668 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 3, JUNE 2024

MedNAS: Multiscale Training-Free Neural
Architecture Search for Medical Image Analysis

Yan Wang
Lei Zhang

, Liangli Zhen", Jianwei Zhang"™', Miqing Li"“, Senior Member, IEEE,
, Senior Member, IEEE, Zizhou Wang, Yangqin Feng, Yu Xue™, Senior Member, IEEE,

Xiao Wang", Senior Member, IEEE, Zheng Chen", Tao Luo™, Member, IEEE,
Rick Siow Mong Goh™, and Yong Liu

Abstract—Deep neural networks have demonstrated impressive
results in medical image analysis, but designing suitable archi-
tectures for each specific task is expertise dependent and time
consuming. Neural architecture search (NAS) offers an effective
means of discovering architectures. It has been highly successful
in numerous applications, particularly in natural image classifica-
tion. Yet, medical images possess unique characteristics, such as
small regions and a wide variety of lesion sizes, that differentiate
them from natural images. Furthermore, most current NAS
methods struggle with high computational costs, especially when
dealing with high-resolution image datasets. In this article, we
present a novel evolutionary NAS method called multiscale
training-free neural architecture search (MSTF-NAS) to address
these challenges. Specifically, to accommodate the broad range
of lesion region sizes in disease diagnosis, we develop a new
reduction cell search space that enables the search algorithm to
explicitly identify the optimal scale combination for multiscale
feature extraction. To overcome the issue of high computational
costs, we utilize training-free indicators as performance measures
for candidate architectures, which allows us to search for
the optimal architecture more efficiently. More specifically, by
considering the capability and simplicity of various networks,
we formulate a multiobjective optimization problem that involves
two training-free indicators and model complexity for candidate
architectures. Extensive experiments on a large medical image
benchmark and a publicly available breast cancer detection

Manuscript received 7 July 2023; revised 14 November 2023; accepted
2 January 2024. Date of publication 11 January 2024; date of current
version 31 May 2024. This work was supported in part by the National
Research Foundation of Singapore under its Al Singapore Programme (AISG)
under Award AISG2-TC-2021-003, and in part by the Agency for Science,
Technology and Research (A*STAR) through its AME Programmatic Funding
Scheme under Project A20H4g2141. This article was approved by Associate
Editor B. Xue. (Corresponding author: Liangli Zhen.)

Yan Wang, Liangli Zhen, Zizhou Wang, Yangqin Feng, Tao Luo, Rick
Siow Mong Goh, and Yong Liu are with the Agency for Science, Technology
and Research, Institute of High Performance Computing, Singapore 138632
(e-mail: zhenll@ihpc.a-star.edu.sg).

Jianwei Zhang is with the College of Computer Science, Chengdu
University, Chengdu 610106, China, and also with the College of Computer
Science, Sichuan University, Chengdu 610065, China.

Miqing Li is with the School of Computer Science, University of
Birmingham, B15 2TT Birmingham, U.K.

Lei Zhang is with the Machine Intelligence Laboratory,
of Computer Science, Sichuan University, Chengdu 610065, China.

Yu Xue is with the School of Computer Science, Nanjing University of
Information Science and Technology, Nanjing 210044, China.

Xiao Wang is with Oak Ridge National Laboratory, Oak Ridge, TN 37830
USA.

Zheng Chen is with the Graduate School of Engineering Science, Osaka
University, Osaka 565-0871, Japan.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TEVC.2024.3352641.

Digital Object Identifier 10.1109/TEVC.2024.3352641

College

dataset are conducted. The empirical results demonstrate that
our MSTF-NAS outperforms both human-designed architectures
and current state-of-the-art NAS algorithms on both datasets,
indicating the effectiveness of our proposed method.

Index Terms—Evolutionary optimization, medical image
classification, neural architecture search (NAS), training-free
architecture search.

I. INTRODUCTION

DEEP neural networks have achieved remarkable
success in various tasks, including image clas-
sification  [1], [2], [3], object detection [4], [S], and

segmentation [6], [7] in both natural and medical research
domains. The success of these networks can be attributed,
in part, to well-designed architectures, such as AlexNet [8],
ResNet [9], and SENet [10], which have achieved top
performance in the ImageNet Large-Scale Visual Recognition
Challenge for the classification task. These human-designed
methods incorporate effective structures to enhance model
performance. However, in the context of medical image
analysis, different architectures often yield vastly different
performances on various datasets and diseases. Therefore,
designing architectures tailored to specific datasets and tasks
becomes crucial to account for medical image characteristics,
such as small regions of interest and a wide range of
lesion sizes, in order to further improve disease detection
performance. Additionally, the manual design of neural
networks is a trial-and-error process that requires numerous
attempts and relies heavily on expert experience [11], [12].
In contrast to human-designed methods, neural architecture
search (NAS) automatically identifies the optimal architecture
within a given search space [13]. The search space contains
all possible architecture combinations, making it challenging
to find the optimal one in a limited time. For instance,
the DARTS search space encompasses approximately 10'8
candidate architectures when searching for normal and reduc-
tion cells simultaneously. Thus, an effective search algorithm
is essential to expedite the process of finding the optimal
architecture. Currently, NAS methods employ three categories
of search algorithms: 1) reinforcement learning (RL) [14];
2) evolutionary algorithms (EA) [15], [16]; and 3) gradient-
based methods [17]. Most of the existing NAS methods
are validation-based methods. Specifically, during the search

1089-778X (© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.


https://orcid.org/0000-0003-3907-9388
https://orcid.org/0000-0003-0481-3298
https://orcid.org/0000-0001-8739-9795
https://orcid.org/0000-0002-8607-9607
https://orcid.org/0000-0002-9702-6738
https://orcid.org/0000-0002-9069-7547
https://orcid.org/0000-0001-6545-1943
https://orcid.org/0000-0001-6776-7159
https://orcid.org/0000-0002-3415-3676
https://orcid.org/0000-0001-9116-1595

WANG et al.: MedNAS: MSTF-NAS FOR MEDICAL IMAGE ANALYSIS

process, these methods must train each candidate model for
several epochs and test it on a validation set to obtain the
approximate performance of this model. Obviously, there will
be hundreds of thousands of candidate architectures during the
search procedure. The process of training and validating each
model can be time consuming and computationally expensive.

To mitigate the time cost of the search process, a
training-free-based approach has been recently proposed [18].
Training-free-based methods utilize performance estimators to
approximate performance on a specific dataset by forwarding
a small batch of data or backward the gradients of weights.
Performance estimators are usually computed by defining
different kinds of indicators that measure the effect of different
combinations of the operations of the search space after
building the operation into an architecture. By replacing the
training and validation processes with indicators, the time cost
of the NAS search algorithm has been significantly reduced.
However, most of the existing training-free methods are
designed for natural image classification. The key difference
between medical images and natural images may cause the
performance drop of existing methods. Specifically, medical
images have a small region of interest and a wide variety of
lesions.

In this article, we present a novel evolutionary NAS
method called multiscale training-free neural architecture
search (MSTF-NAS) to search for an architecture with a
multiscale ability that can perform well on medical image
datasets with a large range of lesion region sizes. In our
method, “multiscale” refers to the utilization of multiple pool-
ing kernel sizes designed to summarize features from feature
maps while preserving essential information. To achieve this
goal, we design two different search subspaces: one for normal
cell searching and another for reduction cell searching. The
normal cell search space is similar to existing search spaces
like the commonly used DARTS search space. The reduction
cell search space is designed to extract and summarize the
information from different scales of input features. We employ
different pooling operations with different pooling sizes to
perceive input features in various scales. A toy example
of different pooling operations is shown in Fig. 1, from
which we can see that different pooling sizes and types
make a different summary of input features. It is highly
advantageous to extract the features from the data which have
a small region of interest and a large range of lesion sizes.
Moreover, by considering the capability and simplicity of
various networks, we formulate a multiobjective optimization
problem that involves two training-free indicators and model
complexity to search for promising candidate architectures
efficiently.

We outline the novelty and main contributions of this work
as follows.

1) We propose a novel MSTF-NAS method specifically
designed for effectively searching for the optimal
architecture within medical image datasets, even when
dealing with high-resolution images. By adopting this
approach, we are able to identify suitable architectures
that effectively address the challenges posed by medical
image data.

669

Lose the key
information of
small lesions

Max pooling
1|2 k=2, stride=2

\
]

i

]

i

i
Max pooling !
k=3, stride=1 !
i

]

]

i

i

i

]

i

i

i

]

]

‘ 0-56]0-56]  Avg pooling

k=3, stride=1

N P i o

ol=|o|e

— oo |
%)

0.56[0.78

066 0 Avg pooling

k=2, stride=2

Rich information of Sl

different scales of lesions

Different pooling kernels result different output |
’

Fig. 1. Multiscale lesion regions versus multiscale pooling. Several sample
images from the CBIS-DDSM dataset exhibit a wide range of breast
cancer lesion sizes. Different pooling operations summarize information from
different regions with different perception scopes.

2) We introduce a novel search space that incorporates
various pooling operations with diverse pooling sizes,
which enables the exploration of architectures that can
effectively capture and retain multiscale information.
Our method addresses the challenge of small regions of
interest and accommodates a wide range of lesion sizes
present in medical images.

3) In contrast to existing training-free NAS approaches,
our methodology extends beyond solely assessing the
capability of candidate architectures. We introduce a
novel perspective by integrating the simplicity of archi-
tectures into the search process and formulating a new
multiobjective optimization problem. By adopting this
comprehensive approach, we can search for optimal
architectures that not only possess superior capability but
also demonstrate reasonable simplicity, ultimately aim-
ing to achieve promising levels of diagnostic accuracy.

The remainder of this article is organized as follows: We

review related work in Section II. In Section III, we present the
details of our proposed method. The experimental setup and
results are reported in Section I'V. Finally, Section V concludes
this article.

II. RELATED WORK

This section provides a detailed review of the most relevant
research studies related to our proposed method. Specifically,
we will delve into the topics of multiscale feature extraction,
NAS, and training-free indicators.

