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a b s t r a c t 

Accurate skin lesion diagnosis requires a great effort from experts to identify the characteristics from 

clinical and dermoscopic images. Deep multimodal learning-based methods can reduce intra- and inter- 

reader variability and improve diagnostic accuracy compared to the single modality-based methods. This 

study develops a novel method, named adversarial multimodal fusion with attention mechanism (AM- 

FAM), to perform multimodal skin lesion classification. Specifically, we adopt a discriminator that uses 

adversarial learning to enforce the feature extractor to learn the correlated information explicitly. More- 

over, we design an attention-based reconstruction strategy to encourage the feature extractor to concen- 

trate on learning the features of the lesion area, thus, enhancing the feature vector from each modality 

with more discriminative information. Unlike existing multimodal-based approaches, which only focus 

on learning complementary features from dermoscopic and clinical images, our method considers both 

correlated and complementary information of the two modalities for multimodal fusion. To verify the 

effectiveness of our method, we conduct comprehensive experiments on a publicly available multimodal 

and multi-task skin lesion classification dataset: 7-point criteria evaluation database. The experimental 

results demonstrate that our proposed method outperforms the current state-of-the-art methods and im- 

proves the average AUC score by above 2% on the test set. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

According to the Global Cancer Statistics 2020, skin cancer 

s ranked as the fourth leading cause of new cancer cases and 

eaths worldwide for 36 cancers and all cancers combined in 

020 ( Sung et al., 2021 ). Skin cancer is one of the most danger-

us cancers, especially melanoma, one of the most dangerous with 

he highest mortality skin cancer ( Rigel et al., 1996 ). In a recent

tudy ( Barata et al., 2017 ), researchers have shown that early de- 

ection and timely adjuvant treatment could significantly reduce 

kin cancer mortality. Fortunately, with advanced developments in 

edical technology, there are many approaches to detect different 

inds of skin cancers. Among these approaches, dermoscopic com- 

ined with clinical imaging is one of the most commonly used 

esion diagnosis approaches in clinical practice ( Massone et al., 

007 ). Dermoscopic images are obtained using optical magnifica- 

ion with liquid immersion and low angle-of-incidence lighting 

r cross-polarized lighting to make the contact area translucent, 
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aking subsurface structures visible. These images usually provide 

way to pay more attention to the local features of the lesions. 

linical images obtained using a digital camera usually provide 

ore information about the global features of the lesions, such as 

he geometry and color of the lesions ( Bi et al., 2020 ). The images

aptured by dermoscopic and clinical digital cameras make a com- 

rehensive multimodal assessment of skin lesions possible. 

In clinical practice, multimodal assessment is conducted by hu- 

an experts. However, it lacks well-trained experts to perform 

arge-scale skin cancer screening promptly. In addition, human ex- 

erts’ diagnosis is quite subjective, which is prone to intra- and 

nter-reader variability, causing inaccurate and inconsistent results 

cross experts. Many factors can affect the diagnosis results, such 

s empirical knowledge, visual fatigue, and the resolution of im- 

ges. Developing automated computer-aided diagnosis (CAD) sys- 

ems to assist the diagnosis procedure may help to mitigate the 

mpact of these factors ( Chen et al., 2020; Xu et al., 2020; He 

t al., 2020; Zhang et al., 2019; Polat and Koc, 2020 ). The classi-

cation module is the core part of an automated skin lesion diag- 

osis system. When it comes the development of CAD methods, 

onvolutional neural networks (CNNs) ( LeCun et al., 2015 ) have 

https://doi.org/10.1016/j.media.2022.102535
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2022.102535&domain=pdf
mailto:llzhen@outlook.com
https://doi.org/10.1016/j.media.2022.102535
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Fig. 1. The flow charts of single-modal classification and our proposed method. Dif- 

ferent colors denote different data classes. Circular, triangle, and square stand for 

clinical, dermoscopic, and multimodal samples, respectively. 
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eplaced the traditional methods ( Claridge et al., 2003; Mendoza 

t al., 2009; Zhou et al., 2009; Ma and Staunton, 2013 ) and be-

ome the most effective approaches to learn the features of skin 

esion images ( Pereira et al., 2021; Thomas et al., 2021; Pérez et al., 

021 ). 

In automated skin lesion classification, researchers have made 

n excellent effort to classify skin lesion images using CNNs. How- 

ver, most of them only consider a single modality, i.e., clinical im- 

ges or dermoscopic images ( Yu et al., 2018; Zhang et al., 2019; 

u et al., 2016; Harangi, 2018 ). As mentioned above, clinical and 

ermoscopic imaging modalities capture different characteristics of 

kin lesions. Clinical images provide the global features of the le- 

ions, while dermoscopic images provide the detailed features of 

esions. One modality may not catch the critical information about 

he lesion and result in a wrong decision, as shown in Fig. 1 (a).

o overcome this problem, researchers have attempted to com- 

ine clinical and dermoscopic images to classify skin lesions ( Ge 

t al., 2017; Yap et al., 2018; Kawahara et al., 2018 ). The key 

dea of these methods is to learn the complementary information 

rom each modality to improve the classification performance, as 

hown in Fig. 1 (b). The complementary information is the knowl- 

dge that is not visible in individual modalities on their own but 

s suitable for understanding the underline semantics of the tar- 

et event/topic ( Baltrušaitis et al., 2018 ). A typical way of learn- 

ng complementary information is concatenating the feature vec- 

ors from different modalities. Each modality’s feature vector pro- 

ides information about different aspects of an object, event, or ac- 

ivity of interest ( Liu et al., 2018 ). However, these methods mainly 

ocus on learning the complementary information while ignoring 

he correlated information between the two input modalities. Cor- 

elated information is the correlation over the representations of 

ifferent modalities. The correlated information can be leveraged 

o increase the confidence of the learned features for both modali- 

ies by encouraging the consistency of the feature vectors from the 

wo modalities. The correlated information is represented in mul- 

iple aspects, such as the color, geometry information, and other 

otential shared characteristics between the two modalities; they 

re all critical for skin lesion classification. 
2 
In this paper, we propose a novel classification method, named 

dversarial multimodal fusion with attention mechanism (AM- 

AM), to learn the discriminative feature representations from clin- 

cal and dermoscopic images. The flow chart of our method is 

hown in Fig. 1 (c), from which we can see that, on the one hand,

ur method aims to learn high discriminative features from each 

odality by adopting attention-based reconstruction; on the other 

and, it tries to restrain the CNN backbone to explicitly learn the 

orrelated features from both modalities to maintain the essen- 

ial shared characteristics. Then, we concatenate the feature vec- 

ors from the two modalities to gain high discriminative repre- 

entations. Specifically, adversarial learning is adopted to guide the 

eature extractor to learn the correlated information. Moreover, we 

mploy the gradient reversal layer (GRL) that forces the feature ex- 

ractor to produce multimodal-invariant representations on multi- 

le source images ( Ganin et al., 2016 ). The multimodal-invariant 

epresentations are the correlated information we aim to learn, as 

ell the shared characteristics we aim to maintain. At the same 

ime, we design an attention-based image reconstruction proce- 

ure to encourage the feature extractor to learn more discrimi- 

ative features for each modality by concentrating on the lesion 

rea of its input image. Lastly, we combine the high-level feature 

ectors of the two modalities to obtain more discriminative rep- 

esentations and feed them to a classifier for the final classifica- 

ion. A multimodal skin lesion database, 7-point criteria evaluation 

atabase ( Kawahara et al., 2018 ), is used to evaluate our proposed 

ethod. The experimental results show that our method outper- 

orms the state-of-the-art methods and verify our method’s effec- 

iveness. 

