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To estimate the mixing matrix in underdetermined mixing systems, we propose a novel method by
exploiting the sparsity of sources. We utilize the pairwise relationships among all of the mixture repre-
sentations to detect the single source points in the time-frequency (TF) domain, i.e., the positions where
only one source contributed dominantly. The mixture representations at these single source points are

then clustered to estimate the underlying mixing matrix. Since the pairwise relationships among all mix-
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tures are considered in the TF domain, the proposed method can achieve an accurate mixing matrix esti-
mation and be robust in noisy cases. Experimental results indicate that our method is effective in mixing
matrix estimation and outperforms five peer methods.

© 2019 Published by Elsevier Ltd.

1. Introduction

Blind source separation (BSS) is a fundamental problem in sig-
nal processing and data analysis and has been widely used in dif-
ferent areas, such as biomedical engineering [1], remote sensing
[2], and wireless communications systems [3-5]. The aim of BSS
is to separate the source signals from the observed mixtures, with-
out any a priori knowledge (or with very little knowledge) about
the source signals or the mixing process [6,7]. Generally, for the
underdetermined case, BSS consists of two stages: the mixing
matrix estimation and the source recovery [8,9]. Since the source
recovery process is based on the output of the first stage, accurate
estimation of the mixing matrix becomes critical for BSS and has
attracted increasing interest from those working in the BSS area
[10,11]. However, the mixing matrix estimation by using only the
mixed output signals is challenging, especially when the sources
are more than the observed mixtures, which refers to the underde-
termined mixing matrix estimation (UMME) [12].

To estimate the mixing matrix estimation, many algorithms
have been developed in recent years. Most of them assume that
the source signals are sparse in the time domain or the time-
frequency (TF) domain [13-15]. For example, assuming only one
source presents at each TF point, Jourjine et al. [16] proposed a
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method, called the degenerate unmixing estimation technique
(DUET), to estimate the mixing matrix. Nguyen et al. [17] dev-
oleped a method using the quadratic TF distributions to obtain
the mixing matrix. Clearly, the TF-disjoint condition is restrictive.
To relax the sparsity constraint, Abrard et al. proposed the time-
frequency ratio of mixtures (TIFROM) algorithm [18] by detecting
single source areas in time-adjacent windows. In recent years, as
some extensions to DUET and TIFROM, Reju et al. [19] proposed
a method of detecting the TF points where only single source pre-
sents, i.e., single source points(SSPs) [11]. The mixture representa-
tions at SSPs are then clustered to estimate the mixing matrix.
Specifically, it compares the absolute directions of the real and
imaginary parts of the mixture vector at each TF point. Then, it
treats the point that having a value smaller than the given thresh-
old as an SSP.

Note that all these methods are based on the detection of SSPs,
and their performance depends greatly on the accuracy of the SSPs
detection. However, to detect the SSPs, these methods only con-
sider the ratio coefficients of each sample itself or the relationships
among adjacent samples. Therefore, they are sensitive to noise in
real-world systems and suffer performance degradation in noisy
environments [13].

To overcome these problems, we propose a novel method to
estimate the mixing matrix. By exploiting the sparsity of source
signals in the TF domain, we also aim to detect SSPs to estimate
the mixing matrix. Unlike existing methods, our method detects
the TF points where one mixture TF vector has some other mixture
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TF vectors be very close to it. We note that some of these TF points
are not SSPs, but they nevertheless have a large impact on the esti-
mated results. To address this issue, we propose a new strategy to
eliminate these TF points.

Since the pairwise relationships among the representations of
mixtures at all TF points are considered, it can obtain a more accu-
rate detection of SSPs. Furthermore, the elimination of the fake
SSPs makes our method be able to provide a more accurate estima-
tion result. Different from the existing ones in [17-20], which are
based on the ratios of mixing signals, our method considers the
whole structure of the observed mixtures, thus being more effec-
tive, especially in noisy environments.

