sizes on lesions of varying sizes, we conduct an eval-
uation across multiple combinations. We utilize two distinct
pooling operations, namely max pooling and average pooling,
combined with three different pooling sizes: 2× 2, 3× 3, and
4×4. This evaluation is performed on datasets featuring lesions
of different sizes, as outlined in Section IV-D. Specifically, we
employ DenseNet-121 as our backbone architecture, replacing
the original pooling operations with six alternatives: 2 × 2
average pooling and max pooling, 3× 3 average pooling and
max pooling, and 4 × 4 average pooling and max pooling.
The resulting AUC scores on the CBIS-DDSM datasets for
various lesion sizes are presented in Table VII. The outcomes
reveal distinct trends: For the large lesion dataset, 3 × 3
average pooling achieves the highest performance. In the case
of the medium lesion dataset, 3× 3 max pooling outperforms
other configurations. The small lesion dataset benefits most
from 4 × 4 average pooling. Furthermore, it is noteworthy
that the performance of different pooling operations exhibits
a considerable range across the various lesion size datasets,
with AUC values spanning from 73.25% to 80.29% for large
lesions, 71.28% to 76.89% for medium-sized lesions, and
77.05% to 83.78% for small lesions. Moreover, 3× 3 pooling
size performs best on large and medium lesion size subsets and
4× 4 pooling size performs best on small lesion size subset.
These findings underscore the significant impact of pooling
operations on feature learning across different lesion sizes.

2) Indicator Selection: To construct effective objectives
for searching for the optimal architecture, we evaluate dif-
ferent combinations of training-free indicators and choose
the best combination to construct the objectives. We exam-
ine the combinations of the jacob cov, fisher, synflow, and
grad norm indicators, which have been demonstrated to have

TABLE VIII
RESULTS OF DIFFERENT COMBINATIONS OF INDICATORS TO CONSTRUCT

THE OBJECTIVES BASED ON OUR OBJECTIVE CONSTRUCTION WAY ON
MEDMNIST.

Model AUC ACC # Param (MB)
fisher+synflow 0.922 0.833 5.46
jacob cov+synflow 0.938 0.850 4.47
fisher+grad norm 0.929 0.828 5.91
jacob cov+grad norm 0.930 0.841 4.20
fisher+jacob cov 0.936 0.846 5.08
grad norm+synflow 0.920 0.834 5.25

the strongest relationship to architecture performance [18].
The objectives for all combinations are constructed using
our designed method, as described in Eq. (5). For each
combination approach, we conduct searches on 12 subsets
of the MEDMNIST benchmark using our method and select
the best architectures from the Pareto front for each subset.
Subsequently, we train and test these selected architectures on
each subset individually, reporting the average testing results
across all 12 subsets in terms of average accuracy, AUC and
the number of parameters (# Param). The results of different
combinations of these four indicators over 12 datasets of the
MEDMNIST benchmark, in terms of average accuracy and
AUC, are shown in Table VIII.

Table VIII demonstrates that the performances of com-
binations vary from 0.922 to 0.935 and 0.828 to 0.846 in
terms of AUC and ACC, respectively. Specifically, jacob cov
combined with synflow and fisher have achieved very similar
results which outperform other combinations. In addition, the
jacob cov indicator combined with any other indicators can
achieve good performance when compared to other combi-
nations. Furthermore, the performance of the architectures,
as determined by various indicators, does not exhibit a clear
relationship with the number of parameters.

3) Effectiveness of Objective Construction: To evaluate the
effectiveness of our proposed objectives construction way, we
compare our objectives with the following objectives construc-
tion way: 1) using the synflow and jacob cov indicators as
two objectives directly; 2) using FLOPs and synflow indicator
as two objectives; 3) using FLOPs and jacob cov indicator
as two objectives; and 4) using FLOPs as one objective and
(synflow+jacob cov) as another one objective on MEDMNIST
benchmark. It is worth noting that our method introduces
the Flops to constrain the model’s complexity. The results
of different ways to construct the objectives are shown in
Table IX. We report the accuracy, AUC score, FLOPs and the
number of parameters of different ways to construct objectives.
From Table IX, one can see that by adding FLOPs to different
indicators, the final searched architectures’ FLOPs can be
well-constrained. Using multiple indicators in the objective
at one time, the searched architectures can achieve better
average performance over 12 subsets. Also, our proposed
strategy of constructing the objectives can not only achieve
higher average accuracy and AUC scores over 12 subsets of
MEDMNIST benchmark but also have searched the model
with fewer FLOPs. The higher ACC and AUC scores benefit
from using multiple indicators to estimate the performance
of candidate architectures. It has been verified that using our



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

TABLE IX
THE RESULTS OVER 12 DATASETS OF THE MEDMNIST BENCHMARK
USING DIFFERENT WAYS TO COMBINE THE INDICATORS IN TERMS OF

AVERAGE ACCURACY, AUC, FLOPS AND THE NUMBER OF PARAMETERS.