The main novelty and contributions of this work can be sum- 

arized as follows: 

• A novel multimodal fusion method is proposed to perform 

automated skin lesion classification using clinical and dermo- 

scopic images. Its effectiveness is verified on a widely-used 

skin lesion classification dataset, i.e., 7-point criteria evaluation 

database. 
• By adopting the adversarial learning strategy, our method can 

learn the correlated information between the two modali- 

ties. More specifically, a modality discriminator is designed to 

guide the feature extractor to learn the correlated information 

explicitly . 
• To extract more discriminative features for each modality, we 

propose a self-attention-based image reconstruction approach 

to enforce the feature extractor concentrating on lesion areas 

automatically. 
• Unlike most existing methods that only consider the com- 

plementary information, our method simultaneously considers 

both the correlated and complementary information of the two 

modalities. 

The rest of this paper is organized as follows. First, a review 

f related work is provided in Section 2 . In Section 3 , we present

he details of the material and our proposed method. In Section 4 , 

e describe the experimental setups and performance metrics and 

eport the experimental results. The discussion and future work 

re presented in Section 5 . At last, we conclude this work in 

ection 6 . 

. Related work 

This section reviews some related skin lesion classification ap- 

roaches, including single-modality skin lesion classification, mul- 

imodal fusion methods, and multi-modality skin lesion classifica- 

ion. Also, we will highlight how the proposed method differs from 

he existing methods. 
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.1. CNN-based skin lesion classification 

In early studies, researchers usually used a CNN model to ex- 

ract features from dermoscopic images. A commonly used strategy 

s using the model pre-trained on ImageNet ( Russakovsky et al., 

015 ) and finetuning the model on the target dataset. For in- 

tance, Kawahara et al. proposed a CNN model which adopts Ima- 

eNet pre-trained parameters to initialize the model and then fine- 

unes this pre-trained CNN on the skin lesion data ( Kawahara and 

amarneh, 2016 ). Pomponiu et al. proposed a similar approach 

hat uses pre-trained AlexNet to replace the hand-crafted fea- 

ures and achieves a performance improvement ( Pomponiu et al., 

016 ). In recent years, researchers have started to design more so- 

histicated CNN architectures and used new strategies to improve 

lassification performance. For example, Zhang et al. introduced 

n attention mechanism and proposed an attention residual ap- 

roach for skin lesion classification ( Zhang et al., 2019 ). The pur- 

ose of the attention mechanism is to use the high-level layer at- 

ention feature maps to guide the generation of the low-level layer 

eature maps. Similarly, Gessert et al. used an attention mecha- 

ism combined with diagnosis-guided loss weighting to improve 

he performance of skin lesion classification ( Gessert et al., 2020 ). 

hey divided the high-resolution image into several patches and 

sed an attention mechanism to learn the global context between 

atches. Instead of designing a new architecture, Harangi et al. 

roposed an ensemble strategy to aggregate the feature vectors 

f different CNN models by computing ensemble weight for each 

odel ( Harangi, 2018 ). Finally, combining several related tasks, in- 

luding classification, detection, and segmentation, Song et al. pro- 

osed an end-to-end multi-task framework to classify, detect, and 

egment the dermoscopic images simultaneously and improved 

ach task’s performance ( Song et al., 2020 ). 

However, these methods only use a single dermoscopy modality 

o classify the skin lesion. They have not used the clinical images’ 

omplementary information, which contains the overall character- 

stics of the lesions. 

.2. Multimodal skin lesion classification 

Classifying the skin lesion with dermoscopic and clinical im- 

ges can be regarded as a multimodal feature fusion procedure. 

or multimodal fusion, Wang et al. proposed a parameter-free mul- 

imodal fusion framework, namely, Channel-Exchanging-Network 

CEN), that dynamically exchanges channels between sub-networks 

f different modalities ( Wang et al., 2020 ). Based on the trans- 

ormer, Nagrani et al. proposed an attention bottlenecks architec- 

ure that uses the proposed bottleneck module for multimodal 

eature fusion at multiple layers ( Nagrani et al., 2021 ). Unlikely 

he architecture design methods, Liu et al. proposed a con- 

rastive learning objective, TupleInfoNCE, to learn the complemen- 

ary information by considering both strong and weak modal- 

ties ( Liu et al., 2021 ). The previously mentioned methods are 

esigned for specific natural scenario tasks. For multimodal skin 

esion classification, we can sort current works into two main 

trategies to fusion different modalities’ information. The first 

trategy is fusing the representations of each modality at the end 

f the CNN model. Based on this strategy, Yap et al. proposed a 

esNet-50-based architecture to extract representations from both 

odalities and then concatenate the representations of these two 

odalities with meta representations to make the final classifi- 

ation ( Bhardwaj and Rege, 2021 ). Similarly, Kawahara et al. also 

sed two image modalities and one metadata to classify each pa- 

ient ( Kawahara et al., 2018 ). The difference between Yap et al. and

awahara et al. is that Kawahara et al. used Inception-V3 to ex- 

ract representations and tried different combinations of the three 

odalities to find the optimal performance. The second strategy is 
3 
using the features of different modalities progressively on all lev- 

ls of the CNN architecture. Based on this strategy, Bi et al. pro- 

osed a hyper-connected convolutional neural network (HcCNN) 

nd designed a new fusion block to fuse the feature maps of two 

odalities to obtain the fused representations ( Bi et al., 2020 ). Hc- 

NN concatenates the representations from two single modalities 

o make the final classification for each sample. Ge et al. proposed 

 three-branch CNN architecture named Triplet: one for clinical 

mages, one for dermoscopic images, and another sub-networks 

or extracting the representations from both modalities ( Ge et al., 

017 ). Besides, Triplet applies a saliency map to make the network 

earn the area’s features most likely to belong to the foreground, 

hich contains crucial information about the input image. 

However, the first strategy does not impose constraints on the 

eature representations, leading the final fusion representation sub- 

ptimal for the classification. In contrast, the second strategy in- 

roduces a new branch to learn the complementary information 

hat increases the model complexity, thus the model requires more 

omputing resources. Besides, most of the current multimodal fea- 

ure fusion methods only focus on learning and using comple- 

entary information. The correlated information between different 

odalities is ignored. In our method, we consider both of them to 

earn more discriminative representations for the skin lesion clas- 

ification. 

. Material and method 

.1. Material 

We employ a publicly available multimodal skin lesion dataset, 

amed 7-point criteria evaluation database ( Kawahara et al., 2018 ), 

s our material. It contains three modalities (two image modali- 

ies and one text modality) for evaluating automated image-based 

rediction of the 7-point skin lesion malignancy checklist. There 

re 1011 cases, and each case contains one dermoscopic image, 

ne clinical image, and metadata (such as patient gender and le- 

ion location). Two image modalities are used for evaluation in this 

tudy, i.e., dermoscopic and clinical images. These 1011 cases are 

fficially divided into three subsets for evaluating algorithms’ per- 

ormance. The train, validate, and the test sets contain 413, 203, 

nd 395 cases, respectively. The sizes of dermoscopic images range 

rom 474 × 512 to 532 × 768 pixels, and the size of clinical images 

ange from 480 × 512 to 532 × 768 pixels. There are two classifi- 

ation tasks: the DIAGNOSIS (DIAG) classification and the 7-point 

riteria classification. The DIAG classification task is to classify each 

ase into one of five categories: basal cell carcinoma (BCC), nevus 

NEV), melanoma (MEL), miscellaneous (MISC), and seborrheic ker- 

tosis (SK). The 7-point criteria classification task includes seven 

lassification sub-tasks: 1) Pigment Network (PN), 2) Blue Whitish 

eil (BWV), 3) Vascular Structures (VS), 4) Pigmentation (PIG), 5) 

treaks (STR), 6) Dots and Globules (DaG), and 7) Regression Struc- 

ures (RS). Among them, PN is a three-category classification task: 

bsent (ABS), typical (TYP), and atypical (ATP); BWV and RS aim 

o distinguish absent (ABS) and present (PRS) categories; VS, PIG, 

TR, and DaG aim to distinguish: absent (ABS), regular (REG), and 

rregular (IR) categories. The detailed statistics of the material are 

ummarized in Table 1 . 

