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ABSTRACT
Cross-modal hashing, due to its low storage cost and high query
speed, has been successfully used for similarity search in multime-
dia retrieval applications. It projects high-dimensional data into a
shared isomorphic Hamming space with similar binary codes for
semantically-similar data. In some applications, all modalities may
not be obtained or trained simultaneously for some reasons, such
as privacy, secret, storage limitation, and computational resource
limitation. However, most existing cross-modal hashing methods
need all modalities to jointly learn the common Hamming space,
thus hindering them from handling these problems. In this paper,
we propose a novel approach called Separated Variational Hash-
ing Networks (SVHNs) to overcome the above challenge. Firstly, it
adopts a label network (LabNet) to exploit available and nonspe-
cific label annotations to learn a latent common Hamming space by
projecting each semantic label into a common binary representa-
tion. Then, each modality-specific network can separately map the
samples of the corresponding modality into their binary semantic
codes learned by LabNet. We achieve it by conducting variational
inference to match the aggregated posterior of the hashing code of
LabNet with an arbitrary prior distribution. The effectiveness and
efficiency of our SVHNs are verified by extensive experiments car-
ried out on four widely-used multimedia databases, in comparison
with 11 state-of-the-art approaches.
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1 INTRODUCTION
While moving ahead with big data, there are a tremendous growth
of large-scale and high-dimensional data with various modalities
(e.g., image and text) on the Internet. To exploit these multimodal
data, a large number of research efforts have devoted to the cross-
modal retrieval in recent years [1–10]. Cross-modal retrieval is
set to search relevant samples across heterogeneous media modal-
ities. Cross-modal hashing, due to its low storage cost and high
query speed, has been a hot topic in the research of cross-modal
retrieval. It projects different types of high-dimensional data into
a shared isomorphic Hamming space with similar binary codes
for semantically-similar data. Two main difficulties in cross-modal
hashing are 1) the semantic gap between low-level features and
high-level semantics [11] and 2) the cross-modal heterogeneity
gap induced by the inconsistent distributions of different modal-
ities [12, 13]. Although the semantic gap can be reduced by deep
learning, the heterogeneity gap remains a challenging problem
which needs further studies to conquer.

Over the past few years, a considerable amount of works have
raised to address the issue of heterogeneity [12–22]. A common
strategy employed in these methods is to learn a commonHamming
space, where the semantic-similarity among different modalities
can be directly measured by employing Hamming distance. These
approaches fall into two major groups, i.e., the shallow models
and the deep ones. The shallow methods [19, 20, 23, 24] project
different modalities into a common Hamming space by learning
linear single-layer transformations. On account of the limited rep-
resentative capacity, these linear architectures cannot effectively
narrow the heterogeneity gap. By exploiting the strong represen-
tation ability of deep neural networks, various deep cross-modal
hashing methods [12, 15, 25–27] have been developed to learn more
effective nonlinear transformations, and have achieved promising
performance. Despite the great progress made by these methods,
there are still several limitations: 1) They usually require training all
modality-specific networks jointly, costing a lot of computing and
storage resources; 2) Most of the methods are specifically designed
for two modalities, and they need m(m−1)

2 runs form modalities
(usuallym > 2) in a pairwise manner, which is time-consuming for
multimodal datasets.
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Figure 1: The basic idea of our SVHNs. Firstly, the label network (LabNet) is trained fromall available labels. Then, themodality-
specific variational networks (MVNs) separately approximate the binary semantics obtained by the pretrained LabNet with
variational inference.

To address these issues and to improve the retrieval perfor-
mance, we propose a novel Separated Variational HashingNetworks
(SVHNs) approach for cross-modal retrieval. Our method is trained
under two stages: 1) All available labels are employed to train the
label network (LabNet), which is desired to generate discrimina-
tive hash codes. Due to the discriminative information in labels are
“purer” than that in data, the generated hash codes are more discrim-
inative than those produced by modalities; 2) The modality-specific
variational networks (MVNs) are separately trained by variational
inference, which makes the latent variables approximate to the
generated hash codes from LabNet and be regularized by a prior
distribution. Different from existing cross-modal hashing meth-
ods [12, 13, 15, 26], the proposed SVHNs can separately train each
modality (in the second training stage), without requiring all modal-
ities to be simultaneously available, thus reducing resource usages.
Besides, the proposed SVHNs can transform different modalities
into a common Hamming space with only a program run, which is
less time-consuming for large datasets.