A. Multiscale Feature Extraction

Multiscale feature extraction methods aim to extract features
from input images with different scales of perception. Various
methods involve resizing the input image into different sizes
and using a backbone to extract the different scale features. For
instance, Chen et al. proposed a scale-aware attention-based
model that improves segmentation performance. This method
resizes the input image into different sizes and employs a
shared backbone to extract features from the different-sized



670 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 3, JUNE 2024

images. Then, an attention mechanism is used to softly fuse
the different scales of features [19]. Similarly, Fang and
Yan [20] proposed a multiscale feature abstraction method
with a pyramid convolutional structure. By resizing the input
image into different sizes, the model can learn different scale
global features, which has improved the organ segmentation
performance. Besides resizing the input image to obtain the
multiscale features, MIMS-CNN is a method that resizes the
feature maps of the backbone into different sizes, then uses a
convolutional layer to learn the multiscale features [21]. Unlike
resizing either input image or feature maps, Su et al. [22]
proposed a multiscale U-Net for medical image segmentation
by employing multiple kernel sizes for extraction of semantic
features from images. Multiscale features also make features
diverse.

Unlike these methods, we utilize different pooling kernels to
construct a reduction cell to summarize the multiscale feature.
Furthermore, the reduction cell is searched automatically with
our proposed NAS algorithm.

B. Neural Architecture Search

NAS is an approach that discovers the optimal neural
architecture automatically from a predefined search space,
including various operations [14], [15], [17], [23], [24], [25],
[26], such as 3 x 3 convolutional layers, pooling layers, and
dense connections. Most NAS methods are based on the
gradient optimization strategy, which treats the architecture
search as an optimization problem. This method relaxes
the discrete and nondifferentiable architecture representation
into continuous and differentiable [17], [27], [28]. Besides,
some NAS methods use EA to generate the optimal archi-
tecture by the iterative crossovers and mutations of the
population [15], [29], [30], [31], [32] or use the RL algo-
rithm as the controller to build the optimal architecture by
exploring and exploiting the performance of different archi-
tectures [14], [33], [34]. To enable the candidate architectures
to have multiscale feature learning ability, Yan et al. proposed
multiscale NAS (MS-NAS) for medical image segmenta-
tion. In MS-NAS, a multiscale framework with a multiscale
cell search space and multiscale feature fusion is defined.
Similarly, CLEARER is proposed to search the multiscale
architecture for image restoration [35]. NAS-count proposes
a way to search a series of cascaded pooling layers and
constructs an SPPLoss to resolve the scale variation problem
in counting-by-density [36]. Bae et al. [37] proposed an NAS
method to discover the optimal combinations of 3-D pooling
operations to reduce computational resource consumption, and
each reduction layer contains one of the pooling operations.
Furthermore, only a limited number of training-free indicator-
based NAS methods have been introduced. FreeREA leverages
an optimized combination of training-free metrics to rank
architectures during the search process [38]. Yang et al. [39]
introduced a lightweight training-based metric for search-
ing high-performance architectures with fewer parameters
by integrating training-free indicators. Additionally, Do and
Luong [40] proposed a multiobjective NAS approach that
employs the neural tangent kernel (NTK), number of linear

regions, and floating-point operations (FLOPs) as three distinct
objectives. However, these NAS methods are designed for
either natural image or medical image segmentation, and
few works have studied the NAS application in automated
disease diagnosis. Bae et al. propose a new search space
containing different 3-D pooling operations with different
kernel sizes and multiple 3-D convolutional operations and
try to reduce the search time and computation resources.
Kwasigroch et al. introduced NAS with the hill-climbing
search strategy to search for the specific architecture for malig-
nant melanoma detection with less computational cost on a
real-world dataset. Zhang et al. [41] proposed a multiobjective
evolutionary zero-shot NAS framework for medical image
classification.

Different from these MS-NAS methods and NAS for med-
ical image classification, we present a new multiscale search
space for reduction cell search and aim to search for a model
that can effectively handle the large range of lesion region
sizes.

C. Training-Free Indicators

For NAS, a key challenge is the high computational costs,
as candidate architectures need to be trained and validated
to evaluate their performance. To tackle this challenge,
one way is to build a performance estimator that predicts
the performance of candidate architectures [24], [42], [43].
However, extra training is required to train the predictor
to predict the model’s performance accurately. Recently,
training-free or training-free proxies NAS have been stud-
ied to reduce computational costs. They typically define
an indicator or measurement to estimate the performance
of candidate architectures instead of training and validating
them on a specific dataset. For example, Chen et al. [44]
proposed using the number of the NTK and the number of
linear regions to estimate the architecture performance. Then,
using a pruning-by-importance strategy to find the optimal
architecture. Mellor et al. [45] estimated the architecture’s
performance at the initial state by computing the Hamming
distance between the binary codes of two inputs. By combining
the Hamming distance, which can reflect how dissimilar the
two inputs are, with a simple search strategy, the archi-
tecture’s performance is estimated by computing a single
forward pass with a batch of data. Abdelfatta et al. adopted
a series of pruning indicators that use just a batch of training
data to estimate the performance of candidate architectures.
They then used RL, EA, and predictor-based search algo-
rithms to search for the architecture. The indicators include
snip [46], grasp [47], synflow [48], fisher [49], and Jacobian
covariance [45].

Unlike existing training-free methods, our approach involves
designing a new multiscale search space. We carefully analyze
both the features of the search space and the medical images to
determine the appropriate indicators for searching the optimal
architecture. Besides, we consider both the simplicity and
the capability of the candidate architectures to search for the
optimal architecture.



WANG et al.: MedNAS: MSTF-NAS FOR MEDICAL IMAGE ANALYSIS

671

N A 1 ,

, o snective ¢
, : [ Indicator 1 ] ® [ FLOPs ] 1 . Effect on the respective component :
Data S Normal cell Multi-scale —>  Procedure of search strategy 1
1o . reduction cell 1
v 1o [ Indicator 2 ] & [ FLOPs ] f2 1
[ . !
‘ P Objectives Search space 2 Selecti " i
(—* 1 Stem layer :

1 % %
e I
Search | :
1
Procedure : [ Crossover ]—P[ Mutation ] Candidate :
— 1 architectures !
' 1
\\ : T l i
v H
\
1 1
\\ : Evaluate Selection Paren_t Offsp ring 1
v population population |
Vi 7Y . . !
\ 1
\: Search strategy F Final architecture i
Final architecture ' ;)
~ .

Fig. 2. Framework of our proposed MSTF-NAS algorithm. We adopt an evolutionary search strategy, which involves several key steps: randomly sampling
initial architectures from the search space, evaluating the candidate architectures’ performance by predefined objectives, generating candidate architectures by
EA procedure, and looping the steps until the last generation. By following this framework, we can efficiently explore the space of possible architectures and

identify those that best meet our desired objectives.

III. OUR PROPOSED METHOD

Given a dataset D = Dipain U Dyalid U Drest, We aim to search
the Pareto-optimal architectures by solving the following bi-
level optimization problem:

21€ig21F(oe) = (fi(e; 03), fo(a; 03), ..., fn(a; 07)
s.t. @) =argmin L£(0; ) (1)
0c®

where the upper-level problem defines an architecture can-
didate o« in the search space 2 and minimizes m desired
objective functions fi, f>, ..., f;» simultaneously. The lower-
level problem is to search for the optimal weight parameters
for « via the loss function £(0; «) on the dataset D.

To solve the above problem, we propose a novel method
called MSTF-NAS, as illustrated in Fig. 2. Our approach
utilizes an evolutionary search strategy framework, employing
EA as the search algorithm. It consists of three essential
elements: 1) the search space; 2) the formulation of a
multiobjective problem; and 3) the evolutionary multiobjective
architecture search. To begin, we establish the search space
and proceed with the evolutionary search process. Within
this process, we generate initial architectures by sampling
from the search space. EA then generates the next generation
by applying mutation, crossover, and selection, where the
selection is guided by our designated objectives. We repeat
the first two steps until the maximum generation is reached.

A. Search Space

The search space encompasses all the operations utilized
in constructing neural architectures. An ideal search space
should encompass a wide range of potential high-performance
architectures while maintaining a manageable number of
candidate architectures. This enables the search algorithm to
discover the optimal architecture efficiently. In many previous
studies, the search process simultaneously explores the normal
cell and reduction cell within the search space [15], [17]. In
this study, we utilize the normal cell for feature extraction

and the reduction cell for dimensionality reduction of feature
maps. To effectively accomplish the objective of searching for
a multiscale feature extraction cell, we divide the search space
into two distinct subspaces. In the normal cell search space,
we define oy = 8 operations, including 3 x 3, 5 x 5, and
7 x 7 separable convolutions, 3 x 3 and 5 x 5 dilated separable
convolutions, 7 x 1 followed by 1 x 7 convolutions, Identity,
and zero. In the reduction cell search space, og = 6 different
pooling operations with different pooling sizes are defined,
which include 2 x 2 max and average pooling, 3 x 3 max and
average pooling, and 4 x 4 max and average pooling. All the
pooling operations have a stride of two. By including different
pooling operations, we can construct a reduction cell in our
reduction search space that can summarize feature maps on a
multiscale, thereby enhancing the diversity of features to cover
various sizes of lesions.

The structure of the normal cells is the same as previous
methods [15], [17], where the number of nodes in a normal
cell is ny = 5. The operation of each node is chosen from the
normal cell search space by the search algorithm. The input
of the normal cell is the feature maps from the last layer.
The search algorithm aims to find the optimal combination of
operations in the normal search space that allows the normal
cell to extract distinctive features.

The structure of a single reduction cell is shown in Fig. 3.
Each reduction cell includes four nodes, i.e., ng = 4, and
each node is a searched pooling operation. The inputs of the
reduction cell are the output feature maps of the previous
layer, and its output consists of more feature maps that reduce
dimensionality. The search algorithm aims to find the optimal
pooling operation for each node. To maintain the same channel
dimensionality for both input and output feature maps, each
pooling operation includes two layers. The first layer is a
standard 2-D pooling layer, and the second layer is a 2-D
convolutional layer with a 1 x 1 kernel size and (1/4) the
number of input channel numbers.