.2. Framework of adversarial multimodal fusion with attention 

echanism (AMFAM) 

The framework of our proposed AMFAM is shown in Fig. 2 , from 

hich we can see that AMFAM contains two branches: the clinical 

mage branch and the dermoscopic image branch. When the der- 

oscopic and the clinical images are input to AMFAM, they will 
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Fig. 2. The framework of our proposed method. The blue dashed box denotes an adversarial discriminator, the orange dashed boxes denote the attention mechanism-based 

reconstruction modules, and the green dashed box denotes the classification module. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Table 1 

The detailed statistics for the 7-point criteria evaluation database. #Train, #Validate, 

and #Test denot the number of images in the training, validation, and test sets, 

respectively. #Total: the total number of images. 

Task Category #Train #Validate #Test #Total 

DIAG BCC 19 7 16 42 

NEV 256 100 219 575 

MEL 90 61 101 252 

MISC 32 25 40 97 

SK 16 10 19 45 

PN ABS 160 84 156 400 

TYP 160 75 146 381 

ATP 93 44 93 230 

BWV ABS 339 157 320 816 

PRS 74 46 75 195 

VS ABS 347 163 313 823 

REG 43 22 52 117 

IR 23 18 39 71 

PIG ABS 253 112 223 588 

REG 44 26 48 118 

IR 226 65 124 305 

STR ABS 273 123 257 653 

REG 39 24 44 107 

IR 101 56 94 251 

DaG ABS 84 45 100 229 

REG 156 60 118 334 

IR 173 98 177 448 

RS ABS 317 152 289 758 

PRS 96 51 106 253 
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o through a CNN for feature extraction. We obtain the CNN fea- 

ure maps from its last layer as the extracted representations. Then 

ur method will input the extracted representations into three 

odules: adversarial discriminator module, attention reconstruc- 

ion module, and classification module. 

These three modules and the feature extractor are trained 

ointly in an end-to-end manner to guide the feature extractor in 

earning both the correlated and complementary features. We will 

llustrate the details below. 

Let D s = { (x c , x d , Y ) i } N i =1 
be the set of 7-point criteria evaluation

ataset, where x c 
i 

∈ R 

w ×h ×3 and x d 
i 

∈ R 

w ×h ×3 denote the i -th clinical
4

mage and dermoscopic image, respectively. w and h are the width 

nd height of the input image. Each image is a 3-channel RGB 

mage. Y i = { y 1 
i 
, y 2 

i 
, . . . , y T 

i 
} denotes the label for DIAG, PN, BWV,

S, PIG, STR, DaG, and RS classification tasks, respectively. T = 8 

enotes the number of classification tasks. Lastly, N is the total 

umber of cases. The goal of our proposed method is to train the 

eural network as a function F ( θ) to map the input clinical and

ermoscopic images from input space to its label space, where 

= { θG , θRC , θRD , θD , θC } represents the trainable parameters of the 

eural network model. Moreover, θG , θRC , θRD , θD , and θC are the 

rainable parameters of the CNN backbone G , the clinical image re- 

onstruction component RC, the dermoscopic image reconstruction 

omponent RD , the discriminator D , and the classification compo- 

ent C, respectively. 

.2.1. Adversarial multimodal fusion 

The adversarial multimodal fusion uses adversarial learning to 

earn the correlated features. In our skin lesion classification task, 

he correlated features capture the shared characteristics of the 

wo modalities, namely, the color, geometry information, and other 

otential shared characteristics between the two modalities. We 

se a discriminator to classify the input feature maps from the 

eature extractor into one of the two modalities. If the discrimina- 

or can accurately classify the feature maps, it can be inferred that 

he feature maps from different modalities have negligibly corre- 

ated information. Otherwise, if the discriminator has been con- 

used and it is hard to distinguish the feature maps from different 

odalities, it indicates that the feature maps from different modal- 

ties contain significantly correlated information. Adversarial learn- 

ng is a mini-max game that trains the feature extractor to extract 

he features that can minimize the discriminator’s capability of as- 

igning the correct label to both modalities. Meanwhile, the dis- 

riminator attempts to classify the feature maps into their corre- 

ponding modality as correctly as possible. Thus, the discriminator 

hould maximize the probability of assigning the correct label to 

oth modalities. When the mini-max optimization converges, ide- 

lly, the feature extractor should be able to extract the features 

hich contain the correlated information from different modalities, 
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et the discriminator cannot distinguish the feature maps from 

hich modality. 

Before the discriminator, we add one global average pooling 

ayer that transforms the input feature maps into feature vectors. 

esides, a gradient reverse layer (GRL) ( Ganin et al., 2016 ) is con-

ected to update the generator’s gradient. In the forward pass, GRL 

erforms as an identity layer. In the backward pass, GRL multiplies 

 gradient calculated from the discriminator error by a negative 

caler and propagates the negative gradient to the feature extrac- 

or. The adversarial discriminator of AMFAM is a fully-connected 

eural network, which contains three layers: the input layer, the 

idden layer of 512 neurons with the ReLU activation function, and 

he output layer (a softmax layer for classification). It outputs the 

robabilities of input feature maps for different modalities, namely, 

linical modality and dermoscopy modality. To achieve the goal of 

dversarial learning, we optimize the following two-player mini- 

ax game: 

 D (x c , x d ; θG , θD ) = min G max D V (D, G ) 

= E [ log D (G (x c , θG ) , θD ) ] 

+ E [ log (1 − D (G (x d , θG ) , θD ))] . 

(1) 

.2.2. Attention mechanism-based reconstruction 

Different from the methods that incorporate the attention 

echanism into the backbone. We use the attention mechanism- 

ased reconstruction method to constrain the backbone to learn 

he lesion area features. The benefit of our strategy is that we 

an focus on learning the features of the lesion area while main- 

aining the full-image information for each modality. The attention 

echanism-based reconstruction module aims to restrain the fea- 

ure extractor from extracting the feature maps of each modality 

ontaining the discriminative information and with full-image in- 

ormation. To achieve this goal, we apply an attention mechanism 

o encourage the reconstruction by concentrating on reconstructing 

he lesion area instead of the background. The better reconstruc- 

ion results are achieved by our approach, the more information 

ill be extracted by the feature extractor. The detailed architecture 

f the attention reconstruction module is shown in Fig. 3 . The in- 

ut of this module is the feature maps extracted by the CNN back- 

one. This module includes two branches: the attention map com- 

utation branch and the reconstruction branch. The input of the at- 

ention reconstruction module is the feature maps extracted from 

ermoscopic or clinical images. In the attention map computation 

ranch, we first adopt the spatial squeeze and channel excitation 

cSE) ( Roy et al., 2018 ) to compute the importance of the feature

aps. Next, we use the weights to represent the importance. The 

SE branch uses one convolutional layer to transform the input fea- 

ure maps into a feature vector. Then, three fully-connected layers 

re connected to compute the weights for input feature maps. The 
ig. 3. The architecture of the attention-based reconstruction module. The upper 

ranch is the cSE branch, which is used to compute the attention map. The lower 

ranch is the reconstruction branch, which is used to reconstruct the input image. 

astly, we combine two branches to compute and update the parameters. 
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5 
eurons of the three layers are the number of feature map chan- 

els c, c 
2 , and c. By applying the weights, we emphasize the impor- 

ant feature maps from the input feature maps when we compute 

he weighted sum of all the feature maps to get the attention map 

 . Finally, we resize m into the input image size by using bicubic 

nterpolation and normalize the values of m into the range of [0,1] 

y using ˆ m = 

m −min (m) 
max (m) −min (m) 

, where ˆ m denotes the normalized at- 

ention map, min (·) and max (·) denote the functions that compute 

he minimum value and maximum value of m , respectively. 