The contributions of our work can be summarized as follows:
• A novel hashing model is proposed to separately learn a
common Hamming space for cross-modal retrieval, which
can fully and independently exploit each modality without
the pairwise limitation.

• We design a Label Network (LabNet) to independently ex-
tract the discriminative binary representations from the
available single- or multi-label annotations. Then, the com-
mon discriminative Hamming space is pre-learned by our
LabNet to separate each modality from the joint cross-modal
training.

• We integrate variational inference with separated cross-
modal hashing learning to separately preserve the seman-
tic relevance across modalities as much as possible and
be suitable for the out-of-sample extension. Therefore, our

SVHNs can achieve better performance without relaxation,
as demonstrated in our experimental studies.

2 RELATEDWORK
Over the past few years, plentiful cross-modal hashing methods
have come forth in the literature. These works are of two broad: the
shallow settings and the deep ones. This section will briefly review
the related approaches from these two categories.

Shallow Cross-modal Hashing: During the early research of
cross-modal hashing, most of the efforts focus on shallow mod-
els, which learn linear or nonlinear single-layer transformations to
project different modalities into a common Hamming space. These
shallowmethods can be further divided into two general classes: un-
supervised and supervised. The unsupervised methods, represented
by [19, 28, 29], make attempts to reduce the heterogeneity gap via
maximizing pairwise statistical concomitant relationships. For ex-
ample, Liu et.al. [19] propose a Fusion Similarity Hashing (FSH) to
explicitly embed the graph-based fusion similarity across modal-
ities into a common Hamming space. Ding et.al. [28] proposed a
Collective Matrix Factorization Hashing (CMFH) method to learn
unified hash codes by collective matrix factorization with latent
factor model. By comparison, the supervised approaches, repre-
sented by [20, 23, 24, 30], exploit the discriminating information
to enhance the closeness of various modalities, obtaining a more
discriminative common Hamming space. For instance, Lin et.al. [23]
proposed Semantics-preserving Hashing (SePH) to employ the se-
mantic affinity of training data as the supervisor. Subsequently,
SePH was extended by utilizing predictive models (e.g., linear ridge
regression, logistic regression, and kernel logistic regression) as
the hash functions to project the corresponding modality-specific
features into hash codes. Li et.al. [30] presented a supervised Lin-
ear Subspace Ranking Hashing framework (LSRH), which maps
data from different modalities into a common Hamming space,
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and employs Hamming distance as the cross-modal similarity. Dif-
ferent from the above-mentioned shallow methods, the proposed
SVHNs method utilizes several hashing networks to nonlinearly
transform the multimodal data into a common Hamming space,
which provides stronger scalability, nonlinearity and representa-
tional capacity for cross-modal hashing.

Deep Cross-modal Hashing: Thanks to the great success of
deep neural networks (DNNs) [13, 15, 31, 32], several deep cross-
modal hashing approaches have presented in recent years. These
deep models exploit the strong representation ability of DNNs,
achieving favorable performance. Likewise, they can be divided
into unsupervised and supervised methods. As an example of the
unsupervised ones, Zhang et.al. [25] proposed an Unsupervised
Generative Adversarial Cross-modal Hashing approach (UGACH)
to employ GAN’s ability to exploit the underlying manifold struc-
ture of cross-modal data. To utilize the discrimination information,
some supervised methods have been developed. For example, Jiang
and Li [15] developed a Deep Cross-modal Hashing (DCMH) to
employ a negative log-likelihood loss to maintain cross-modal sim-
ilarities. Motivated by the strong ability of adversarial learning in
modeling data distribution, Li et.al. [12] presented a Self-Supervised
Adversarial Hashing approach (SSAH), which aims to maintain the
semantic correlation and consistency of the representations be-
tween different modalities. In addition, Liong et.al. [13] proposed a
cross-modal deep variational hashing (CMDVH) which is the one
most closely related to ours. Compared with our method, CMDVH
also trained under two steps. However, in the first step, all modali-
ties and labels should be jointly used to train the fusion network to
learn the inferred binary codes by a coupled of DNNs, whereas our
SVHNs method learns the semantic binary codes from available la-
bels, which carry “purer” discriminant information than modalities.
Furthermore, each modality can be separately used to train its cor-
responding MVN, leading to separated training for each modality
in our model. Besides, our SVHNs can project multimodal data into
a common single Hamming space, thus efficiently processing more
than two modalities.