During the architecture search process, two search
strategies are commonly employed: 1) micro-search and



672 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 3, JUNE 2024

Input

, N
i \
' 1
1 feature maps wxhxc |
' i
' 1
'

i T
'

' i
'

HANC T ny g3 Lo
' 1
B 1
' 1
' 1
H Concatenate !
| ' Pooling structure
H Output w h !
[ P —X=XCc 1
', feature maps 2 2 J

Fig. 3. Detailed illustration of the connections by constructing from our
reduction search space.

2) macro-search. Micro-search is a cell-based strategy that
searches for one normal cell, replaces several layers, and
inserts the pooling layer at predefined layers to construct the
final architecture. On the other hand, the macro-search strategy
searches for the entire architecture at once. Our approach is
a macro-based search method where all the blocks of the
architecture are individually distinct and undergo a search
process. Each block consists of a normal cell and a reduction
cell. Assuming there are ny nodes for each normal cell and
ng nodes for each reduction cell, the number of potential
architectures for a block, within our defined search space, can
be calculated as (on)™ x ny! x (og)"R, where oy and og
represent the total number of operations in the normal and
reduction search spaces, respectively.

B. Formulation of Multiobjective Problem

An optimal neural architecture should strike a balance
between effectively representing nonlinear complexity and
maintaining a reasonable simplicity. The network’s capability
describes its ability to represent nonlinear complexity, while
simplicity implies that the network should achieve compa-
rable performance with fewer trainable parameters, thereby
avoiding the issue of over-parameterization. This is particu-
larly crucial for medical datasets, which often have limited
samples [50]. The capability of neural architectures can be
reliably estimated using training-free indicators, as demon-
strated by Abdelfattah et al. [18]. The simplicity of a neural
architecture is influenced by the complexity of an architecture,
such as the number of layers, parameters, and the choice of
activation functions. By considering the number of FLOPs
required by architecture as an accurate and reliable proxy for
network complexity [15], in our study, we utilize FLOPs of
architecture as an indicator to approximate the simplicity of
the network. During the architecture search process, we aim to
optimize the tradeoff between the capability and simplicity of
architectures.

Specifically, we can adopt several types of training-free
indicators [18], such as grad_norm, snip, grasp, synaptic
flow (synflow), fisher, and Jacobian covariance (jacob_cov),
to measure the capability of an architecture. In addition, the
indicator of grad_norm measures the architecture performance
by summing the Euclidean norm of the gradients computed at
initialization using a single minibatch of data. The indicators

of grasp, synaptic flow (synflow), fisher are defined as follows:

oL

ip: S, =|— 06

snip ‘80 ) ‘
oL

grasp: S,(0) = _(H@> ©o

oL
synflow: S,(0) = 2 ©6

aL\>2 u
fisher: S,(z) = (8_1) ,Sn = ZSZ(Zi) ()
i=1

where £, 6, and z denote the loss function, weights of archi-
tecture, and output feature maps from the last convolutional
layer of architecture, respectively. H is the Hessian and © is
the Hadamard product. It is worth noting that S, calculated the
saliency according to each weight parameter. Abdelfattah et al.
used the sum of S, over all N weights as the indicator S,(z) =
va Sp(0);. Similarly, the fisher uses the sum of S; in terms
of all the feature maps z; for i € [1, 2, ..., M] as the indicator,
where M is the number of feature maps. Finally, the Jacobian
covariance is computed as follows [45]:

jacob_cov: s = log|Kpy]| 3)
and

Na —dy(cr, 1) Ny —dy(cr, cy)

Ky = “)

Na —dg(en, c1) Na —dy(en, cn)

where N4 is the number of rectified linear units, dy(c;, ¢;) is
the Hamming distance between two binary codes, which are
computed from two different inputs. The Jacobian covariance
represents the connection of activations in a network when
exposed to various inputs. All six indicators demonstrate a
positive relationship with the desired outcome, where larger
values indicate better performance.

From the definitions of these indicators, we find that
grad_norm, snip, grasp, and synflow are directly related to
the weights of the architecture, with no explicit connections
to the feature maps. Considering our goal is to learn features
with multiscale information, we propose to include at least
one indicator associated with the saliency of feature maps
like fisher or jacob_cov. In this work, we retain fisher,
grad_norm, synflow, and jacob_cov as potential indicators
when constructing the objective functions for architecture
search since some previous studies [18] have verified that
grasp and snip maybe fail to estimate the performance of
architectures.

It is important to note that optimizing the multiobjective
problem becomes increasingly challenging as the number of
objectives involved increases. There are two main reasons
for this phenomenon. First, as the number of objectives
grows, the selection pressure toward the Pareto front during
the evolution process may diminish, leading to suboptimal
solutions. Second, the solutions become increasingly sparse
across the entire objective space, making it harder to find
a well-distributed set of optimal solutions. Based on this
consideration, we construct a problem that involves two



WANG et al.: MedNAS: MSTF-NAS FOR MEDICAL IMAGE ANALYSIS

training-free performance indicators and model complexity
estimator (FLOPs) but with only two objectives defined as
follows:

{fl = —D1 _fﬂops (5)
fa=-p2 +fﬂops
where p; and p, are two performance indicators, and fhops
denotes the value of FLOPs for the architecture candidate.
As shown in (5), both model performance and complexity
have been taken into account during the search procedure.
We have verified that selecting two indicators is more precise
than the previous single indicator-based methods [18] in
Section IV-E. Moreover, we incorporate FLOPs into the
objectives and enforce the two objectives to be conflicting,
making the formulated problem suitable to be optimized with
dominance-based EAs. Since the values of indicators and
FLOPs are on different scales, we normalize the values of
indicators and FLOPs from the same generation into the range
[0, 1] to ensure an equal contribution from both indicators and
FLOPs.

C. Search Algorithm

Operation Encoding: MSTF-NAS is based on the nondom-
inated sorting genetic algorithm II (NSGA-II) [51], which is
a multiobjective evolutionary optimization algorithm that has
been successfully utilized for handling various multiobjective
problems [52], [53]. To leverage NSGA-II, we first encode the
operation into a genotype, which is how NSGA-II searches
for architectures. Since our method employs a macro search-
based approach, each architecture starts with a predefined stem
block [15]. Subsequently, it comprises three blocks, which are
determined through the macro search strategy, with each block
consisting of one normal cell and one reduction cell. Finally, a
global average pooling is utilized to transfer the feature maps
into a feature vector. The encoding of each block is in the
same manner and the length of the encoded genotype of the
entire architecture is three times of each block. Each block is
encoded by a (2 x ny + ng)-dimensional vector. Each block
includes a normal cell and a reduction cell, so the genotype
also encompasses these two parts. An example illustration of
one normal cell and a reduction cell is shown at the top of
Fig. 4. For genotype encoding, each node is represented with
two dimensions in the normal cell: one denotes the operation,
and another one denotes which node this operation connects
to. For the reduction cell, only one dimension is used, and it
represents the operation. Since all the operations are used to
reduce the spatial dimensions, we concatenate all the nodes
as the final output of the reduction cell. As mentioned in
Section III-A, there are oy = 8 operations in the normal cell
and og = 6 operations in the reduction cell. Thus, we use O to
7 to represent the operations of the normal cell and 0 to 5 to
represent the operations of the reduction cell. In our method,
we set the number of nodes in the normal cell and reduction
cell to be ny = 5 and ng = 4, respectively. Therefore, the
genotype of our method is a 14-D vector.

Search Procedure: To efficiently and effectively search
the architecture from the vast search space, we adopt a
similar search procedure as NSGA-NET [15]. It is an iterative

673

Genotype Normal cell Reduction cell
L L
0 Zero 4 7X7 sep_conv 0 | 2x2 avg_pooling
1 Identity 5 3x3 dil_conv Mappi 1 | 2x2 max_pooling
appin -
2| 3x3sep_conv | 6 3x3 dil_conv PpINg 2 | 3x3 avg pooling
3| 5x5sep conv | 7 | 7x1+1x7 sep_conv 3 | 3x3 max_pooling
4 | 4x4 avg_pooling
Phenotype 5 | 4x5 max_pooling

Normal=[('sep_conv_3x3', 0),
('dil_conv_3x3', 0),
('dil_conv_5x5', 1),
('dil_conv_5x5', 0),
('sep_conv_3x3', 3)];

Normal_concat=[2, 4, 5]

Reduce=[('max_pool_2x2', 0),
(‘avg_pool_3x3', 0),
(‘avg_pool_4x4', 0),
('max_pool_2x2', 0)];
Reduce_concat=[1, 2, 3, 4]

Architecture

Fig. 4. Encoding of MSTF-NAS: The original architectures are represented
by a 14-D vector genotype, with the first ten dimensions corresponding to the
normal cell and the last four dimensions representing the reduction cell. The
genotype is then transformed into the phenotype according to the search space
mapping. Finally, the architecture is constructed based on the phenotype, as
shown in the bottom architectures.

procedure that generatively produces architectures from the
initial generation to the maximum number of generations. At
the beginning of the search procedure, an initial population
is randomly initialized. One sample of the population is one
architecture. The population members compete with each other
to survive and produce the next generation. For each iteration,
some members are selected as parents to generate a certain
number of offspring, which are the new architectures that
comprise the new population. When generating the offspring,
crossover and mutation are employed to ensure a large diver-
sity among the offspring members. Crossover and mutation
are utilized to explore the search space. Simultaneously, an
exploitation procedure is used to exploit the existing well-
constructed structures in a block.

Detailed Architecture Construction: Fig. 4 illustrates an
example of how an MSTF-NAS block is constructed, from the
encoding of operations to the final architecture. First, it obtains
the encoding genotype and then translates the genotype into
the phenotype according to the operations and connections
among different nodes. Next, it selects the nodes that need to
be concatenated. Finally, using the phenotype information, it
builds the architecture shown at the bottom of Fig. 4.