We use three upsampling blocks and one convolutional layer to 

econstruct the input image in the reconstruction branch. Each up- 

ampling block contains one upsampling layer, one convolutional 

ayer, one batch normalization layer, and a leaky Rectified Linear 

nit (ReLU) activation function. The scale factor of the first two up- 

ampling blocks is four, and the followed convolutional layer’s ker- 

el size is 3 × 3 with 128 output channels. The scale factor of the 

hird upsampling block is two. Then, the followed convolutional 

ayer ( 3 × 3 kernel size) has 64 output channels. The last convo- 

utional layer’s kernel size is 3 × 3 . The output of the last convo- 

utional layer is the reconstructed RGB image ˆ x ∈ R 

w ×h ×3 . Specifi- 

ally, ˆ x c = RC(G (x c , θG ) , θRC ) and ˆ x d = RD (G (x d , θG ) , θRD ) are the re-

onstruction images for clinic and dermoscopic images by using re- 

onstruct branch RC(·) and RD (·) , respectively. 

After obtaining the attention map and the reconstruction image, 

e construct the loss function to optimize the entire network. We 

efine a new reconstruction loss function for each clinical image x c 

nd dermoscopic image x d using the attention map ˆ m to constrain 

he feature extractor to focus more on the lesion. The loss func- 

ion is the L2-norm reconstruction loss. After employing the atten- 

ion mechanism, we introduce an exponential function applied to 

ur attention map. The goal of adding an exponential function is 

o scale the loss of each pixel. Thus, making the reconstruction fo- 

us more on the attention area. The larger values in ˆ m , the losses 

f the pixels will be more significant. For example, if one pixel is 

alient in the attention map, the value of this pixel is close to 1. 

hen, the loss weight of this pixel should be e 1 = e times, and the

ntire network will pay more attention to learning the feature of 

his pixel. On the contrary, if one pixel is not salient in the atten- 

ion map, the value of this pixel in ˆ m should be close to 0. Then, 

he loss weight of this pixel should be 1. At this time, the loss of

his pixel degrades into the normal L2-norm loss. The detailed loss 

unctions are as follows: 
 

 

 

 

 

 

 

L RC (x c ; θG , θRC ) = 

1 
w ×h 

w ∑ 

i =1 

h ∑ 

j=1 

e ˆ m 

c 
i j ( ̂  x c 

i j 
− x c 

i j 
) 2 , 

L RD (x d ; θG , θRD ) = 

1 
w ×h 

w ∑ 

i =1 

h ∑ 

j=1 

e ˆ m 

d 
i j ( ̂  x d 

i j 
− x d 

i j 
) 2 , 

(2) 

here ˆ m 

c 
i j 

and ˆ m 

d 
i j 

denote the value of the i -th column and the j-th 

ow of attention map ˆ m 

c for clinical image and ˆ m 

d for dermoscopic 

mage, respectively. L RC and L RD denote the loss functions for clin- 

cal modality and dermoscopy modality, and w and h denote the 

idth and height of the input image. 

.2.3. Classification module 

The classification module is utilized to classify the multimodal 

nput feature maps into their corresponding categories. Firstly, this 

odule concatenates the feature maps from both modalities to ob- 

ain complementary information. Then the concatenated feature 

aps will go through a network of three layers. The first layer is 

 global average pooling layer which turns the input feature maps 

nto feature vectors. Then, it is followed by a fully-connected layer 

ith 512 neurons. Finally, the last layer is the softmax layer, which 

s used to classify the inputs into different lesion categories. 

In our method, there are eight classifiers to achieve the classifi- 

ation of the DIAG and seven sub-tasks of 7-point criteria. The loss 
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Table 2 

Comparison of different ablation study models in terms of accuracy (%). 

Models BWV DaG PIG PN RS STR VS DIAG Avg. 

Clin. only 83.0 53.7 64.1 55.2 72.4 66.3 80.0 64.8 67.4 

Derm. only 87.1 60.0 66.6 66.1 78.5 71.1 80.5 69.4 72.4 

Concat. 88.6 62.0 67.1 70.1 79.7 74.7 82.0 70.1 74.3 

Concat. + Recon. 89.4 59.5 69.1 68.6 81.0 74.4 82.8 73.2 74.8 

Concat. + Recon.+Att.(without E) 89.4 60.8 67.3 71.1 80.3 74.2 81.5 70.9 74.4 

Concat. + Recon.+Att. 89.9 63.8 69.6 68.9 77.5 77.2 82.8 72.7 75.3 

Concat. + AD. 89.4 63.0 69.1 69.4 82.3 75.4 82.3 69.6 75.1 

AMFAM 88.1 63.8 70.9 70.6 80.8 74.7 83.3 75.4 76.0 
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unction of the classification module is defined as follows: 

 P (x c , x d , Y, ̂  Y ; θG , θC ) = 

T ∑ 

i 

L P i (x c , x d , y i , ̂  y i ; θG , θC ) , (3)

here L P i 
(x c , x d , y i , ̂  y i ; θG , θC ) is the standard cross-entropy loss for

ach classification task. T = 8 is the total number of classifiers. Y =
 y 1 , . . . , y 8 ] are the ground truth labels for the eight tasks and 

ˆ Y =
 ̂  y 1 , . . . , ̂  y 8 ] are the predict labels for the eight tasks. 

At last, we combine all the loss functions illustrated above to 

btain the final loss function used to optimize the proposed AM- 

AM. Mathematically, the final loss function is shown in Eq. 4 . 

 = L P (x c , x d , Y, ̂  Y ; θG , θC ) + λL D (x c , x d ; θG , θD ) 

+ γ (L RC (x c , x d ; θG , θRC ) + L RD (x c , x d ; θG , θRD )) , 
(4) 

here λ and γ are two trade-off parameters to control the contri- 

ution of reconstruction loss and discriminator loss, respectively. 

. Experimental study 

.1. Experimental settings 

.1.1. Training and testing details 

We implement our proposed method using the PyTorch 

1 li- 

rary. We run all the training and testing processes on an NVIDIA 

UADRO RTX 80 0 0 GPU with 48 GB memory. For a fair com- 

arison, we use ResNet-50 ( He et al., 2016 ) as our CNN back-

one, which keeps the same with HcCNN. The backbone is initial- 

zed with the ImageNet pre-trained parameters. During the train- 

ng process, we used Adam ( Kingma and Ba, 2014 ) optimizer with 

earning rate l = 0 . 0 0 0 01 and weight decay wd = 0 . 0 0 01 to opti-

ize the entire neural network. We set batch size b = 8 and max

raining epoch E = 150 with the early stop. After grid search, we 

et the trade-off parameters λ = 0 . 8 and γ = 0 . 4 . We use online

ata argumentation methods to augment training images from dif- 

erent modalities. Specifically, we firstly resize the input images 

nto 299 × 299 pixels. Then, we augment each image from two 

odalities by using the following operations: padding 20 pixels 

ith zero values, random cropping 299 × 299 , random rotation (ro- 

ation angle φ ∈ [ −45 ◦, 45 ◦] ), and random vertical flipping with the 

robability of 0.5. We only use the well-trained CNN backbone and 

lassifiers to perform the classification task on the test set during 

he testing process. 