3 SEPARATED VARIATIONAL HASHING
NETWORKS

3.1 Problem Formulation
For a clear description, we first give some definitions. The samples
of the k-th modality are denoted as Xk = {xki }

Nk
i=1, where Nk is

the number of the instances from the k-th modality, and xki is
the i-th sample of the k-th modality. The corresponding labels are
denoted as Yk = {yki }

Nk
i=1, where yki ∈ Rc×1 is a binary-valued

label annotation assigned to xki and c is the number of classes. If the
i-th instance of the k-th modality belongs to the j-th class yki j = 1,
otherwise yki j = 0.

The goal of cross-modal hashing is to learn a unified binary
representation for the multiple modalities: B = {Bk }mk=1, wherem
is the number of modalities,Bk = [bk1 , · · · , b

k
i , · · · , b

k
Nk

] is the hash
code matrix of the k-th modality, bki ∈ {−1, 1}L is the hash code of
xki , and L is the length of the binary code. The similarity between
two binary codes is evaluated using the Hamming distance. The

relationship between the Hamming distance d(bki , b
l
j ) and the inner

product ⟨bki , b
l
j ⟩ can be formulated usingd(bki , b

l
j ) =

1
2 (L−⟨b

k
i , b

l
j ⟩).

Therefore, we can use the inner product to quantify the similarity
of two binary codes, i.e., S(bki , b

l
j ) =

1
2 ⟨b

k
i , b

l
j ⟩.

Since the multimodal data typically have different statistical
properties and follow inconsistent distributions, they cannot be
directly compared with each other for cross-modal retrieval. Mul-
timodal hashing attempts to learnm modality-specific functions
{ fk (·)}

m
k=1 to project the corresponding modalities into a common

Hamming space, where the hash codes of different modalities can
be directly compared with each other. Then the similarities between
different modalities can be computed from the obtained common
hash codes for cross-modal retrieval. Furthermore, in the common
Hamming space, the similarity of the samples from the same class is
desired to be larger than the similarity of the samples from different
categories.

3.2 Label Network
The labels from different modalities have indistinctive forms, and
they are more readily available than pair-wise multimodal data in
the real-world applications. The label is the direct carrier of seman-
tics. Therefore, the accurate binary semantic codes can be directly
learned from the available labels. Furthermore, the dimension of
the labels is much smaller than the ones of the multimodal data.
Thus, it will cost much less computational resources to train the
label network on the labels. We merge all the available labels from
all modalities as a whole label set denoted asY = {y1, y2, · · · , yN },
where N is the total number of these available labels, yi ∈ {0, 1}c ,
c is the number of classes, yi j = 1 if yi has the semantics of the j-th
class and 0 otherwise. Then, we design a neural network to trans-
form a semantic label into a discriminative binary feature vector,
denoted as д(y,θ ) ∈ RL with parameters θ . The output of LabNet
is defined as follows:

ui = д(yi ) ∈ RL . (1)