2. Background and related work

Without loss of generality, an instantaneous underdetermined
mixing system with n sources and m outputs (n > m) is defined as:

x(t) = As(t) + e(t), (1)

where s(t) = [s1(t),$2(t), . .., sa(t)]",si(t) is the coefficient of the i-th
source at time instant t,X(t) = [x;(¢),x2(¢),... ,xm(t)]T,xj(t) is the
coefficient of the j-th mixture at time instant
t,A =[a(1),a(2),...,a(n)] € R™" is the unknown mixing matrix,
i.e., the underlying channels, e(t) is the noise, and t =1,2,...,N is
the time instant. UMME is to estimate the unknown mixing matrix
A by inputting the observed mixtures x(t). It has been proved to be
challenging, especially for the underdetermined case [21].

Since the source signals would be more sparse in the TF domain,
we transform the system in (1) into the TF domain without consid-
ering the noises by using a short-time Fourier transform (STFT)
[22]:

X(t,k) = As(t, k), )

where X(t, k) = [%; (t,k), %, (t,k), ..., Zn(t, k)]" are the TF representa-

tions of the mixtures X(t),s(t, k) = [31(t, k), 52(t, k), ..., 3a(t, k)" are
the TF representations of sources s(t), and X;(t, k) and §;(t, k) are,
respectively, the values of the i-th mixture and the j-th source at
the (t, k) TF point.

There are plenty of mixing matrix estimation methods proposed
to detect SSPs at first. Then, using the clustering algorithms to clas-
sify the mixture vectors at these SSPs into different groups, they
compute the center of these groups as the estimated mixing matrix
columns. It is clear that performance of these methods depends
greatly on the accuracy of the SSPs detection. In the following,
we will introduce more details about the single source points
detection process of some recently developed mixing matrix esti-
mation methods, ie., the TIFROM method [18], the method in
[19], and the method in [20].

In TIFROM method, it detects adjacent windows where only sin-
gle source presents. Formally, it calculates the complex ratio
between different mixtures at each TF window (for ease of expla-
nation, assume that there are two sources),
ot ky = X1 EK) 3)

xa(t, k)

—

The TIFROM method assumes that if only source s;(t) presents in
several time-adjacent windows (t,k) , then o(t,k) should be con-
stant, otherwise its values differ over them. Based on this observa-
tion, it computes the sample variance of «(t, k) on series I'y of M
short half-overlapping time windows corresponding to adjacent t.
By applying this procedure to every frequency, it obtains the vari-
ance of o(t, k) as

var(o] (T, k) = % > | adtik) 7% > oty k) . (4)

tielq tuely

If only single source presents in these M windows, then the variance
of a(t, k) equals zero. Otherwise, the variance is different from zero.

In [19], it compares the absolute directions of the real and imag-
inary parts of the mixture representations and takes the points that
having a value less than a given threshold angle as SSPs. Mathe-
matically, it checks the following condition:

~ T ~
real(x(t, k)) imag (x(t, k))
|[real (i(t, k)) I Himag(i(t, k)> I

where A0 is a given threshold and || - || stands for the ¢;-norm. This
algorithm has a low computational complexity, thus being poten-
tially useful in online mixing matrix estimation.

In [20], it applies a phase-angle-based detection strategy to dis-
tinguish the SPPs at the TF plane. It takes the points where the
ratios of the imaginary part and the real part of the mixture TF rep-
resentations are the same as the SSPs, i.e., the TF points where the
following condition holds:

imag(?cl (t, k)) imag ()?z(t, k))
real(iﬂt,k)) - real(&z(t, k)) '

Considering the actual situation and experience, an error parameter
¢ is used to relax the restrictions. The condition is given by

imag (9?1 (t, k)) imag <>~<2 (t, k))

= - N <e. (7
real (xl (t, k)) real (xz (t, k))

It is clear that the ratios are sensitive to noises, which makes these
methods result in a performance degradation in noisy
environments.