.1.2. Evaluation metrics 

We evaluate the proposed method by using the following five 

idely-used evaluation metrics: accuracy (Acc.), sensitivity (Sen.), 

pecificity (Spec.), precision (Prec.), and the area under the re- 

eiver operator characteristic curve (AUC). The definitions of accu- 
1 https://pytorch.org/ . 

a

t
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6

acy, sensitivity, specificity and precision are as follows: 
 

 

 

 

 

 

 

 

 

Acc = 

T P+ T N 
T P + F P + T N+ F N 

Sen = 

T P 
T P+ F N 

Spec = 

T N 
F P+ T N 

P rec = 

T P 
T P+ F P 

, (5) 

here T P , F P , T N and F N are the numbers of the true positive, false

ositive, true negative and false negative samples, respectively. We 

eep the threshold of accuracy, sensitivity, specificity, and precision 

s the same with Reference ( Bi et al., 2020 ) for a fair comparison,

hat is 0.5. AUC is computed by following the approach reported by 

awahara et al. ( Kawahara et al., 2018 ), where the authors used the 

ne-against-all approach to evaluate the labels positively related 

o the melanoma diagnosis. For all these metrics, the larger val- 

es indicate better performance. For a fair comparison with other 

ethods, we use the average value on all these metrics to evaluate 

he performance of the models by following Reference ( Kawahara 

t al., 2018; Bi et al., 2020 ) and considering the 7-point criteria 

ataset is a multi-task dataset. 

.2. Experimental results and analysis 

.2.1. Ablation study 

To evaluate the effectiveness of each module of AMFAM, we 

ompare seven different settings based on the ResNet-50 backbone. 

) Only using clinical modality to classify lesions (Clin. only); 2) 

nly using dermoscopy modality to classify lesions (Dermo. only); 

) Simply concatenating clinical modality feature representations 

nd dermoscopy modality feature representations in the high-level 

eature space to classify lesions (Concat.); 4) Based on 3), adding 

econstruction part to restrain the feature maps (Concat. + Recon.); 

) Based on 4), adding attention map to the reconstruction part 

nd training by L2-norm reconstruction loss without the exponen- 

ial weighting function (Concat. + Recon. + Att. (without E)); 6) 

ased on 4), adding attention map to the reconstruction part with 

ur proposed exponential weight function (Concat. + Recon. + Att.); 

) Based on 3), adding adversarial discriminator (Concat. + AD.); 

nd 8) Our proposed AMFAM, based on 5) and adding adversar- 

al discriminator to restrain the feature maps of two modalities 

urther. 

The results of the ablation study models are reported in Table 2 , 

n which the bold number and underline number mean the best 

nd the second-best accuracy in each task. “Avg.” denotes the av- 

rage score over the entire row. Table 2 shows that all the mul- 

imodal learning models outperform the models using a single 

odality, which indicates the significance of multimodal fusion. 

econdly, we can see that adding the reconstruction and the adver- 

arial discriminator into the concatenation model can significantly 

mprove the performance. It indicates that learning both correlated 

nd complementary information is crucial. In addition, the atten- 

ion mechanism improves the performance of classification. Adding 

econstruction, attention map, and adversarial discriminator into 

https://pytorch.org/
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Table 3 

The detailed comparison of ablation study models in terms of sensitivity (Sen.), specificity (Spec.), precision (Prec.), and AUC (%). 

7pt criteria BWV DaG PIG PN RS STR VS Avg. 

Method Met. ABS PRS ABS REG IR ABS REG IR ABS TYP ATP ABS PRS ABS REG IR ABS REG IR 

Clin. only Sen. 85.2 61.1 58.3 48.3 55.7 66.0 11.3 59.3 63.1 60.4 40.0 76.9 47.5 74.3 69.2 44.1 80.2 66.7 0.0 56.2 

Spec. 61.1 85.2 76.8 78.0 74.6 67.3 88.5 79.1 73.6 75.1 83.6 47.5 76.9 57.4 90.8 83.3 83.3 87.7 92.4 77.0 

Prec. 95.6 29.3 14.0 48.3 79.7 83.4 6.3 51.6 57.1 55.5 51.6 88.9 27.4 80.9 20.5 47.9 99.7 7.7 0.0 49.8 

AUC 81.6 81.6 68.1 74.2 73.1 72.3 68.6 76.4 73.3 75.9 69.6 66.6 66.6 73.4 83.5 73.4 80.9 80.9 74.9 74.5 

Derm. only Sen. 87.2 85.3 61.7 52.8 64.8 65.1 72.2 73.6 73.3 74.2 46.4 83.1 62.1 75.5 1.0 52.4 83.1 48.3 0.0 61.2 

Spec. 85.3 87.3 81.2 83.0 74.3 83.1 90.7 75.1 83.8 80.1 85.3 62.1 83.1 68.8 90.9 83.9 69.0 89.6 92.4 81.5 

Prec. 98.4 38.7 37.0 63.6 70.6 94.6 27.1 31.5 75.6 63.0 54.8 88.6 50.9 88.7 20.5 46.8 97.1 26.9 0.0 56.5 

AUC 87.4 87.4 76.7 75.8 77.2 79.2 82.9 79.6 86.9 81.4 77.1 80.0 80.0 79.7 86.9 77.1 84.2 85.3 71.1 80.8 

Concat. Sen. 90.1 78.8 68.9 52.7 67.5 69.1 64.7 62.3 74.0 71.8 58.8 81.4 71.0 82.7 67.7 55.1 85.1 53.8 0.0 66.1 

Spec. 78.8 90.1 80.3 84.0 78.5 71.5 90.2 79.9 87.4 82.6 85.4 71.0 81.4 71.3 93.7 86.5 74.4 91.3 92.4 82.7 

Prec. 96.6 54.7 31.0 66.9 76.3 84.3 22.9 53.2 82.1 70.0 50.5 93.8 41.5 85.6 47.7 57.4 96.8 40.4 0.0 60.6 

AUC 86.7 86.7 75.5 77.8 81.5 78.9 81.4 82.2 89.2 84.1 84.9 85.1 85.1 84.8 88.6 82.4 89.0 89.0 77.9 83.7 

Concat. + Recon. Sen. 91.1 78.9 66.7 52.3 62.4 70.6 58.3 66.3 80.6 68.7 53.4 83.7 69.6 82.5 63.9 54.9 85.6 58.5 0.0 65.7 

Spec. 78.9 91.1 78.8 81.1 79.5 78.8 89.3 80.6 80.5 85.3 87.0 69.6 83.9 71.7 94.2 85.5 75.6 92.0 92.4 82.9 

Prec. 96.3 0.6 24.0 57.6 80.8 89.2 14.6 54.0 66.7 76.7 59.1 91.7 51.9 86.0 52.3 53.2 96.8 46.2 0.0 57.8 

AUC 88.7 88.7 72.8 74.7 80.4 80.9 81.4 83.7 87.7 85.5 82.1 82.4 82.4 84.7 90.0 81.1 87.8 88.2 80.1 83.3 

Concat. + Recon. 

+Att.(without 

E) 

Sen. 92.1 75.4 65.7 53.0 65.6 68.4 53.8 66.0 76.5 73.9 57.1 83.5 67.5 83.3 72.0 54.0 82.1 68.8 0.0 66.2 

Spec. 75.4 92.1 78.6 84.4 78.5 75.7 89.3 79.4 86.3 83.8 86.5 67.5 83.5 68.8 93.0 88.3 87.5 89.2 92.4 83.2 

Prec. 95.0 65.3 23.0 67.8 77.4 88.3 14.6 50.0 79.5 71.9 55.9 91.0 50.9 83.3 40.9 64.9 99.4 21.2 0.0 60.0 

AUC 90.3 90.3 72.9 75.7 80.0 79.1 80.4 81.9 89.6 85.3 82.8 84.4 84.4 83.9 88.6 82.5 88.6 88.0 79.4 83.6 

Concat. 

+ Recon. 

+Att. 