Model AUC ACC FLOPs (M) # Param (MB)
jacob cov+synflow (w/o FLOPs) 0.924 0.834 24.21 5.24
FLOPs+synflow 0.921 0.831 14.45 4.59
FLOPs+jacob cov 0.931 0.832 7.90 2.70
FLOPs+(synflow+jacob cov) 0.931 0.835 11.21 3.53
MSTF-NAS (Ours) 0.938 0.850 14.62 4.47

TABLE X
AVERAGE ACCURACY AND AUC OVER 12 DATASETS OF THE MEDMNIST

BENCHMARK USING DIFFERENT SEARCH SPACES.

Search space AUC ACC
DARTS 0.926 0.825
NSGA-NET 0.928 0.824
MSTF-NAS (Ours) 0.932 0.838

designed objectives to search the architecture is more efficient
and effective. Furthermore, the number of parameters has not
demonstrated any correlation with the model’s performance
that is consistent with the conclusion of Section IV-E2; how-
ever, it is directly proportional to the FLOPs.

4) Effectiveness of Search Space: To evaluate the effec-
tiveness of our designed search space, we compare our search
space with the other two search spaces, i.e. DARTS search
space [17] and NSGA-NET search space [15]. DARTS search
space is a very commonly used search space in most tasks
in both natural image and medical image classification. To
make a fair comparison among all the search spaces, we use
a random search strategy to candidate 100 architectures, and
then select the architecture that has the best estimate perfor-
mance based on Eq. (5) from different search spaces. Then
we build the neural network in the same way as our method.
Finally, we train and test the performance of architectures on
the MEDMNIST benchmark and report the average metrics
over 12 subsets. Table X lists the average performance in terms
of accuracy and AUC scores, which shows our search space
outperforms other search spaces by 1.3% in terms of ACC and
verifies the effectiveness of our search space.

F. Visualization of Searching Process

Our method is based on the evolutionary multi-objective
algorithm, NSGA-II, to search for the optimal architecture
candidates from a given search space. To intuitively show
the search procedure, we visualize the Pareto-front from the
initial generation to the last generation every ten generations.
We normalize the values of the indicators and FLOPs into
[0, 1] over all generations. Pareto-front is made up of several
Pareto-efficient solutions. The goal of the search procedure is
to search the architectures that push the front into a place that
contains more non-dominant solutions. The visualization of
the Pareto-front of different generations is shown in Fig. 5,
from which we can see that the Pareto-front of an initial
generation almost scatters in a small region which means that
all the initial architectures have similar performance in terms
of the objectives. Moreover, from the first generation to the
last generation, the Perato-fronts move from the diagonal line
to a curve that non-dominates all the rest of the architectures

in terms of two objectives with more and more scatter dis-
tribution. It means that the generation becomes more diverse
and has higher objective values.

Besides, we also visualize the searched architecture from the
PneumoniaMNIST dataset. The entire architecture is shown
in Fig. 6. From the results, for the normal cell, we notice
that the shallow normal cell has five operations with multiple
kernel sizes (3 × 3, 5 × 5 and 7 × 7) and the deep normal
cell has deeper connections when compared to the shallow
one. For the reduction cell, we notice that each reduction cell
contains different pooling operations with different pooling
sizes. It means that the multi-scale pooling search space is
effective in building the reduction cell. The high performance
on both the MEDMNIST and CBIS-DDSM datasets indicates
the effectiveness of our constructed multi-scale search space.

V. CONCLUSION

In this paper, we presented a novel method called multi-
scale training-free neural architecture search (MSTF-NAS)
for the customization of neural architecture in the context
of medical image data. The MSTF-NAS approach efficiently
searches for architectures by taking into account the multi-
scale lesion region sizes present in medical images. To enable
the search process, we divided the search space into a normal
cell search space and a reduction search space, and we
designed a new reduction search space specifically tailored
for finding the optimal multi-scale architecture for a given
dataset. Furthermore, we proposed a novel strategy to con-
struct objectives that strike a balance between the capability
and trainability of candidate architectures, enabling a multi-
objective evolutionary search algorithm. To reduce search costs
significantly, we incorporated a training-free proxy indicator,
which accurately estimated the performance of candidate ar-
chitectures. Finally, the effectiveness of our proposed method
was validated through extensive evaluations on a large med-
ical image benchmark and a sizable mammography dataset.
The results demonstrated the capability of MSTF-NAS in
customizing neural architectures for medical image analysis,
showcasing its potential for enhancing the performance of
medical image analysis systems.
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