> COS(AD), (5)

(6)

3. Proposed method

In this section, we present our method based on the following
two assumptions:

Assumption 1. For each source, there exist a number of TF points
that only the target source possesses dominant energy.

Assumption 2. All mixing matrix columns have different absolute
directions.

Assumption 1 provides for the sparsity of the sources. It is much
relaxed in comparison with the assumptions of the method in [17]
and the TIFROM |[18] algorithm. Assumption 2 is necessary for dis-
tinguishing different source signals and is also used in many meth-
ods [19,6], and we can meet it with probability one for randomly
generated m x n matrices.

In the first step, we use STFT to compute the mixture represen-

tations in the TF domain and denote them as X(t, k). Since the ele-

ments of X(t, k) are complex numbers, we set each element as its
complex magnitude with the sign of it real part:

xi(t,k) — sign (real (;(i(n k)>> xi(t, k). (8)

To reduce the impact of the noises, we eliminate the low-energy
mixture TF vectors, since the direction of these mixture vectors can
be easily affected by noise. Specifically, we eliminate the mixture
vectors whose magnitudes are less than p times the maximal mag-
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nitude of all mixture TF vectors, and p is typically set as 0.01. Thus,
we eliminate the mixture TF vectors if they meet the following
condition:

Xt k) < p-max{ I XD | XN, ©)

where N and K are the numbers of time instants and frequency bins,
respectively, and || - || stands for the ¢;,-norm.

Next, to clearly illustrate the estimation process, we ensure that
all mixture vectors are normalized and their first elements are non-
negative by multiplying the mixture vectors whose first elements
are negative by minus one. That is, for each mixture representation

X(t, k), we execute the following operation:
. sign (?cl (t, k)) X(t, k)

x(t,k) — _ . (10)
[l x(t. k)l

From (2), it is easy to find that the single source mixture vectors
would have the same or opposite direction with each other. Tech-
nically, for any two TF points (t;, k;) and (¢, k,), the following con-
dition holds:

X (i, k) X (k) = 1. (11)

This inspire us to explore whether the converse is also true; i.e., if
condition (5) holds, does it guarantee that the same source occurs
at these two TF points?

By analyzing (2), we find that i(ti, k;) and )N((t#,kv) having the
same or opposite directions does not guarantee that they are from
a single source. There are two cases which lead (5) to be satisfied
(for ease of explanation, assume that there are two sources):

Case 1: X(t;, k;) and X (¢, k,) are from the same source.

Case 2: The energy possessed by the first source has the same
ratio as that of the second source at time-frequency point (t;, k;)
and time-frequency point (t,,k,), ie.,

E] (t,‘, kj) _ E] (t!h kv)
;z (t,‘, kj) gz (t’w kv)

In practice, the probability of the second case occurring is close
to zero, which allows us to transform the single source mixture
vector detection problem into finding the mixture vectors that
have some other mixture vectors with the same direction or the
opposite direction as them.

Under noisy circumstances, we relax the constraint in (11) to

(12)

detect the SSPs. For each mixture TF vector )N((ti, kj), we find some

other mixture TF vectors )N((tﬂ, k‘,) that satisfy the following condi-
tion to construct a set:

Q(ti,k) = {X(tu, k)

where ¢ is a given threshold, which is determined according to the
noisy level, and is typically set as 0.9999. The value of this param-
eter also can be determined based on preliminary tests on a small
representative dataset when it is available by following the idea
in [23].

Note that the TF point (t;,k;) is not guaranteed to be an SSP
when Q(t;,k;) is not a null set. Actually, Q(t;, k;) will be non-null
at some TF points where the difference of the ratios of the energy
possessed by the first source and the second source is small.