The hash codes of yi can be obtained as follows:

hi = sgn (д(yi )) ∈ {−1, 1}L , (2)

where sgn(·) is the sign function that extracts the sign of a real
number. The LabNet is desired to project the semantic labels into a
Hamming space, in which the labels with the same semantics are
compact and ones without the same semantics are scattered. Then,
the objective function of LabNet is defined as follows:

argmin
H,θ

J = J1 + λJ2

=
1
N

N∑
i=1

N∑
j=1

(
log(1 + eSi j ) − ∆i jSi j

)
+

λ

N

N∑
i=1

∥|ui | − 1∥22 ,

(3)

where ∆i j = 1{S(yi , yj )}, Si j = S(ui , uj ) = 1
2 ⟨ui , uj ⟩ =

1
2uTi uj ,

λ is a constant parameter to balance the effect of the two items
and 1{·} is an indicator function whose value is 0 if the element
is 0 otherwise 1, ∥ · ∥2 is ℓ-2 norm, | · | is absolute value function,
and 1 ∈ RL is a vector with all elements as 1. The first term of
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Equation (3) is the negative-log likelihood of the label similarities
with likelihood function defined as follows:

p(∆i j |ui , uj ) =
{
δ (Si j ) if ∆i j = 1;
1 − δ (Si j ) otherwise, (4)

where δ (Si j ) = 1
1+e−Si j

is the sigmoid function. It is easy to find that
minimizing this negative-log likelihood function is equivalent to
maximizing the likelihood. We can also see that, the larger similar-
ity Si j is, the larger p(∆i j |ui , uj ) will be, and vice versa. Therefore,
Equation (3) is a reasonable similarity measure for common rep-
resentations and is a good criterion for learning discriminative
features. The second term of Equation (3) aims to constrain the
obtained features as binary codes.

With the obtained objective function in Equation (3), the pro-
posed LabNet can be iteratively optimized with back-propagation
in an end-to-end manner. Therefore, the overall network can be
optimized using a stochastic gradient descent optimization algo-
rithms, like ADAM [33]. The detailed optimization process is shown
in Algorithm 1.

Algorithm 1 Optimization procedure of LabNet
Input: All available labelsY, the length of the binary code L, batch

size Nb , positive balance parameter λ, learning rate α
1: while not converge do
2: Randomly select Nb labels fromY to construct a mini-batch.

3: Compute the output of LabNet for the mini-batch according
to Equation (1) as
ui = д(yi ).

4: Compute the loss J for the obtained output according to
Equation (3).

5: Update the parameters of LabNet by minimizing J with
descending their stochastic gradient as
θ = θ − α ∂J

∂θ .

6: end while
Output: Optimized LabNet model.

4 MODALITY-SPECIFIC VARIATIONAL
NETWORKS

Inspired by the success of variational networks [34], we utilize a
probabilistic approximation to learn common representations for
cross-modal retrieval using m modality-specific variational net-
works (MVNs). In [34], Kingma et al. proposed a learned approxi-
mate posterior inference generative model with a neural network,
called the Variational Auto-Encoder (VAE). This latent probabilistic
generative manner tends to produce flexible general features and
capture diversity from the inputs, which makes the model more
general and suitable for the out-of-sample extensions [34, 35]. The
latent variable is modeled by an approximate inference model with
the given data points and a prior distribution.

In our model, we assume that the discrete semantics of a given
datapoint xki for the k-th modality and the corresponding latent rep-
resentation zki can be defined by a posterior distribution asp(zki |x

k
i ),

which is the intractable true posterior distribution [34]. Like [34],

we introduce a recognition model qΘk (z|xki ), i.e., our MVNs, to ap-
proximate the intractable true posterior distribution. In this case, we
can let the variational approximate posterior distribution qΘk (z|xki )
be a multivariate Gaussian with a diagonal covariance structure as
follows:

qΘk (z|x
k
i ) = N(z; µki ,

(
σk
i

)2
I), (5)

where the mean µki ∈ RL and the standard deviation σk
i ∈ RL are

the outputs of the k-th nonlinear MVN fk (·;Θk ) for the datapoint

xki of the k-th modality, i.e., xki
fk
−→ (µki ,σ

k
i ), where fk (·;Θk ) is

the nonlinear function of the k-th MVN for the k-th modality with
parameters Θk .