IV. EXPERIMENTAL STUDY
A. Datasets

To evaluate the effectiveness of our proposed method,
we employ a large medical benchmark dataset, MEDMNIST
V2 [54], and a mammography dataset, curated breast imaging
subset of the digital database for screening mammography
(CBIS-DDSM) [55]. MEDMNIST is the first large-scale med-
ical image benchmark for evaluating computer vision tasks,
including auto-machine learning algorithms. It contains 12
preprocessed 2-D datasets and six 3-D datasets which include
diverse data modalities (such as X-Ray, OCT, Ultrasound,



674 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 3, JUNE 2024

TABLE I
DETAILED DATASET INFORMATION AND THE NUMBER OF SAMPLES [54].
TR., VAL., AND TE. DENOTE THE TRAINING AND VALIDATION AND
TEST SETS, RESPECTIVELY

MedMNIST  Tasks (# Classes) # Samples  # Tr. / Val. / Te.

Path Multi-Class (9) 107180 89996 / 10004 / 7180
Chest Multi-Label (14) 112120 78468 / 1219 / 22433
Derma Multi-Class (7) 10015 7007 / 1003 / 2005
OCT Multi-Class (4) 109309 97477 / 10832 / 1000
Pneumonia Binary-Class (2) 5856 4708 / 524 / 624
Retina Ordinal Regression (5) 1600 1080 / 120 / 400
Breast Binary-Class (2) 780 546 / 78 /1 156

Blood Multi-Class (8) 17092 11959 / 1712 / 3421
Tissue Multi-Class (8) 236386 165466 / 23640 / 47280
OrganA Multi-Class (11) 58850 34581 / 6491 / 17778
OrganC Multi-Class (11) 23660 13000 / 239 / 8268
OrganS Multi-Class (11) 25221 13940 / 2452 / 8829

CT, et al.), diverse classification tasks (binary/multiclass clas-
sification, multilabel, and ordinal regression) and different
data scales (from hundreds to hundreds of thousands) for
developing 2-D and 3-D neural network, respectively [54].
In our experiments, we leverage all the 2-D image datasets
to evaluate our method. The detailed dataset information
and the number of samples are shown in Table I. All the
tasks of MEDMNIST are classification tasks, including the
ChestMNIST dataset, which is a multilabel binary classifi-
cation task. The size of the images in this benchmark is
preprocessed to 28 x 28 pixels for standardizing the benchmark
officially. The CBIS-DDSM dataset is a standard version of the
DDSM dataset. There are 891 mass cases and 753 calcification
cases. Each case may have one or two mammography images,
so there are 3071 images in the CBIS-DDSM dataset in
total, with 1353 malignant images and 1718 benign/normal
images. The original images are stored in DICOM format,
and the resolution is around 3000 x 4000 pixels. The CBIS-
DDSM dataset has provided the official training (2489 images)
and test (645 images) sets. To search the CBIS-DDSM, we
first transform the DICOM image into JPEG format, then
resize the original image to 224 x 224 pixels to search the
architectures. For evaluation, we resize the original image to
800 x 800 pixels, following the preprocessing method used by
Shu et al. [12].

B. Experimental Settings

1) Implementation Details: In searching for the optimal
network for each dataset from MEDMNIST and CBIS-DDSM,
we set the depth of the blocks to three and four, respectively,
since the images in the CBIS-DDSM dataset have high
resolutions. The NSGA-II settings are the same as those
in NSGA-Net [15]. After the search procedure, we select
the architecture with the highest value of the sum of the
two training-free indicators from the last generation as the
optimal architecture for further evaluation of classification
performance. In the evaluation procedure, we follow the
official guidelines of MEDMNIST [54] to train and evaluate
the model’s performance. For the evaluation of CBIS-DDSM,
we employ the same strategy as Shu et al. [12]. The initial
channel number for all architectures in our method search is
set to 128, and the channel number will double with each
subsequent block. Both the search and evaluation procedures

are conducted on a single DGX A100 GPU card with 40-GB
memory, using the PyTorch framework. For the training-free
indicators in the objectives, they are selected by employing an
ablation study as mentioned in Section IV-E2. Finally, unless
explicitly stated otherwise, we utilize jacob_cov and synflow
to construct the objectives to search the optimal architectures.
2) Evaluation Metrics: To evaluate the searched architec-
ture’s performance, we use the metrics provided by the official
guideline [54] and then most popular used metrics on CBIS-
DDSM [11], [12], i.e., accuracy (ACC) and the area under the
receiver operating characteristic curve area under the curve
(AUC) for both the MEDMNIST and CBIS-DDMS datasets.
The values of ACC and AUC can be computed as follows:
AUC = fo ROC(7) d,

where TP, TN, FP, and FN denote the true positive, true nega-
tive, false positive, and false negative, respectively. Moreover,
ROC(r) represents the ROC curve (the true positive rate
against the false positive rate) as a function of the false
positive rate, and d, denotes the differential element of the
false positive rate.

C. Evaluation on MEDMNIST

To evaluate the effectiveness and efficiency of our proposed
method, we compare it with two human-designed archi-
tectures, three auto-machine learning methods, four NAS
methods, and the random search strategy. Specifically, we
employ ResNet-18 and ResNet-50 [9] as the human-designed
models. These two models are evaluated on two different sizes,
i.e., 28 x 28 and 224 x 224. For the auto-machine learn-
ing methods, Auto-sklearn, AutoKeras, and Google AutoML
Vision are employed. Auto-sklearn is an auto-search method
for searching optimal classifiers, feature preprocessing meth-
ods, and data preprocessing methods [56]. AutoKeras is
a Bayesian optimization-based NAS method for searching
both neural architectures and hyperparameters [57]. Google
AutoML Vision is a commercial AutoML tool. All the
results of these mentioned models are provided by the
MEDMNIST benchmark [54]. For NAS methods, we com-
pare with DARTS [17], SNAS [58], NSGA-Net [15], and
HOPNAS [59]. DARTS, SNAS, and HOPNAS are one-shot-
based NAS methods that search the architectures from a
pretrained supernet. DARTS and NSGA-Net are designed for
searching architectures for natural images. HOPNAS searches
architectures by reducing the supernet dynamically for medical
images. Additionally, the random search strategy is a com-
monly used NAS baseline that randomly selects architectures
from the search space. Of all these methods, NSGA-Net is
the most related to our work. However, the difference is that
NSGA-Net is a validation-based NAS method, which requires
training and validating each architecture on a specific dataset.
In contrast, our method only needs to forward compute a batch
of data.

Tables II and III report the detailed experimental results in
terms of accuracy and AUC score. The overall conclusion from
the results is that our proposed method outperforms all other



WANG et al.: MedNAS: MSTF-NAS FOR MEDICAL IMAGE ANALYSIS

675

TABLE II
RESULTS OF DIFFERENT METHODS ON THE MEDMNIST BENCHMARK IN TERMS OF ACCURACY. AVG. DENOTES THE
AVERAGE PERFORMANCE OVER THE 12 SUBSETS

Methods Path Chest Derma OCT  Pneum Retina Breast Blood Tissue OrganA  OrganC  OrganS  AVG.
ResNet-18 (28) 0.907  0.947  0.735 0.743  0.854 0.524 0.863 0.958  0.676 0.935 0.900 0.782 0.819
ResNet-18 (224) 0.909 0947 0.754 0.763  0.864 0.493 0.833 0.963  0.681 0.951 0.920 0.778 0.821
ResNet-50 (28) 0911 0947 0.735 0.762  0.854 0.528 0.812 0.956  0.680 0.935 0.905 0.770 0.816
ResNet-50 (224) 0.892  0.948 0.731 0.776  0.884 0.511 0.842 0.950  0.680 0.947 0911 0.785 0.821
auto-sklearn 0.716  0.779  0.719 0.601  0.855 0.515 0.803 0.878  0.532 0.762 0.829 0.672 0.722
AutoKeras 0.834 0937 0.749 0.763  0.878 0.503 0.831 0.961  0.703 0.905 0.879 0.813 0.813
Google AutoML 0.728  0.948 0.768 0.771  0.946 0.531 0.861 0.966  0.673 0.886 0.877 0.749 0.809
DARTS 0.872 0934 0.749 0.712  0.874 0.510 0.832 0.953  0.648 0.926 0.791 0.808 0.801
SNAS 0.850  0.938  0.737 0.708  0.871 0.515 0.811 0.946  0.708 0918 0.891 0.778 0.806
HOPNAS 0912 0947 0.759 0.761  0.852 0.523 0.853 0.958  0.698 0.937 0.911 0.803 0.826
NSGA-NET 0.866  0.947 0.744 0.765  0.907 0.540 0.846 0970  0.712 0.952 0.923 0.820 0.833
Random search 0.854 0946 0.773 0.760  0.904 0.542 0.897 0.966  0.717 0.955 0.923 0.820 0.838
MSTF-NAS (Ours) 0.910 0.945 0.774 0.780 0912 0.550 0.872 0.976  0.740 0.962 0.936 0.838 0.850
TABLE III
RESULTS OF DIFFERENT METHODS ON THE MEDMNIST BENCHMARK IN TERMS OF THE AUC SCORE. AVG. DENOTES
THE AVERAGE PERFORMANCE OVER 12 SUBSETS
Methods Path Chest Derma OCT Pneum  Retina  Breast Blood Tissue OrganA  OrganC  OrganS  AVG.
ResNet-18 (28) 0.983 0.768 0.917 0.943  0.944 0.717 0.901 0.998  0.930 0.997 0.992 0.972 0.922
ResNet-18 (224) 0.989  0.773  0.920 0.958  0.956 0.710 0.891 0.998  0.933 0.998 0.994 0.974 0.925
ResNet-50 (28) 0.990 0.769 0913 0.952  0.948 0.726 0.857 0.997  0.931 0.997 0.992 0.972 0.920
ResNet-50 (224) 0989 0.773 0912 0.958  0.962 0.716 0.866 0.997  0.932 0.998 0.993 0.975 0.923
auto-sklearn 0.934  0.649 0.902 0.887  0.942 0.690 0.836 0.984  0.828 0.963 0.976 0.945 0.878
AutoKeras 0959 0.742 0915 0.955  0.947 0.719 0.871 0.998  0.941 0.994 0.990 0.974 0.917
Google AutoML 0.944 0.778 0914 0.963  0.991 0.750 0.919 0.998  0.924 0.990 0.988 0.964 0.927
DARTS 0975 0.732 0913 0.953  0.965 0.742 0.912 0.994  0.901 0.987 0.969 0.910 0.913
SNAS 0.969  0.733  0.906 0.949 0974 0.753 0.894 0.996  0.921 0.979 0.927 0.952 0.913
HOPNAS 0.987 0.763  0.899 0.948 0971 0.770 0.907 0.996 0913 0.995 0.998 0.975 0.927
NSGA-NET 0979  0.779 0915 0.958  0.965 0.759 0.857 0.999  0.942 0.999 0.993 0.978 0.927
Random search 0.980 0.774  0.923 0.956  0.963 0.750 0.921 0.999 0.944 0.999 0.994 0.982 0.932
MSTF-NAS (Ours)  0.990 0.791 0.934 0.968 0.963 0.755 0.930 0.999  0.951 0.999 0.996 0.983 0.938