To automatically remove these TF points, we propose a new

strategy. It takes )N((ti,kj) as a single source mixture TF vector if
the number of elements in the set Q(t,-, kj) is larger than a threshold

counting number #. In other words, it meets the following
condition:

X (6, k) Xt k)| = 0, (13)

#Q(ti,kj) >, (14)

where #{-} denotes the cardinality of the set. The parameter 7 is
interactively determined by the users in the proposed method. It
increases gradually from one to the number that leads to the
remaining mixture TF vectors being included in only n groups,
i(ti, kj) is
)N((t,-71<j)T;((t,4,kv)\ > ¢ and (14) holds. The elimination of the TF
points where (14) does not hold is essential for the proposed
method.

In this manner, we obtain the mixture TF vectors contributed by
a single source. The next step is to cluster these mixture TF vectors
into n groups. Finally, we compute the center of each group and
take it as the estimated result of one column vector of the mixing
matrix. The procedure of our method is summarized in
Algorithm 1.

where connected  with ;((tﬂ,kv) only if

Algorithm1 The procedure of the proposed underdetermind
mixing matrix estimation algorithm

Input: The observed mixtures, the number of sources n, and
the value of the hyper parameter o.

Output: The estimated mixing matrix A.
(1) Obtain the mixture representations in the time-
frequency domain by using STFT [22] as Eq. (2).
(2) Eliminate the low energy mixture victors via Eq. (9).
(3) Normalize the mixture TF vectors and multiply the
vectors whose first elements are negative by minus one as
Eq. (10).
(4) Select the TF vectors that satisfy Eq. (13).
(5) Determine the # in Eq. (14) adaptively and obtain n
groups of mixture TF vectors with the k-means algorithm.
(6) Calculate the centers of these n groups and take them as

the estimation of the mixing matrix A.

Different from the method in [13], called UBSS-SC, which uses
the sparse coding strategy to detect the SSPs, the proposed method
adopts the pairwise relationship between all mixture vectors in the
TF domain. UBSS-SC performs well and is robust to the noises
when the mixing matrix columns are not close to each other. How-
ever, it may suffer performance degradation when the mixing
matrix columns are close to each other, and it needs to solve a
set of ¢;-norm minimisation problems, which results in a high-
computational cost in large-scale problems. The proposed method
is more robust to the closeness between the mixing matrix col-
umns and has a lower computational complexity since it only
needs to calculate the pairwise distances among all mixture vec-
tors. In addition, the proposed method has a step to remove fake
single source points, which is critical for improving the estimation
accuracy.

4. Simulations

In this section, we evaluate the effectiveness of our method. In
the experiments, the setting of the parameters of the proposed
method is followed as the recommendation in the previous section.

To begin with, we evaluate the performance of our method’ in
the mixing system with 4 speech sources and 3 mixtures. The
mixing matrix is randomly generated, with elements in (0, 1), and
given as:

! The MATLAB code is available athttps://www.dropbox.com/s/78jxmj5ec128vie/
UMME-code.zip?dI=0.
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and 10000 samples of four speech source signals, as shown in Fig. 1
(a), are adopted. By mixing the four sources, we obtain the observed
three mixtures in Fig. 1(b).

Fig. 2(b) shows the mixture vectors in the TF domain after the
elimination of low energy TF vectors. From the result we can see
that even though the directions of the observed mixtures are
clearer than that in the time domain as shown in Fig. 2(a), they
are still mixed unclearly. Also, we can find that there is a hole in
side the point cloud due to the elimination of low energy TF vec-
tors. After executing first five steps, we obtain a scatter plot of
the TF vectors that satisfy (10) in Fig. 2(c). Since the mixture TF
vectors with a single source can be grouped into n clusters, we
view the scatter plot result by improving the value of # and obtain
the value of # when the mixture TF vectors are grouped into n clus-
ters as shown in Fig. 2(d) by executing step (5) of the proposed
method. We can see that the non-single source TF vectors are
removed and the obtained groups are close to each other.