To solve our problem by an alternative method for correlating the
semantics of xki and the representation zki j obtained by qΘk (z|xki ),
we adopt the reparameterization trick [34] to sample the random
variable zki j . With the reparameterization trick, we sample zki j from
the posterior zki j ∼ qΘk (z|x

k
i ) using

zki j = µki + σ
k
i ⊙ ϵj , (6)

where ϵj ∈ RL is a j-th auxiliary variable vector with ϵj ∼ N(0, I)
and ⊙ is an element-wise product. Equation (6) makes the latent
representation differentiable and capable of back-propagation [35].

Unlike the traditional VAE, our MVNs utilize a posterior infer-
ence model to encode the modality-specific data as the common
semantic binary codes learned by the LabNet from their semantic
labels. The encoders, i.e., MVNs, aim at transforming the input
to the latent variable with parameters {Θk }

m
k=1, and the decoders

attempt to transform the latent variable to the hash codes of the
label input without any trainable parameters. Then, according to
[34], the objective function of the k-th MVN can be formulated as
follows:

Lk ≃
1
Nk

Nk∑
i=1

DKL

(
qΘk (z|x

k
i )∥p(z)

)
−

1
Nk

Nk∑
i=1
Ez∼qΘk (z |x

k
i )

[
logp(xki |z)

]
=

1
2Nk

Nk∑
i=1

L∑
l=1

((
µkil

)2
+
(
σkil

)2
− log

(
(σkil )

2
)
− 1

)
−

1
Nk J

Nk∑
i=1

J∑
j=1

(
logp(xki |z

k
i j )

)
,

(7)

where DKL(·) is the Kullback-Leibler divergence, J is the sampling
number of each datapoint, and µki j and σ

k
i j denote the j-th element

of vectors µki and σk
i , respectively. The first term of Equation (7)

(the Kullback-Leibler divergence of the approximate posterior distri-
bution from the prior one) is a regularizer to enforce the variational
approximate posterior distribution qΘk (z|xki ) to obey the prior dis-
tribution p(z), where p(z) = N(z; 0, I) is the centered isotropic
multivariate Gaussian distribution. For the second item of Equa-
tion (7), the sample zki j is then inputted to the function logp(xki |z

k
i j ),

which equals the probability density of the latent semantics for the
datapoint xki , thus we have p(x

k
i |z

k
i j ) = e−β ∥hki −zki j ∥

2
2 which is Heat
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kernel with a positive parameter β ∈ R+, where hki = sgn
(
д(yki )

)
with the trained LabNetд(·). This item aims tomake the latent repre-
sentation z approximate its hash semantics by the modality-specific
network fk (·,Θk ). Therefore, the loss function can be rewritten as
follows:

Lk ≃
1

2Nk

Nk∑
i=1

L∑
l=1

((
µkil

)2
+
(
σkil

)2
− log

(
(σkil )

2
)
− 1

)
+

β

Nk J

Nk∑
i=1

J∑
j=1

∥hki − zki j ∥
2
2 .

(8)

This objective function allows training eachMVNwith back-propagation
in an end-to-end manner. In this work, we optimize our each MVN
model by using a stochastic gradient descent-based optimization
algorithms, e.g., ADAM [33]. The detailed optimization process for
the k-th modality is summarized in Algorithm 2.

Algorithm 2 Optimization procedure of the k-th MVN

Input: The training data of the k-th modality Xk , the correspond-
ing labels Yk , the length of the binary code L, the batch size
Nb , the positive parameter β , the number of samples J per
datapoint, the learning rate α .

1: while not converge do
2: Randomly select Nb datapoints fromXk andYk to construct

a mini-batch.
3: Compute the hash codes by the learned LabNet for the mini-

batch according to Equation (2) as
hki = sgn

(
д(yki )

)
, i = 1, 2, · · · ,Nb .

4: Compute the outputs of the k-th MVN for the mini-batch.
5: Randomly sample the latent variable z from the obtained

outputs for the mini-batch according to Equation (6) as
zki j = µki + σ

k
i ⊙ ϵj , i = 1, 2, · · · ,Nb , j = 1, 2, · · · , J .

6: Compute the loss Lk with the obtained hash codes and
variables according to Equation (2).