methods, as it achieved the highest average AUC score and
the best average accuracy over 12 subsets. When comparing
different types of methods, we find that human-designed archi-
tectures can achieve better performance compared to AutoML
methods and can also outperform some NAS methods, such as
DARTS and SNAS. The potential reason is that none of these
methods are designed specifically for searching architectures
for medical images. The domain gap between natural images
and medical images leads to these results. Among all the
NAS methods, the performances of one-shot-based methods
(DARTS, SNAS, and HOPNAS) are inferior to the validation-
based method (NSGA-NET) and our proposed method. The
main reason for this phenomenon is that one-shot-based
methods estimate candidate architectures’ performance using a
pretrained supernet, which may not be well-trained. However,
NSGA-NET estimates each candidate architecture by training
and validating on the dataset, making it more precise, but
at the cost of higher computational and time expenses. For
our method, even though we estimate candidate architectures
without training and validating on the dataset, we use multiple
indicators to comprehensively estimate the performance of the
candidate architectures. It is worth noting that the random
search strategy based on our search space can achieve a similar
performance to the previous SOTA method, which shows the
effectiveness of our search space. In another aspect, SNAS,
DARTS, and NSGA-NET were originally designed for natural
image classification and demonstrated strong performance on
datasets, such as CIFAR10 and ImageNet. However, when

tested on the 12 datasets included in the MEDMNIST bench-
mark, they exhibited subpar performance compared to our
approach. Specifically, our method achieved improvements of
1.7% in average ACC and 1.1% in AUC. This performance
disparity may be attributed to the fact that our method was
purposefully tailored to handle a wide range of lesion size data,
accomplished through innovative reduction cell construction
and more refined search objectives during the search proce-
dure.

Table IV demonstrates the search time of different search
algorithms on the 12 datasets. We compare our method
with the NAS algorithms that are mentioned in Table III
and the most commonly used auto-machine learning method,
i.e., Google AutoML. From Table IV, we can see that our
method spends the minimum average search time across the
12 datasets. It has also been revealed that one-shot-based NAS
and train-validation-based NAS are highly dependent on the
dataset size. The larger the dataset size, the more time is
spent searching for architectures. For example, PathMNIST
has more than 100000 samples in the training set, ten times
the number of DermaMNIST, and the search time of these
methods on PathMNIST is also around ten times that of
DermaMNIST. Our method has a weaker connection to the
dataset size, and it spends only 64 min on search time, which
is at least two times faster than other methods. The reduced
search cost and stable search time across the 12 datasets benefit
from the training-free search strategy, which only needs to
feed one batch of data to estimate the performance of each



676

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 3, JUNE 2024

TABLE IV
SEARCH TIME (MINUTES) COSTS OF DIFFERENT SEARCH ALGORITHMS ON THE MEDMNIST BENCHMARK. AVG. DENOTES
THE AVERAGE TIME OVER 12 SUBSETS

Methods Path Chest Derma OCT Pneum Retina Breast Blood Tissue OrganA  OrganC  OrganS  AVG.
Google AutoML 180 180 120 180 60 60 60 180 240 120 120 120 135
DARTS 1496 1184 121 1181 25 16 29 196 538 478 342 519 510
SNAS 691 585 45 443 11 7 13 474 1080 195 133 154 319
HOPNAS 465 390 38 372 8 5 8 55 985 152 92 112 224
NSGA-NET 2645 1067 223 3061 108 35 14 273 4147 799 280 281 1078
MSTF-NAS (Ours) 34 24 21 24 19 21 10 20 31 23 20 16 22
TABLE V

RESULTS OF DIFFERENT BACKBONE MODELS ON CBIS-DDSM DATASET.
“W/” AND “W/0” STAND FOR WITH AND WITHOUT, RESPECTIVELY

Model Setting ACC (%) AUC (%)
VGG-16 57.21 62.17
ResNet-18 62.17 67.46
ResNet-34 65.43 70.10
ResNet-50 w/o pre-trained ~ 62.33 65.62
ResNet-101 62.17 67.84
DenseNet-121 62.48 68.37
ViT-B-16 59.69 62.10
ViT-L-16 61.24 63.79
MSTF-NAS (Ours) 66.67 70.56
VGG-16 69.45 75.24
ResNet-18 65.89 73.82
ResNet-34 69.15 76.37
ResNet-50 w/ pre-trained 66.98 76.27
ResNet-101 70.70 77.18
DenseNet-121 68.53 75.67
MSTF-NAS (Ours) 71.63 80.22

candidate architecture. To further demonstrate the effectiveness
of our method in searching for architectures in high-resolution
imagery, we conduct an evaluation on the CBIS-DDSM
dataset, setting the input image resolution to 224 x 224 pixels.
We compare our method to our primary baseline, NSGA-
NET, and report the time required for 40 generations of both
methods. Notably, for NSGA-NET, we limit training to just
five epochs to estimate the performance of each architecture.
The results indicate a significant difference in time efficiency,
with our method taking 115 min and NSGA-NET requiring
870 min. It is worth noting that the time represents training
for only five epochs on a 2000 image training set. This
stark contrast highlights our method’s ability to accelerate
the search process by approximately eight times compared to
NSGA-NET, confirming its effectiveness when dealing with
high-resolution image datasets.

D. Evaluation on CBIS-DDSM

To further evaluate the effectiveness of our proposed
method, we search for and evaluate the optimal architec-
ture on the CBIS-DDSM dataset. As our MSTF-NAS is
designed for searching backbones, we leverage the most
commonly used backbones in breast cancer detection as
our baselines. Specifically, we compare our method with
VGG-16 [2], ResNet [9] series (ResNet-18, ResNet-34,
ResNet-50, and ResNet-101), DenseNet-121 [1], and vision
transformer (ViT) series [60] (ViT-B-16 and ViT-L-16). Since
most previous studies have verified that ImageNet pretrained
weights can significantly improve the classification task on
CBIS-DDSM [11], [12], we also use pretrained models to

evaluate the performance of all the models (with pretrained).
By pretraining our model on the ImageNet dataset, our model
achieved 75.13% of the top 1 accuracy on the validation set.
Additionally, we provide the performance without pretrained
weights (without pretrained) to show the trainability of our
searched architecture. We only compare ViT without pre-
trained weights, because the ImageNet pretrained ViTs require
fixed input image size, i.e., 224 x 224, which is not fair
compared with other models which use 800 x 800 image
as input. The results for all the models are demonstrated in
Table V. The accuracies of all the models are based on the
optimal threshold, which is selected using the precision-recall
curve.

From Table V, it can be observed that all models achieve
higher AUC scores when using pretrained weights. The AUC
scores of all models with pretrained weights improve by
approximately 6%—-13% when compared to models with-
out pretrained weights. More importantly, our MSTF-NAS
achieves the highest ACC and AUC scores among all seven
backbone models, both with and without pretrained weights.
Specifically, MSTF-NAS achieves 0.4% and 3.04% higher
AUC scores than the best model of other backbones without
and with pretrained weights, respectively. In the comparison
between ViTs and our approach, it becomes evident that
ViTs exhibit subpar performance on this dataset. Notably,
their performance surpasses that of VGG-16 only with respect
to accuracy (ACC) and the AUC. Several potential factors
contribute to this observation.

1) ViTs excel at capturing global features within input
images, yet the presence of breast cancer lesions
accounts for merely 1% of the image area, rendering
them relatively small for effective recognition.

The training of a ViT model necessitates a substantial
volume of images, and our dataset comprising 2489
images falls significantly short of what is required for
comprehensive ViT model training [61].

On the one hand, these results illustrate the effectiveness
and reasonable simplicity of MSTF-NAS, where performance
benefits from the well-designed search space and the effective
search algorithm. On the other hand, the results reveal that
backbones designed for natural images may not perform as
effectively as backbones specifically tailored to the character-
istics of medical data.