Finally, we acquire the estimated mixing matrix with Step (6) of
the proposed method and report it in (16). To eliminate the effect
of the possible permutations of the mixing matrix columns, we
denote the original and final estimation results of the mixing

matrix as A and A, respectively. We search the estimation result
of each mixing matrix column a;,;i=1,2,...,n, denoted as a;, as
the column vector of A which is closest to a;. From the results in

(16), we can see that the columns of the estimated result A have
approximately the same direction as their corresponding columns
in the mixing matrix A. To further investigate our method, we
input the result of the proposed method to the source recovery
procedure in [13] and obtain the recovered source signals as shown
in Fig. 3.

50
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Fig. 2. Scatter plots of the mixtures in different stages: (a) the observed mixtures in time domain; (b) the mixtures in TF domain after eliminating the low-energy TF vectors;
(c) the result of the TF vectors after the third step of our method; (d) the TF vectors that satisfied (14) and could be used to estimate the mixing matrix.
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From the result, we can see that the sources are well separated.
However, some of the source signals were not recovered well since
the mixing matrix is not perfectly estimated.

In the second experiment, Monte Carlo runs are used to evalu-
ate the performance of the tested methods under different levels of
noises. We compare the proposed method with five other popular
methods, ie, the TIFROM method and the methods in
[13,20,19,17]. We use the same mixing system as the previous
experiment. Moreover, we examine the robustness of these meth-
ods with respect to different levels of the white Gaussian noise
added on the mixtures.

To evaluate the performance of the tested methods, we define
the performance metric [13]:

_ N~ (llad) —sa@)|
Error = ;Q\amu - |\é<i>u>7 an

where a(i) is the estimated result of a(i) and J is a scalar for remov-
ing the scalar ambiguity [13].
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Fig. 4. Performance comparison between the proposed method and the peer
methods.

Fig. 4 shows the comparison performance of different methods
versus signal-to-noise ratio (SNR) evaluated over 101 Monte Carlo
runs, from which we can see that:

e The SSPs detection-based methods, ie., the methods in
[13,20,19] and our method outperform TIFROM and the method
in [17] under low-level noise scenarios since there are many TF
points with multiple active sources.

The performance of all evaluated methods decreased with the
increase of SNR in the mixed signals, which is consistent with
the results of other works [13,20,19].

The proposed method outperforms the other five algorithms
among all noise levels, especially when SNR is less than 20dB,
which indicates that our method is robust to noise.

The methods in [13,20] work well under the noisy level SNR
> 20dB. However, they are inferior to other methods under
high-level of noise e.g., SNR = 5dB, since they failed to detect
real SSPs. Even the methods in [13] is robust to the noise when
the mixing matrix columns are not close to each other, it is sen-
sitive to high-level noise in the scenario where the mixing col-
umns are very close to each other.

Table 1 reports the average time cost of these tested methods
on a PC (Intel(R) Core(TM) 3.30 GHz, 8 GB RAM) with the MATLAB
2015b platform. We can find that our method is the fastest one. It
benefits mainly from the elimination of low-energy TF mixtures
and the parallel process of matrix multiplication operation in
MATLAB. Since our method considers all the pairwise relation
between mixture TF representations, its time cost may sharply
increase when number of mixture signals is very large. The method
in [17] is the slowest method. It needs a plenty of computational
operations to obtain the quadratic TF distributions of the observed
mixtures. The time costs of other four methods are a little bit larger
than the time cost of the proposed method.

5. Conclusion

This paper focuses on estimating the mixing matrix from their
instantaneous mixtures in underdetermined systems. Exploiting
the sparsity of sources, we proposed an effect method to blindly
estimate the mixing matrix in underdetermined systems. Our
method has a more relaxed sparsity constraint on the source sig-
nals when compared with some other UMME approaches. More-
over, the pairwise relationships among all samples have been
considered and the count number is adaptively determined. The
theoretical analysis and experiments on speech sources have
demonstrated the effectiveness of our proposed method.
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