Sen. 91.4 80.7 76.7 51.1 73.0 69.5 55.0 74.0 70.9 70.9 61.0 79.2 66.0 84.4 69.7 61.0 83.6 70.8 0.0 67.8 

Spec. 80.7 91.4 81.0 86.9 78.3 83.5 90.1 78.9 84.8 81.9 86.3 66.0 79.2 72.9 94.2 88.8 87.5 90.6 92.4 84.0 

Prec. 96.6 61.3 33.0 75.4 73.4 92.8 22.9 46.0 78.2 68.5 53.8 93.8 33.0 86.0 52.3 64.9 99.0 32.7 0.0 61.2 

AUC 92.4 92.4 74.2 78.0 82.0 79.8 82.3 81.7 88.0 84.3 85.4 82.1 82.1 86.3 90.8 84.5 87.5 87.3 79.4 84.2 

Concat. 

+ AD. 

Sen. 90.6 81.1 68.0 54.4 68.4 67.1 85.7 76.4 74.1 69.9 60.0 85.9 70.0 81.2 59.4 60.5 84.8 59.0 0.0 68.2 

Spec. 81.1 90.6 80.9 85.0 78.4 86.1 89.2 78.6 84.5 81.7 87.2 70.0 85.9 77.8 93.1 85.0 71.8 91.9 92.4 83.7 

Prec. 96.9 57.3 34.0 68.6 75.7 95.1 12.5 44.4 76.9 68.5 58.1 90.7 59.4 90.7 43.2 48.9 96.5 44.2 0.0 61.1 

AUC 90.3 90.3 75.9 78.6 81.4 81.9 82.7 81.9 87.6 84.7 83.9 85.5 85.5 85.8 89.7 81.7 89.1 88.6 81.3 84.5 

AMFAM Sen. 90.3 75.0 68.4 56.3 66.7 72.7 63.2 67.9 77.2 70.3 58.5 82.6 72.1 80.6 70.4 57.3 83.8 75.0 0.0 67.8 

Spec. 75.0 90.3 82.0 81.5 82.4 76.3 90.4 83.0 85.7 84.6 85.6 72.1 82.6 72.4 93.2 85.9 91.7 90.8 92.4 84.1 

Prec. 95.6 56.0 39.0 56.8 82.5 86.1 25.0 61.3 78.2 74.7 51.6 93.4 46.2 87.5 43.2 54.3 99.4 34.6 0.0 61.3 

AUC 91.1 91.1 77.1 77.7 81.9 80.7 85.1 83.4 89.2 84.5 82.0 86.7 86.7 83.0 89.5 80.7 89.6 88.8 80.9 84.7 

7
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Table 4 

The detailed comparison of ablation study models for the DIAG classification in terms of sensitivity (Sen.), specificity 

(Spec.), precision (Prec.), and AUC (%). 

7pt criteria DIAG 

Avg. 
Method Met. BCC NEV MEL MISC SK 

Clin. only Sen. 0.0 75.2 49.2 40.0 0.0 32.9 

Spec. 95.9 75.8 88.7 90.6 95.2 89.2 

Prec. 0.0 83.1 69.3 10.0 0.0 32.5 

AUC 83.1 81.6 79.6 79.1 67.4 78.2 

Derm. only Sen. 14.3 73.0 71.1 34.8 0.0 38.6 

Spec. 96.1 88.5 86.5 91.4 95.2 91.6 

Prec. 6.3 94.1 58.4 20.0 0.0 35.7 

AUC 90.5 88.4 85.2 89.1 73.6 85.3 

Concat. Sen. 31.6 73.5 66.7 87.5 0.0 51.8 

Spec. 97.3 85.8 87.1 91.5 95.2 91.4 

Prec. 37.5 92.2 61.4 17.5 0.0 41.7 

AUC 91.0 87.6 87.6 85.5 79.8 86.3 

Concat. + Recon. Sen. 36.4 76.6 69.7 25.0 0.0 41.5 

Spec. 96.9 89.7 89.2 92.1 95.2 92.6 

Prec. 25.0 94.1 68.3 62.5 0.0 50.0 

AUC 90.7 90.5 89.3 92.5 78.0 88.2 

Concat. + Recon. +Att.(without E) Sen. 37.5 75.5 64.9 45.5 0.0 44.7 

Spec. 96.6 85.4 89.8 90.9 95.2 91.6 

Prec. 18.8 91.3 71.3 12.5 0.0 38.8 

AUC 89.3 88.7 88.7 87.9 72.2 85.4 

Concat. + Recon. +Att. Sen. 37.5 75.5 74.4 48.1 5.3 48.2 

Spec. 96.6 89.3 88.0 92.7 95.4 92.4 

Prec. 18.8 94.1 63.4 32.5 100.0 61.7 

AUC 91.9 90.9 90.3 89.5 82.6 89.0 

Concat. + AD. Sen. 30.0 70.7 75.7 75.0 0.0 50.3 

Spec. 97.3 90.8 85.2 91.2 95.2 92.0 

Prec. 37.5 95.9 52.5 15.0 0.0 40.2 

AUC 91.0 89.7 89.3 91.1 76.1 87.4 

AMFAM Sen. 40.0 84.1 65.8 68.0 40.0 59.6 

Spec. 97.4 85.8 91.4 93.8 95.6 92.8 

Prec. 37.5 89.5 76.2 42.5 10.0 51.1 

AUC 94.1 89.7 89.1 90.6 81.7 89.0 
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he concatenation model one by one to restrain the CNN back- 

one can gradually improve the classification performance. Sim- 

larly, adding our proposed exponential function to add weights 

o the reconstruction loss of pixels can improve the model per- 

ormance. Finally, we observe that our proposed AMFAM model 

chieves the best performance compared to all other models with 

ifferent settings. It means that learning both the correlated infor- 

ation and complementary information can further improve the 

ultimodal classification performance. The classification results in 

able 2 demonstrate the effectiveness of each part of our proposed 

ethod. 

To further verify the effectiveness of each component in our 

roposed method, we report the results of other metrics achieved 

y the ablation study models in Tables 3 and 4 . Table 3 shows

he 7-point criteria results and Table 4 shows the results of DIAG. 

he results in Table 3 show that the average AUC of our proposed 

ethod is 3.9% higher than using a single modality. The results 

in terms of all other metrics) increase gradually when reconstruc- 

ion, attention map, and adversarial discriminator components are 

dded to the basic concatenate model. Both Tables 3 and 4 demon- 

trate that the performance of adding reconstruction, attention and 

dversarial learning parts can improve the concatenate model’s 

erformance. These results also demonstrate the consistent con- 

lusion with Table 2 that learning correlated and complementary 

nformation together can improve multimodal classification perfor- 

ance. 

.2.2. Comparison with the state-of-the-art methods 

In this section, we compare the performance of our proposed 

ethod with the current state-of-the-art (SOTA) methods on the 

-point criteria evaluation database. All the methods are evalu- 

ted with the same database. Firstly, we compare three baseline 
8 
ethods proposed by Kawahara et al. ( Kawahara et al., 2018 ). 

hese methods are based on Inception-V3. They are the Inception- 

nbalanced method that directly sampled data into mini-batch 

o train the model; The Inception-balanced method sampled a 

alanced mini-batch according to the samples’ label to train the 

odel. The Inception-combined method combines three modalities 

o classify the lesion. All the results of these three methods come 

rom Reference ( Kawahara et al., 2018 ). Then, we compare several 

ultimodal classification methods, i.e., TripleNet ( Ge et al., 2017 ), 

mbeddingNet ( Yap et al., 2018 ), and HcCNN ( Bi et al., 2020 ).

mong all the methods, Inception unbalanced, Inception-balanced, 

nception-combined, TripleNet, and EmbeddingNet fuse the repre- 

entations of different modalities by concatenating the representa- 

ions from different modalities at the end of CNN backbones. Hc- 

NN is a gradually fused multimodal method that uses a separate 

NN branch to fuse the features of different modalities. The de- 

ails of these multimodal methods have been introduced in the re- 

ated work section. The classification results of these comparison 

ethods come from Reference ( Bi et al., 2020 ). The average results 

f all the methods are computed using all the categories’ results 

s Kawahara et al. ( Kawahara et al., 2018 ) do, except for HcCNN. 

he average results for HcCNN are computed by using the num- 

ers provided in the original paper. 