To assess the efficacy of classifying lesions of varying
sizes, we partition the test dataset from CBIS-DDSM into
three distinct subsets based on lesion size. The CBIS-DDSM
dataset comprises a substantial number of samples featuring
calcifications and masses, each exhibiting lesions spanning

2)



WANG et al.: MedNAS: MSTF-NAS FOR MEDICAL IMAGE ANALYSIS

TABLE VI
RESULTS OF DIFFERENT MODELS ON DIFFERENT LESION SIZE DATASETS

AUC
Model Large  Medium Small Average
ResNet-18 72.32 71.82 95.19 79.78
ResNet-34 77.07 73.27 90.38 80.24
ResNet-50 78.69 71.57 96.15 82.14
ResNet-101 79.18 73.65 97.12 83.32
VGG-16 74.09 73.58 84.62 7743
DenseNet-121 74.69 72.66 87.50 78.28
MSTF-NET (Ours)  82.03 76.32 100.00 86.12
TABLE VII

RESULTS OF DIFFERENT POOLING OPERATIONS IN TERMS
OF DIFFERENT LESION SIZES

Pooling AU.C

Large Medium  Small
2x2 average  74.69  74.18 77.05
2x2 max 7636 74.32 80.13
3x3 average  80.29  73.58 83.61
3x3 max 77.84  76.89 82.49
4x4 average 76.82  71.28 83.78
4x4 max 7325  74.81 77.72

a wide range of scales, from 0.182 to 2.08 x 1075, This
scale range signifies the proportion of lesion area relative to
the entire image. Subsequently, we categorize the 645 test
samples into three subsets based on lesion area proportions: 1)
large size (comprising 206 samples with proportions > 0.01);
2) medium size (encompassing 409 samples with proportions
ranging from 0.001 to 0.01); and 3) small size (consisting of
30 samples with proportions < 0.001). We conduct evalu-
ations on these three subsets using seven models pretrained
on ImageNet, with the AUC as the chosen evaluation metric,
as it remains unaffected by sample distribution disparities.
The specific classification outcomes are presented in Table VI.
Our experimental findings conclusively demonstrate that our
custom-designed model, MSTF-NET, achieves the highest
AUC score across all three subsets, as well as an impressive
average AUC score over the entire dataset. Our approach
exhibits notable improvements, increasing AUC scores by
2.85%, 2.67%, and 2.88% on the large, medium, and small
lesion size subsets, respectively. It has indicated that the lesion
sizes are smaller, and a higher improvement of our method
was achieved. These results substantiate the effectiveness of
our multiscale search strategy in enhancing performance across
varying lesion sizes.

E. Ablation Study

To evaluate the effectiveness of each module of our
proposed MSTF-NAS, we conduct the following ablation
studies on one dataset of MEDMNIST and CBIS-DDSM
datasets. We report the average performance over 12 subsets
for the results on MEDMNIST.

1) Effect of Pooling Sizes on the Lesion Sizes: To inves-
tigate the impact of various pooling operations and different
pooling sizes on lesions of varying sizes, we conduct an
evaluation across multiple combinations. We utilize two dis-
tinct pooling operations, namely, max pooling and average
pooling, combined with three different pooling sizes: 1) 2 x
2; 2) 3 x 3; and 3) 4 x 4. This evaluation is performed

677

on datasets featuring lesions of different sizes, as outlined
in Section IV-D. Specifically, we employ DenseNet-121 as
our backbone architecture, replacing the original pooling
operations with six alternatives: 2 x 2 average pooling and
max pooling, 3 x 3 average pooling and max pooling, and
4 x 4 average pooling and max pooling. The resulting AUC
scores on the CBIS-DDSM datasets for various lesion sizes are
presented in Table VII. The outcomes reveal distinct trends:
for the large lesion dataset, 3 x 3 average pooling achieves
the highest performance. In the case of the medium lesion
dataset, 3 x 3 max pooling outperforms other configurations.
The small lesion dataset benefits most from 4 x 4 average
pooling. Furthermore, it is noteworthy that the performance
of different pooling operations exhibits a considerable range
across the various lesion size datasets, with AUC values
spanning from 73.25% to 80.29% for large lesions, 71.28%
to 76.89% for medium-sized lesions, and 77.05% to 83.78%
for small lesions. Moreover, 3 x 3 pooling size performs best
on large and medium lesion size subsets and 4 x 4 pooling
size performs best on small lesion size subset. These findings
underscore the significant impact of pooling operations on
feature learning across different lesion sizes.

2) Indicator Selection: To construct effective objectives for
searching for the optimal architecture, we evaluate different
combinations of training-free indicators and choose the best
combination to construct the objectives. We examine the
combinations of the jacob_cov, fisher, synflow, and grad_norm
indicators, which have been demonstrated to have the strongest
relationship to architecture performance [18]. The objectives
for all combinations are constructed using our designed
method, as described in (5). For each combination approach,
we conduct searches on 12 subsets of the MEDMNIST bench-
mark using our method and select the best architectures from
the Pareto front for each subset. Subsequently, we train and
test these selected architectures on each subset individually,
reporting the average testing results across all 12 subsets in
terms of average accuracy, AUC, and the number of parameters
(# Param). The results of different combinations of these four
indicators over 12 datasets of the MEDMNIST benchmark, in
terms of average accuracy and AUC, are shown in Table VIII.

Table VIII demonstrates that the performances of combi-
nations vary from 0.922 to 0.935 and 0.828 to 0.846 in
terms of AUC and ACC, respectively. Specifically, jacob_cov
combined with synflow and fisher have achieved very similar
results which outperform other combinations. In addition, the
jacob_cov indicator combined with any other indicators can
achieve good performance when compared to other combi-
nations. Furthermore, the performance of the architectures,
as determined by various indicators, does not exhibit a clear
relationship with the number of parameters.

3) Effectiveness of Objective Construction: To evaluate the
effectiveness of our proposed objectives construction way, we
compare our objectives with the following objectives construc-
tion way: 1) using the synflow and jacob_cov indicators as
two objectives directly; 2) using FLOPs and synflow indicator
as two objectives; 3) using FLOPs and jacob_cov indicator
as two objectives; and 4) using FLOPs as one objective and
(synflow+jacob_cov) as another one objective on MEDMNIST



678

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 3, JUNE 2024

Obj2

Obj2

Obj2

Objl

(a)

4
000 025 050 075 100 125 150 175 2.00 o

Obj2

Obj2

.
Obj2

000 025 050

Fig. 5.

100 3150 7 2 000 02

©

Visualization of the Pareto-front of the evolutionary search procedure. The two objectives are constructed by our proposed objective construction

method. The dotted line denotes the front of each generation. (a) Initial generation. (b) 1-st generation. (c) 10th generation. (d) 20th generation. (e) 30th

generation. (f) Last generation.

TABLE VIII
RESULTS OF DIFFERENT COMBINATIONS OF INDICATORS TO CONSTRUCT
THE OBJECTIVES BASED ON OUR OBJECTIVE CONSTRUCTION
WAY oN MEDMNIST

TABLE IX
RESULTS OVER 12 DATASETS OF THE MEDMNIST BENCHMARK USING
DIFFERENT WAYS TO COMBINE THE INDICATORS IN TERMS OF AVERAGE
ACCURACY, AUC, FLOPS, AND THE NUMBER OF PARAMETERS

Model AUC ACC # Param (MB)
fisher+synflow 0.922  0.833 5.46
Jjacob_cov+synflow 0.938 0.850 4.47
fisher+grad_norm 0.929 0.828 5091
jacob_cov+grad_norm 0930  0.841  4.20
fisher+jacob_cov 0936 0.846 5.08
grad_norm+synflow 0.920 0.834 525

benchmark. It is worth noting that our method introduces
the Flops to constrain the model’s complexity. The results
of different ways to construct the objectives are shown in
Table IX. We report the accuracy, AUC score, FLOPs, and the
number of parameters of different ways to construct objectives.
From Table IX, one can see that by adding FLOPs to different
indicators, the final searched architectures’ FLOPs can be
well-constrained. Using multiple indicators in the objective
at one time, the searched architectures can achieve better
average performance over 12 subsets. Also, our proposed
strategy of constructing the objectives can not only achieve
higher average accuracy and AUC scores over 12 subsets of
MEDMNIST benchmark but also have searched the model
with fewer FLOPs. The higher ACC and AUC scores benefit
from using multiple indicators to estimate the performance
of candidate architectures. It has been verified that using our
designed objectives to search the architecture is more efficient
and effective. Furthermore, the number of parameters has not
demonstrated any correlation with the model’s performance
that is consistent with the conclusion of Section IV-E2;
however, it is directly proportional to the FLOPs.

4) Effectiveness of Search Space: To evaluate the effective-
ness of our designed search space, we compare our search
space with the other two search spaces, i.e., DARTS search

Model AUC ACC FLOPs (M)  # Param (MB)
Jjacob_cov+synflow (w/o FLOPs)  0.924  0.834 2421 5.24
FLOPs+synflow 0.921  0.831 14.45 4.59
FLOPs+jacob_cov 0.931 0.832  7.90 2.70
FLOPs+(synflow+jacob_cov) 0931 0.835 11.21 3.53
MSTE-NAS (Ours) 0.938  0.850 14.62 4.47

TABLE X

AVERAGE ACCURACY AND AUC OVER 12 DATASETS OF THE
MEDMNIST BENCHMARK USING DIFFERENT SEARCH SPACES

Search space AUC  ACC
DARTS 0926  0.825
NSGA-NET 0.928 0.824
MSTE-NAS (Ours) 0932 0.838

space [17] and NSGA-NET search space [15]. DARTS search
space is a very commonly used search space in most tasks
in both natural image and medical image classification. To
make a fair comparison among all the search spaces, we
use a random search strategy to candidate 100 architectures,
and then select the architecture that has the best estimate
performance based on (5) from different search spaces. Then,
we build the neural network in the same way as our method.
Finally, we train and test the performance of architectures on
the MEDMNIST benchmark and report the average metrics
over 12 subsets. Table X lists the average performance in terms
of accuracy and AUC scores, which shows our search space
outperforms other search spaces by 1.3% in terms of ACC and
verifies the effectiveness of our search space.

F. Visualization of Searching Process

Our method is based on the evolutionary multiobjective
algorithm, NSGA-II, to search for the optimal architecture



WANG et al.: MedNAS: MSTF-NAS FOR MEDICAL IMAGE ANALYSIS

mMm- i

First normal cell

sep 7x7

ofnoce]
S .