7: Update the parameters of the k-th MVN by minimizing Lk
with descending their stochastic gradient as
Θk = θ − α ∂Lk

∂Θk
.

8: end while
Output: Optimized the k-th MVN model.

From Algorithm 2, we can see that each MVN can be trained
separately with each other. It has the following four benefits: 1)
Our SVHNs can tackle the separated modalities without combining
them; 2) Separate training can save the computational resource; 3)
Separate training can speed up the training stage; 4) Our SVHNs do
not have the pairwise limitation of all modalities. Like other cross-
modal hashing learning methods, different MVNs of our SVHNs
are used to extract the unified hash code from different formats of
the input data. The hash code of xki can be obtained by the k-th
learned MVN as follows:

bki = sgn(µki ) ∈ {−1, 1}L . (9)

With the learned common hash codes, the multimodal data can be
correlated by a common Hamming distance metric. The effective-
ness of the proposed method is verified by extensive experiments
carried out on the widely-used cross-modal datasets.

5 EXPERIMENTAL STUDY
To evaluate our SVHNs, we conduct experiments on four cross-
modal datasets, namely, PKU XMedia [36], MIRFLICKR-25K [37],
NUS-WIDE [38], and MS-COCO [39]. In the following experiments,
the effectiveness of the proposed method is verified in compari-
son with 11 state-of-the-art cross-modal real-valued and hashing
methods. Furthermore, additional evaluations are conducted to
investigate the performance of our SVHNs in more detail.

5.1 Experimental Setup

Table 1: General statistics of the three datasets used in the
experiments, where “*/*/*” in the “Instance” column stands
for the number of total/training/query sets.

Dataset Label Modality Instance Feature

PKU XMedia 20

Image 5,000/4,000/1,000 4,096D VGG
Text 5,000/4,000/1,000 3,000D BoW
Audio clip 1,000/800/200 29D MFCC
3D model 500/400/100 4,700D LightField
Video 1,143/969/174 4,096D C3D

MIRFLICKR-25K 24 Image 20,015/10,000/2,000 4,096D VGG
Text 20,015/10,000/2,000 1,386D BoW

NUS-WIDE 21 Image 190,421/10,500/2,100 4,096D VGG
Text 190,421/10,500/2,100 1,000D BoW

MS-COCO 80 Image 122,218/10,000/5,000 4,096D VGG
Text 122,218/10,000/5,000 300D Doc2Vec

5.1.1 Datasets and Compared Methods. For a fair comparison, we
follow the partitions of the training and query subsets in [12, 36].
The statistics of the four datasets are summarized in Table 1. Fur-
thermore, to our best knowledge, there is no cross-modal hashing
method to transform more than two modalities to a learned sin-
gle common space. Thus we just compare our proposed SVHNs
with six hashing approaches (i.e., SePH [23], SePHlr [24], RoPH [40],
LSRH [30], DCMH [15], and SSAH [12]) on the two-modality datasets
(i.e., MIRFLICKR-25K, NUS-WIDE and MS-COCO), and with four
real-valuedmultimodalmethods (i.e., MCCA [3], GMLDA [9],MvDA
[18], and MvDA-VC [17]) on the five-modality dataset (i.e., PKU
XMedia) to evaluate the effectiveness of the single common space
learned by these methods. Furthermore, to investigate the per-
formance of traditional cross-modal hashing methods, i.e., SePH,
SePHlr , RoPH and LSRH, for cross-modal retrieval on the PKU
XMedia dataset, these methods were performed 10 times to learn 10
cross-modal pairwise spaces in a pairwise manner on the dataset.
The results of CMDVH [13] and SSAH [12]) are provided by their
authors on the MIRFLICKR-25K and NUS-WIDE datasets. In addi-
tion, it should be noted that the feature extractors (VGGNet [41]
and Doc2Vec [42]) are not fine-tuned in our training stage for a fair
comparison with other shallow methods.

5.1.2 Implementation Details. Our proposed SVHNs approach is
trained on two GTX 1080Ti graphics cards and a 3.50GHz i7-7800X
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Table 2: Performance comparison in terms of mAP scores on the PKU XMedia dataset. The best result is shown in boldface.