Firstly, the results of the eight classification tasks in terms of 

ccuracy are reported in Table 5 . From Table 5 , the average accu- 

acies of different models indicate that most of the concatenation- 

ased multimodal fusion methods’ results are worse than the grad- 

ally fused HcCNN method, except for our proposed method. The 

ain reason why the concatenation-based fusion method performs 

orse than HcCNN is that even the concatenation-based fusion 

ethod contains complementary information of different modal- 

ties. The features from each modality are extracted separately, 
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Table 5 

Comparison between our proposed method with the SOTA multimodal learning methods in terms of accuracy (%). 

Methods BWV DaG PIG PN RS STR VS DIAG Avg. 

Inception-unbalanced ( Kawahara et al., 2018 ) 87.6 56.7 65.6 68.1 78.2 75.9 81.3 68.4 72.7 

Inception-balanced ( Kawahara et al., 2018 ) 87.3 60.3 64.8 68.9 78.2 75.7 81.5 70.9 73.5 

Inception-combined ( Kawahara et al., 2018 ) 87.1 60.0 66.1 70.9 77.2 74.2 79.7 74.2 73.7 

TripleNet ( Ge et al., 2017 ) 87.9 61.3 67.3 63.3 76.0 74.4 83.0 68.6 72.7 

EmbeddingNet ( Yap et al., 2018 ) 84.3 57.5 64.3 65.1 78.0 73.4 82.5 68.6 71.7 

HcCNN ( Bi et al., 2020 ) 87.1 65.6 68.6 70.6 80.8 71.6 84.8 69.9 74.9 

AMFAM 88.1 63.8 70.9 70.6 80.8 74.7 83.3 75.4 76.0 

w

o

v

t

a

b

t

o

n

c

p

fi  

t

m

t

i

g

d

t

b

m

m

4

s

t

4

c

b

fi

I

o

d

t

T

i

i

8  

i

A

w

s

t

m

fi

m

i

F

t

d

d

t

Fig. 4. Visualization of the confusion matrices the test set predictions. The x axis is 

the output label of the model, and the y -axis is the ground truth label. 
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hich may cause the sub-optimal solution ( Bi et al., 2020 ). Though 

ur method also concatenates the feature maps, it employs ad- 

ersarial learning and attention mechanism-based reconstruction 

o learn highly discriminative features which contain correlated 

nd complementary information. Thus, our method achieves the 

est average results among all the comparison methods. Even 

hough HcCNN introduces a new branch to fusion the features, it 

nly learns the complementary information. Besides, the additional 

eural network branch makes the model of HcCNN very compli- 

ated and requires a lot of additional computing resources. Our 

roposed method outperforms other methods in the eight classi- 

cation tasks on most of the tasks (4 out of 8). One of the poten-

ial reasons is that by employing an attention mechanism-based 

echanism to restrain the feature extractor, the feature represen- 

ation of each modality is more discriminative. Besides, adversar- 

al learning guarantees representations from different modalities to 

ain correlated information. 

Considering the poor performance of TripleNet and Embed- 

ingNet, when comparing the performance of other classifica- 

ion metrics, we only compare Inception-unbalanced, Inception- 

alanced, Inception-combined, and HcCNN with our AMFAM 

ethod. The detailed results are reported in Table 6 . Our proposed 

ethod achieves the best performance on most metrics (3 out of 

). Specifically, our proposed method improves more than 6% of 

ensitivity and specificity on this dataset and 2.7% AUC compared 

o the previous SOTA method (HcCNN). 

.2.3. Comparison on the DIAG classification task 

Following the setting in Reference ( Kawahara et al., 2018 ), we 

ompare our method with the Inception-unbalanced, Inception- 

alanced, Inception-combined, and HcCNN on the DIAG classi- 

cation task. For Inception-unbalanced, Inception-balanced, and 

nception-combined methods, we use the results provided in the 

riginal paper ( Kawahara et al., 2018 ). Since the authors of HcCNN 

id not provide the DIAG classification results, we re-implement 

heir method according to the original paper ( Bi et al., 2020 ). 

he results of our re-implementation can achieve similar results 

n terms of average accuracy and AUC on eight sub-tasks. Specif- 

cally, the reported average accuracy and AUC are 74.9% and 

2.0% ( Bi et al., 2020 ), respectively, and the results of our re-

mplemented code are 74.5% and 82.5% for average accuracy and 

UC, respectively. Table 7 reports the detailed comparison results, 

hich indicates that our proposed method achieves the best re- 

ults in precision and second-best sensitivity and AUC. However, 

he average performance on its precision is worse than other 

ethods. It is caused by the low precision of the SK category. To 

nd out the reason for this phenomenon, we plot the confusion 

atrices of our method and the Inception-combined method us- 

ng the test set predictions. The confusion matrices are shown in 

ig. 4 a. We can see that our proposed method performs better on 

he NEV and MEL categories than the Inception-combined method 

o but slightly worse on other categories. Table 1 shows that this 

atabase is unbalanced. The SK category only has 16 images in 

he training set. The NEV and MEL categories are the two majority 
9 
ategories. Our method does not consider and aim at solving the 

nbalanced problem, resulting in its performance slightly worse 

n the minority categories than the Inception-combined methods, 

hich use a data selection approach to handle the data unbalance 

ssue. 

We also plot the ROC curves in Fig. 5 , from which one can see

hat the curves for all categories except the SK category have sim- 

lar area sizes (around 90.0%) under the ROC curve. For the SK cat- 

gory, its ROC curve is obviously lower than other categories, its 

rea under the ROC curve is less than 80.0%. Overall, these results 

how that our method can achieve a promising performance for 

kin lesion classification. 

.2.4. Visualization 

We further use gradient-weighted class activation 

aps ( Selvaraju et al., 2017 ) (Grad-CAM) to demonstrate AMFAM’s 

ffectiveness visually. Grad-CAM is a technique for producing 

isual explanations for decisions from a large class of CNN-based 
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Table 7 

The detailed classification results (%) of our method on the SOTA methods for the 

DIAG classification task. 

Method Met. BCC NEV MEL MISC SK Avg. 

Inception-unbalanced 

( Kawahara et al., 2018 ) 

Sen. 25.0 94.1 44.6 35.0 5.3 40.8 

Spec. 98.4 50.6 92.2 98.0 99.5 87.7 

Prec. 40.0 70.3 66.2 66.7 33.3 55.3 

AUC 92.2 87.7 83.2 86.3 88.7 87.6 

Inception-balanced 

( Kawahara et al., 2018 ) 

Sen. 25.0 91.3 55.4 42.5 15.8 46.0 

Spec. 98.9 62.5 88.4 97.2 99.7 89.3 

Prec. 50.0 75.2 62.2 63.0 75.0 65.1 

AUC 89.2 88.1 84.2 86.8 90.4 87.7 

Inception-combined 

( Kawahara et al., 2018 ) 

Sen. 62.5 88.6 61.4 47.5 42.1 60.4 

Spec. 97.9 71.6 88.8 97.5 99.5 91.1 

Prec. 55.6 79.5 65.3 67.9 80.0 69.7 

AUC 92.9 89.7 86.3 88.3 91.0 89.6 

HcCNN ( Bi et al., 2020 ) Sen. 35.3 79.4 68.8 58.1 66.7 61.6 

Spec. 97.4 86.7 85.4 95.7 95.7 92.2 

Prec. 37.5 91.3 54.5 62.5 10.5 51.3 

AUC 90.8 90.4 87.9 91.5 83.0 88.7 

AMFAM Sen. 40.0 84.1 65.8 68.0 40.0 59.6 

Spec. 97.4 85.8 91.4 93.8 95.6 92.8 

Prec. 37.5 89.5 76.2 42.5 10.0 51.1 

AUC 94.1 89.7 89.1 90.6 81.7 89.0 

Fig. 5. ROC curves for each label in the DIAG classification task via the one-vs-all 

approach. 
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10 
odels, making them more transparent. It will highlight the 

mportant regions in the image for predicting the category. 