Third normal cell Third reduction cell

Fig. 6. Example architecture searched from the PneumoniaMNIST dataset.

candidates from a given search space. To intuitively show
the search procedure, we visualize the Pareto-front from the
initial generation to the last generation every ten generations.
We normalize the values of the indicators and FLOPs into
[0, 1] over all generations. Pareto-front is made up of several
Pareto-efficient solutions. The goal of the search procedure
is to search the architectures that push the front into a place
that contains more nondominant solutions. The visualization
of the Pareto-front of different generations is shown in Fig. 5,
from which we can see that the Pareto-front of an initial
generation almost scatters in a small region which means that
all the initial architectures have similar performance in terms
of the objectives. Moreover, from the first generation to the
last generation, the Perato-fronts move from the diagonal line
to a curve that nondominates all the rest of the architectures
in terms of two objectives with more and more scatter
distribution. It means that the generation becomes more diverse
and has higher objective values.

Besides, we also visualize the searched architecture from the
PneumoniaMNIST dataset. The entire architecture is shown
in Fig. 6. From the results, for the normal cell, we notice
that the shallow normal cell has five operations with multiple
kernel sizes (3 x 3, 5 x 5, and 7 x 7) and the deep normal
cell has deeper connections when compared to the shallow
one. For the reduction cell, we notice that each reduction cell
contains different pooling operations with different pooling
sizes. It means that the multiscale pooling search space is
effective in building the reduction cell. The high performance
on both the MEDMNIST and CBIS-DDSM datasets indicates
the effectiveness of our constructed multiscale search space.

V. CONCLUSION

In this article, we presented a novel method called MSTF-
NAS for the customization of neural architecture in the
context of medical image data. The MSTF-NAS approach
efficiently searches for architectures by taking into account
the multiscale lesion region sizes present in medical images.
To enable the search process, we divided the search space
into a normal cell search space and a reduction search space,
and we designed a new reduction search space specifically
tailored for finding the optimal multiscale architecture for

679

a given dataset. Furthermore, we proposed a novel strategy
to construct objectives that strike a balance between the
capability and trainability of candidate architectures, enabling
a multiobjective evolutionary search algorithm. To reduce
search costs significantly, we incorporated a training-free
proxy indicator, which accurately estimated the performance
of candidate architectures. Finally, the effectiveness of our
proposed method was validated through extensive evaluations
on a large medical image benchmark and a sizable mam-
mography dataset. The results demonstrated the capability of
MSTF-NAS in customizing neural architectures for medical
image analysis, showcasing its potential for enhancing the
performance of medical image analysis systems.

REFERENCES

[1] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 4700-4708.

[2] K. Simonyan and A. Zisserman, ‘“Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,
2015, pp. 1-14. [Online]. Available: http://arxiv.org/abs/1409.1556

[3] A.G. Roy, N. Navab, and C. Wachinger, “Concurrent spatial and channel
‘squeeze & excitation’ in fully convolutional networks,” in Proc. Med.
Image Comput. Comput. Assist. Interv., 2018, pp. 421-429.

[4] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2014, pp. 580-587.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 779-788.

[6] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Proc. 18th Int.
Conf. Med. Image Comput. Comput.-Assist. Interv.(MICCAI), 2015,
pp. 234-241.

[71 R. Strudel, R. Garcia, 1. Laptev, and C. Schmid, “Segmenter:
Transformer for semantic segmentation,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2021, pp. 7262-7272.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84-90, 2017.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2016, pp. 770-778.

[10] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7132-7141.

[11] Y. Wang, Z. Wang, Y. Feng, and L. Zhang, “WDCCNet: Weighted
double-classifier constraint neural network for mammographic image
classification,” IEEE Trans. Med. Imag., vol. 41, no. 3, pp. 559-570,
Mar. 2022.

[12] X. Shu, L. Zhang, Z. Wang, Q. Lv, and Z. Yi, “Deep neural networks
with region-based pooling structures for mammographic image classi-
fication,” IEEE Trans. Med. Imag., vol. 39, no. 6, pp. 2246-2255, Jun.
2020.

[13] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” J. Mach. Learn. Res., vol. 20, no. 1, pp. 1997-2017, 2019.

[14] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in Proc. Int. Conf. Learn. Represent., 2017, pp. 1-16.

[15] Z. Lu et al.,, “NSGA-Net: Neural architecture search using multi-
objective genetic algorithm,” in Proc. Genet. Evol. Comput. Conf., 2019,
pp. 419-427.

[16] X. Xie, Y. Liu, Y. Sun, G. G. Yen, B. Xue, and M. Zhang,
“BenchENAS: A benchmarking platform for evolutionary neural
architecture search,” IEEE Trans. Evol. Comput., vol. 26, no. 6,
pp. 1473-1485, Dec. 2022.

[17] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” in Proc. Int. Conf. Learn. Represent., 2019, pp. 1-13.

[18] M. S. Abdelfattah, A. Mehrotra, £.. Dudziak, and N. D. Lane, “Zero-
cost proxies for lightweight NAS,” in Proc. Int. Conf. Learn. Represent.,
2021, pp. 1-17.



680

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 3, JUNE 2024

L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to
scale: Scale-aware semantic image segmentation,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2016, pp. 3640-3649.

X. Fang and P. Yan, “Multi-organ segmentation over partially labeled
datasets with multi-scale feature abstraction,” IEEE Trans. Med. Imag.,
vol. 39, no. 11, pp. 3619-3629, Nov. 2020.

S. Li et al, “Multi-instance multi-scale CNN for medical image
classification,” in Proc. 22nd Int. Conf. Med. Image Comput. Comput.
Assist. Interv., 2019, pp. 531-539.

R. Su, D. Zhang, J. Liu, and C. Cheng, “MSU-Net: Multi-scale U-net
for 2D medical image segmentation,” Front. Genet., vol. 12, Feb. 2021,
Art. no. 639930.

Z. Lu, G. Sreekumar, E. Goodman, W. Banzhaf, K. Deb, and
V. N. Boddeti, “Neural architecture transfer,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 43, no. 9, pp. 2971-2989, Sep. 2021.

Z. Lu, K. Deb, E. Goodman, W. Banzhaf, and V. N. Boddeti,
“NSGA-NetV2: Evolutionary multi-objective surrogate-assisted neural
architecture search,” in Proc. 16th Eur. Conf. Comput. Vis., 2020,
pp. 35-51.

J. Huang, B. Xue, Y. Sun, M. Zhang, and G. G. Yen, “Particle swarm
optimization for compact neural architecture search for image classi-
fication,” IEEE Trans. Evol. Comput., vol. 27, no. 5, pp. 1298-1312,
Oct. 2023.

Y. Sun, G. G. Yen, B. Xue, M. Zhang, and J. Lv, “Arctext: A unified
text approach to describing convolutional neural network architec-
tures,” IEEE Trans. Artif. Intell., vol. 3, no. 4, pp. 526-540, Aug. 2022.
A. Wan et al., “FBNetV2: Differentiable neural architecture search for
spatial and channel dimensions,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 12965-12974.

Y. Yang, S. You, H. Li, E Wang, C. Qian, and Z. Lin, “Towards
improving the consistency, efficiency, and flexibility of differentiable
neural architecture search,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2021, pp. 6667-6676.

X. Chu, B. Zhang, H. Ma, R. Xu, and Q. Li, “Fast, accurate and
lightweight super-resolution with neural architecture search,” in Proc.
25th Int. Conf. Pattern Recognit., 2021, pp. 59-64.

X. Li, J. Zheng, M. Li, W. Ma, and Y. Hu, “One-shot neural architecture
search for fault diagnosis using vibration signals,” Expert Syst. Appl.,
vol. 190, Mar. 2022, Art. no. 116027.

Y. Sun, X. Sun, Y. Fang, G. G. Yen, and Y. Liu, “A novel training proto-
col for performance predictors of evolutionary neural architecture search
algorithms,” IEEE Trans. Evol. Comput., vol. 25, no. 3, pp. 524-536,
Jun. 2021.

Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, “Automatically
designing CNN architectures using the genetic algorithm for image
classification,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3840-3854,
Sep. 2020.

C.-H. Hsu et al., “MONAS: Multi-objective neural architecture search
using reinforcement learning,” 2018, arXiv:1806.10332.

W. Li, S. Wen, K. Shi, Y. Yang, and T. Huang, “Neural architecture
search with a lightweight transformer for text-to-image synthesis,” IEEE
Trans. Netw. Sci. Eng., vol. 9, no. 3, pp. 1567-1576, May/Jun. 2022.
Y. Gou, B. Li, Z. Liu, S. Yang, and X. Peng, “CLEARER: Multi-scale
neural architecture search for image restoration,” in Proc. Adv. Neural
Inf. Process. Syst., 2020, pp. 17129-17140.

Y. Hu et al.,, “NAS-Count: Counting-by-density with neural architec-
ture search,” in Proc. 16th Eur. Conf., Comput. Vis. (ECCV), 2020,
pp. 747-766.

W. Bae, S. Lee, Y. Lee, B. Park, M. Chung, and K.-H. Jung, “Resource
optimized neural architecture search for 3d medical image segmenta-
tion,” in Proc. 22nd Int. Conf. Med. Image Comput. Comput. Assist.
Interv., 2019, pp. 228-236.

N. Cavagnero, L. Robbiano, B. Caputo, and G. Averta, “FreeREA:
Training-free evolution-based architecture search,” in Proc. IEEE/CVF
Winter Conf. Appl. Comput. Vis., 2023, pp. 1493-1502.

T. Yang, L. Yang, X. Jin, and C. Chen, “Revisiting training-free NAS
metrics: An efficient training-based method,” in Proc. IEEE/CVF Winter
Conf. Appl. Comput. Vis., 2023, pp. 4751-4760.

T. Do and N. H. Luong, “Training-free multi-objective evolutionary
neural architecture search via neural tangent kernel and number of
linear regions,” in Proc. 28th Int. Conf. Neural Inf. Process., 2021,
pp. 335-347.