Method Query Image Text Audio 3D Video Avg.Database Text Audio 3D Video Image Audio 3D Video Image Text 3D Video Image Text Audio Video Image Text Audio 3D
MCCA [3] 0.115 0.145 0.172 0.125 0.120 0.124 0.147 0.115 0.133 0.114 0.176 0.137 0.126 0.095 0.122 0.104 0.090 0.077 0.094 0.104 0.122
GMLDA [9] 0.614 0.150 0.855 0.622 0.625 0.131 0.747 0.504 0.255 0.178 0.228 0.157 0.489 0.422 0.121 0.433 0.372 0.305 0.102 0.443 0.388
MvDA [18] 0.623 0.295 0.882 0.669 0.616 0.242 0.767 0.564 0.287 0.237 0.416 0.270 0.456 0.393 0.229 0.426 0.322 0.266 0.153 0.432 0.427
MvDA-VC [17] 0.655 0.221 0.879 0.710 0.645 0.186 0.762 0.599 0.244 0.209 0.371 0.231 0.532 0.458 0.194 0.501 0.429 0.358 0.133 0.529 0.442
SePH (16 bits) [23]* 0.860 0.572 0.843 0.728 0.875 0.611 0.887 0.815 0.449 0.460 0.446 0.394 0.520 0.563 0.377 0.487 0.374 0.391 0.303 0.448 0.570
SePHlr (16 bits) [24]* 0.861 0.212 0.852 0.819 0.950 0.220 0.847 0.862 0.223 0.234 0.326 0.232 0.461 0.471 0.181 0.409 0.348 0.375 0.138 0.432 0.473
RoPH (16 bits) [40]* 0.770 0.717 0.841 0.751 0.711 0.535 0.328 0.497 0.426 0.331 0.477 0.397 0.452 0.186 0.374 0.384 0.382 0.291 0.397 0.250 0.475
LSRH (16 bits) [30]* 0.731 0.273 0.588 0.487 0.781 0.323 0.674 0.499 0.297 0.340 0.232 0.243 0.373 0.483 0.174 0.299 0.280 0.351 0.182 0.282 0.395
SVHNs (16 bits) 0.910 0.759 0.910 0.909 0.962 0.800 0.962 0.962 0.563 0.563 0.573 0.580 0.617 0.617 0.491 0.626 0.553 0.553 0.446 0.555 0.695
SePH (32 bits) [23]* 0.873 0.630 0.872 0.795 0.902 0.672 0.899 0.848 0.468 0.497 0.524 0.438 0.584 0.602 0.405 0.515 0.472 0.470 0.384 0.461 0.615
SePHlr (32 bits) [24]* 0.891 0.282 0.854 0.863 0.949 0.289 0.907 0.895 0.265 0.289 0.340 0.299 0.499 0.516 0.177 0.449 0.400 0.456 0.157 0.441 0.511
RoPH (32 bits) [40]* 0.817 0.775 0.865 0.803 0.773 0.581 0.341 0.559 0.457 0.371 0.499 0.457 0.448 0.223 0.385 0.420 0.409 0.334 0.406 0.284 0.510
LSRH (32 bits) [30]* 0.887 0.351 0.766 0.670 0.927 0.376 0.770 0.711 0.325 0.335 0.263 0.280 0.517 0.535 0.218 0.420 0.355 0.458 0.221 0.353 0.487
SVHNs (32 bits) 0.908 0.781 0.908 0.908 0.970 0.832 0.970 0.971 0.579 0.579 0.583 0.577 0.660 0.660 0.556 0.665 0.586 0.586 0.479 0.585 0.717
SePH (64 bits) [23]* 0.892 0.678 0.882 0.826 0.911 0.718 0.912 0.879 0.499 0.524 0.520 0.499 0.599 0.639 0.429 0.543 0.473 0.510 0.402 0.521 0.643
SePHlr (64 bits) [24]* 0.896 0.334 0.874 0.872 0.955 0.379 0.915 0.904 0.314 0.367 0.373 0.329 0.497 0.540 0.224 0.455 0.449 0.477 0.185 0.505 0.542
RoPH (64 bits) [40]* 0.852 0.802 0.880 0.823 0.807 0.615 0.361 0.623 0.490 0.398 0.523 0.500 0.500 0.236 0.413 0.454 0.451 0.358 0.463 0.332 0.544
LSRH (64 bits) [30]* 0.905 0.387 0.771 0.771 0.947 0.462 0.864 0.861 0.326 0.395 0.261 0.282 0.506 0.552 0.243 0.469 0.435 0.466 0.219 0.418 0.527
SVHNs (64 bits) 0.916 0.803 0.916 0.915 0.969 0.848 0.970 0.971 0.616 0.616 0.619 0.620 0.675 0.675 0.570 0.671 0.580 0.580 0.484 0.576 0.730