Firstly, to evaluate the effectiveness of complementary and cor- 

elated information of our AMFAM method, we visualize five cases 

or the DIAG classification task, as shown in Fig. 6 . In the fig-

re, the first column represents the visualization of the clinical 

odality-based model; the second column represents the visual- 

zation of the dermoscopy modality-based model; the third and 

ourth columns represent the visualization of our proposed method 

or clinical images and dermoscopic images; the last two columns 

epresent the original images for clinical and dermoscopy modal- 

ties. From the first two rows, we can see that even though the 

ingle-modal-based model makes decisions based on the right 

esion area, it may misclassify the samples. For our proposed 

ultimodal-based method, we can see that it not only can make 

ecisions based on the right lesion area but also classify them ac- 

urately (with high confidence). Also, our proposed method can lo- 

ate the lesion area in both modalities while predicting accurately 

hen the single-modal-based model fails to focus precisely on the 

ight lesion area, as shown in the third row of Fig. 6 (a). It demon-

trates that the correlated information learned from both modali- 

ies is helpful to improve the confidence of the final prediction in 

he lesion classification task. For the first and second rows of 6 (b), 

e can see that the single-modal-based model can only predict ac- 

urately in either clinical modal or dermoscopy modal. Our pro- 

osed multimodal method can classify it accurately by consider- 



Y. Wang, Y. Feng, L. Zhang et al. Medical Image Analysis 81 (2022) 102535 

Fig. 6. Visualization results on evaluating the effectiveness of complementary and correlated information by using Grad-CAM. The first column is clinical modality-based 

visualization; the second column is dermoscopy modality-based visualization; the third and fourth columns are the clinical and dermoscopic images of multimodal-based 

visualization; and the last two columns are the original clinical and dermoscopic images. “Label” denotes the ground truth of the image. “Prediction” stands for the softmax 

output probabilities for each category of the DIAG classification task. 

Fig. 7. Visualization results on evaluating the effectiveness of the attention mechanism-based module under three different classification situations. 
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5

v

n

ng the complementary information from both modalities. It indi- 

ates that the leaned complementary information of our proposed 

ethod is helpful to improve the model’s performance. 

Secondly, we demonstrate several Grad-CAM-based images 

rom both clinical and dermoscopy modalities to show the effec- 

iveness of attention mechanism-based reconstruction. We com- 

are the visualization of our proposed method AMFAM with Con- 

at.+AD (as mentioned in the ablation study). The difference be- 

ween AMFAM and Concat.+AD. is that AMFAM used an attention 

echanism-based reconstruction module to restrain the CNN back- 

one. We visualize three different classification situations of these 

wo methods: 1) both methods classified correctly, 2) Concat.+AD 

isclassified but AMFAM classified correctly, and 3) both methods 

isclassified. Fig. 7 shows the specific visualization results. For all 

hree different situations, we can see that for both clinical and der- 
11 
oscopy modalities, the important areas focused by the AMFAM 

odel are more compact and centered on the lesion. Even when 

oth methods misclassified the sample, our AMFAM can still focus 

n the right lesions. It verifies the effectiveness of the attention 

echanism-based reconstruction module. At the same time, from 

igs. 6 and 7 we can find that our proposed multimodal learning 

ethod focuses on the lesion areas of both modalities for most 

f the samples. It verifies that the discriminator has been well 

rained, and the correlated information has been learned. 

. Discussion and future work 

Although ablation studies and comparisons have proven the ad- 

antages of our proposed method, some phenomena need to be 

oted. First, the attention mechanism-based and adversarial train- 
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M

N  
ng models in the ablation study do not improve the performance 

f every sub-tasks. For instance, the Concat. model achieves bet- 

er accuracy on the DIAG category than Concat.+Recon.+Att and 

oncat.+AD. models, as shown in Table 2 . By considering the data 

istribution, as shown in Table 1 , most of the classification tasks 

re unbalanced classification tasks. The ratio of minority class and 

ajority class vary from 1:1.72 (PN) to 1:16 (DIAG). We find that 

he performance improvement of attention-based mechanism and 

dversarial training models on the highly unbalanced sub-tasks is 

maller than the less unbalanced sub-tasks. Moreover, the atten- 

ion mechanism-based model improves different sub-tasks with 

he adversarial learning model. The potential reason is that the 

ttention mechanism-based model and adversarial learning model 

nhance the features of the less unbalanced tasks but weaken the 

eatures of the highly unbalanced tasks. And the results also have 

hown that our proposed AMFAM method is sensitive to train- 

ng samples’ data distribution and number. If the dataset is highly 

nbalanced and the number of train samples is small, the per- 

ormance of our method may decrease. Secondly, balanced and 

nbalanced models perform differently on the minority category 

or highly unbalanced sub-task. Table 6 and Table 7 show the re- 

ults of two kinds of models which are balanced models and un- 

alanced models. The balanced models contain Inception-balanced 

nd Inception-combined models, and the unbalanced models are 

he rest. We can see that even though our proposed method 

chieves the best performance via most metrics, the results in the 

ighly unbalanced category are inferior to the balanced models, 

uch as the IR category of VS classification task and SK category 

f DIAG classification task. Especially, our proposed model obtains 

% sensitivity and precision of IR category in VS classification task, 

ut two balanced models obtain 10% and 13.3% via sensitivity and 

0% and 30.8% via precision, respectively. However, for the less un- 

alanced category, such as DaG and BWV, our method can also 

chieve comparable results on the minority category compared to 

he balanced models and better performance on the majority cate- 

ory. 

For the multimodal multi-task classification, a simple data sam- 

le strategy can not make each sub-classification task balanced. If 

e want the data samples of each sub-classification task to be bal- 

nced, we need a large batch size to contain the balanced sam- 

les as the Inception-balanced model do ( Kawahara et al., 2018 ). 

owever, when the dataset is small, increasing the batch size may 

ause poor generalization ( Keskar et al., 2016 ). Thus, a potential 

esearch topic in future work is solving the unbalanced problem 

or the multi-task classification but under the limited data sam- 

les. Besides, combining efficient image-based modality and text 

odality information to improve the diagnosis performance fur- 

her is worth studying. 

. Conclusion 

In this study, to leverage multiple modalities of medical data, 

e proposed a multimodal deep neural network, AMFAM, for mul- 

imodal and multi-task skin lesion classification. Our proposed 

ethod can learn both correlated and complementary informa- 

ion from different modalities. Specifically, to learn the correlated 

nformation, we adopted adversarial learning to train the model. 

urthermore, to make the CNN backbone pay more attention to 

he lesion for better extracting complementary information, we de- 

igned an attention-based reconstruction sub-network with a new 

oss function to force the network to learn the discriminate fea- 

ures of the lesion instead of the background. Then, we concate- 

ated the extracted different modalities’ features to obtain the 

omplementary information. The comprehensive experiments on a 

ublicly available dataset, 7-point criteria evaluation, demonstrated 

hat our method can achieve the SOTA performance in most classi- 
12 
cation evaluation metrics and significantly improve the sensitivity 

nd specificity by above 6% and AUC 2.7% compared to the previ- 

us SOTA methods. 
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