J. Zhang, L. Zhang, Y. Wang, J. Wang, X. Wei, and W. Liu, “An
efficient multi-objective evolutionary zero-shot neural architecture search
framework for image classification,” Int. J. Neural Syst., vol. 33,
May 2023, Art. no. 2350016.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

R. Ru, C. Lyle, L. Schut, M. Fil, M. Van Der Wilk, and Y. Gal, “Speedy
performance estimation for neural architecture search,” in Proc. 35th
Adv. Neural Inf. Process. Syst., 2021, pp. 4079-4092.

V. Lopes, S. Alirezazadeh, and L. A. Alexandre, “EPE-NAS:
Efficient performance estimation without training for neural architecture
search,” in Proc. 30th Int. Conf. Artif. Neural Netw. Mach. Learn.—
(ICANN), 2021, pp. 552-563.

W. Chen, X. Gong, and Z. Wang, “Neural architecture search on
imagenet in four GPU hours: A theoretically inspired perspective,” 2021,
arXiv:2102.11535.

J. Mellor, J. Turner, A. Storkey, and E. J. Crowley, “Neural architecture
search without training,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 7588-7598.

N. Lee, T. Ajanthan, and P. H. S. Torr, “SNIP: Single-shot network
pruning based on connection sensitivity,” in Proc. Int. Conf. Learn.
Represent., 2019, pp. 1-15. [Online]. Available: https://openreview.net/
forum?id=B1VZqgjAcYX

C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets before
training by preserving gradient flow,” in Proc. Int. Conf. Learn.
Represent., 2020, pp. 1-11. [Online]. Available: https://openreview.net/
forum?id=SkgsACVKPH

H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli, “Pruning neural
networks without any data by iteratively conserving synaptic flow,” in
Proc. 34th Adv. Neural Inf. Process. Syst., 2020, pp. 6377-6389.

J. Turner, E. J. Crowley, M. F. P. O’Boyle, A. J. Storkey, and G. Gray,
“BlockSwap: Fisher-guided block substitution for network compression
on a budget,” in Proc. Int. Conf. Learn. Represent., 2020, pp. 1-15.
[Online]. Available: https://openreview.net/forum?id=SklkDkSFPB

Y. Balaji et al., “Understanding overparameterization in generative
adversarial networks,” 2021, arXiv:2104.05605.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182-197, Apr. 2002.

P. Murugan, S. Kannan, and S. Baskar, “NSGA-II algorithm for multi-
objective generation expansion planning problem,” Elect. Power Syst.
Res., vol. 79, no. 4, pp. 622-628, 2009.

J. Li et al., “Multi-objective optimization of mini U-channel cold
plate with SiO2 nanofluid by RSM and NSGA-II,” Energy, vol. 242,
Mar. 2022, Art. no. 123039.

J. Yang et al., “MedMNIST V2-A large-scale lightweight benchmark for
2D and 3D biomedical image classification,” Sci. Data, vol. 10, no. 1,
p. 41, 2023.

R. S. Lee, F. Gimenez, A. Hoogi, K. K. Miyake, M. Gorovoy, and
D. L. Rubin, “A curated mammography data set for use in computer-
aided detection and diagnosis research,” Sci. Data, vol. 4, no. 1, pp. 1-9,
2017.

M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum,
and F. Hutter, “Auto-sklearn: Efficient and robust automated machine
learning,” in Automated Machine Learning (The Springer Series
on Challenges in Machine Learning), F. Hutter, L. Kotthoff,
and J. Vanschoren, Eds. Cham, Switzerland: Springer, 2019,
pp. 113-134. [Online]. Available: https://link.springer.com/chapter/10.
1007/978-3-030-05318-5_6#citeas

H. Jin, Q. Song, and X. Hu, “Auto-Keras: An efficient neural architecture
search system,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Min., 2019, pp. 1946-1956. [Online]. Available: https://doi.org/10.
1145/3292500.3330648

S. Xie, H. Zheng, C. Liu, and L. Lin, “SNAS: Stochastic neural archi-
tecture search,” in Proc. Int. Conf. Learn. Represent., 2019, pp. 1-17.
[Online]. Available: https://openreview.net/forum?id=rylqooRqK7

J. Zhang, D. Li, L. Wang, and L. Zhang, “One-shot neural architecture
search by dynamically pruning supernet in hierarchical order,” Int. J.
Neural Syst., vol. 31, no. 7, 2021, Art. no. 2150029.

A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” in Proc. Int. Conf. Learn. Represent.,
2021, pp. 1-22.

A. Steiner, A. Kolesnikov, X. Zhai, R. Wightman, J. Uszkoreit, and
L. Beyer, “How to train your ViT? Data, augmentation, and regular-
ization in vision transformers,” Trans. Mach. Learn. Res., vol. 2022,
pp. 1-16, Jun. 2022. [Online]. Available: https://openreview.net/forum?
id=4nPswr1KcP



WANG et al.: MedNAS: MSTF-NAS FOR MEDICAL IMAGE ANALYSIS

Yan Wang received the Ph.D. degree in computer science from Sichuan
University, Chengdu, China, in 2021.

He is a Scientist with the Institute of High Performance Computing,
Agency for Science, Technology and Research, Singapore. His current
research interests include deep neural networks, neural architecture search,
transfer learning, and medical image analysis.

Liangli Zhen received the Ph.D. degree in computer science from Sichuan
University, Chengdu, China, in 2018.

He is a Senior Scientist and the Group Manager with the Institute of
High Performance Computing, Agency for Science, Technology and Research,
Singapore. His current research interests include machine learning and
multiobjective optimization.

Jianwei Zhang received the Ph.D. degree in computer science from Sichuan
University, Chengdu, China, in 2023.

He serves as a Lecturer with the College of Computer Science, Chengdu
University, Chengdu. His current research interests include neural architecture
search, medical image analysis, and computer vision.

Miqing Li (Senior Member, IEEE) received the Ph.D. degree in computer
science from the Department of Computer Science, Brunel University London,
Uxbridge, U.K., in 2015.

He is an Assistant Professor with the University of Birmingham,
Birmingham, U.K. His research is principally on multiobjective optimization,
where he focuses on developing population-based randomized algorithms
(mainly evolutionary algorithms) for both general challenging problems (e.g.,
many-objective optimization, constrained optimization, robust optimization,
and expensive optimization) and specific application problems (e.g., those
in software engineering, high-performance computing, product disassembly,
supply chain, neural architecture search, and reinforcement learning).

Lei Zhang (Senior Member, IEEE) received the B.S. and M.S. degrees in
mathematics and the Ph.D. degree in computer science from the University
of Electronic Science and Technology of China, Chengdu, China, in 2002,
2005, and 2008, respectively.

She is a Professor with Sichuan University, Chengdu. Her current research
interests include the theory of neural network and its applications to
healthcare, especially to medical image analysis

Zizhou Wang received the Ph.D. degree in computer science from Sichuan
University, Chengdu, China, in 2022.

He is a Scientist with the Institute of High Performance Computing,
Agency for Science, Technology and Research, Singapore. His current
research interests include machine learning and medical image analysis.

Yangqin Feng received the Ph.D. degree in computer science from Sichuan
University, Chengdu, China, in 2019.

She is a Senior Scientist with the Institute of High Performance Computing,
Agency for Science, Technology and Research, Singapore. Her current
research interests include machine learning and medical image analysis.

Yu Xue (Senior Member, IEEE) received the Ph.D. degree from the School
of Computer Science and Technology, Nanjing University of Aeronautics and
Astronautics, Nanjing, China, in 2013.

He is a Professor with the School of Software, Nanjing University of
Information Science and Technology. His research interests include deep
learning, evolutionary computation, machine learning, and computer vision.

681

Xiao Wang (Senior Member, IEEE) received the bachelor’s (Hons.) degrees in
mathematics and computer science from Saint John’s University, Collegeville,
MN, USA, in 2012, and the master’s and Ph.D. degrees in electrical and
computer engineering from Purdue University, West Lafayette, IN, USA, in
2016 and 2017, respectively.

Then, he pursued postdoctoral research training with Harvard Medical
School, Boston, MA, USA. He is currently a Research Staff Scientist with
Oak Ridge National Laboratory, Oak Ridge, TN, USA. His research interest
lies in the intersection among machine learning, image processing, and high-
performance computing.

Zheng Chen received the Ph.D. degree in information science from the Nara
Institute of Science and Technology, Ikoma, Japan, in 2022.

He is currently an Assistant Professor with SANKEN, Osaka University,
Suita, Japan. He has a deep-rooted interest in data representation,
knowledge-based modeling, and biomedical engineering. His work specifically
emphasizes neurodynamic cognition, cardiovascular disease, and biochemical
network.

Tao Luo (Member, IEEE) received the bachelor’s degree from the Harbin
Institute of Technology, Harbin, China, in 2010, the master’s degree from the
University of Electronic Science and Technology of China, Chengdu, China,
in 2013, and the Ph.D. degree from the School of Computer Science and
Engineering, Nanyang Technological University, Singapore, in 2018.

He is currently a Senior Research Scientist with the Institute of High
Performance Computing, Agency for Science, Technology and Research,
Singapore. His current research interests include high-performance computing,
efficient and green Al, quantum computing, and hardware—software co-
exploration.

Rick Siow Mong Goh received the Ph.D. degree in electrical and computer
engineering from the National University of Singapore, Singapore, in 2006.

He is currently the Director of the Computing and Intelligence Department,
Institute of High Performance Computing, A*STAR, Singapore. He leads a
team of over 80 scientists in performing world-leading scientific research,
developing technology to commercialization, and engaging and collaborating
with industry. His research interests include artificial intelligence, high-
performance computing, blockchain, and federated learning.

Yong Liu received the Ph.D. degree in electrical and computer engineering
from the National University of Singapore, Singapore, in 2006.

He is Deputy Department Director, Computing, and Intelligence
Department, Institute of High Performance Computing, A*STAR, Singapore.
He is also an Adjunct Associate Professor with the Duke-NUS Medical
School, NUS, Singapore, and an Adjunct Principal Investigator with Singapore
Eye Research Institute, Singapore. His research interests include artificial
intelligence and high-performance computing.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