*These methods are two-modality methods.

CPU with PyTorch1. For training, we employ the ADAM opti-
mizer [33] with a batch size of 100 and set the maximal number of
epochs as 200 for LabNet and 100 for MVHs. The learning rate α is
empirically set as 0.0001 for LabNet and MVHs. In our experiments,
the parameters λ and β were set to 0.1 and 10, respectively, which
were obtained by cross-validation on the NUS-WIDE dataset using
16 bits. For all datasets, the image features are extracted by pre-
trained VGGNet [41]. Specifically, the image extractor model has
the same configuration with 19-layer VGGNet pre-trained on the
ImageNet, and 4, 096-dimensional features vector from fc7 layer is
extracted as the image original representations. For the MS-COCO,
the 300-dimensional text features are extracted by the Doc2Vec
model2 [42], which is pre-trained onWikipedia. For the text features
of other datasets, each text is represented by a bag-of-words (BoW)
vector. For other modalities, the features of each modality are pro-
vided by the authors. Then LabNet and MVNs with three fully-
connected layers are adopted for all modalities to learn common
hash codes. The number of hidden units are 2, 048, 512 and L for
LabNet, and 4, 096, 512 and 2L for each MVN. Furthermore, the
binary representations of the retrieval database are obtained from
LabNet, and ones of query samples are computed by MVNs.

5.1.3 Evaluation Protocol. For all the datasets, the data points of
the test (query) set are randomly sampled from the total set and
the remaining points as the retrieval set (database) as Table 1 fol-
lowing [15]. The ground-truth neighbors are defined as those cross-
modal samples which share at least one same class. To evaluate the
performance of our SVHNs and other compared methods,m(m − 1)
kinds of cross-modal retrieval tasks are performed in the common
space learned by these methods on the above datasets. The testing
is conducted in a pairwise manner, i.e., the samples from one modal-
ity are used as the target database while the ones from another
modality are used as the queries, which is defined as follows.

1The PyTorch homepage: https://pytorch.org/
2The pre-trained Doc2Vec model is available at https://github.com/jhlau/doc2vec.

• Xk -query-Xl (Xk → Xl , k , l): for a query from the k-
th modality, relevant instances from the l-th modality are
retrieved in the target database ranked by calculated cross-
modal similarity in the common space.

Take two-modality case (image and text) for an example. There are
two kinds of retrieval tasks, i.e., image-query-text (Image→ Text)
and text-query-image (Text → Image) in this case.

For cross-modal hashing-based retrieval, we use the widely-used
Hamming ranking and hash lookup as the retrieval protocols to
evaluate our SVHNs and other compared methods following [15].
Mean Average Precision (mAP) score is adopted as the evaluation
metric to measure the scores of the Hamming ranking protocol
on the four datasets. mAP is the mean value of Average Precision
(AP) scores for each query. mAP score considers the ranking of
returned retrieval results as well as precision simultaneously, which
is extensively adopted in cross-modal retrieval tasks. It should be
noted that the mAP score is calculated on the all returned results
following [15] in our experiments. The hash lookup protocol returns
all the points within a certain Hamming radius away from the
query point [15]. The widely-used precision-recall curve is used as
a metric to evaluate the performance of the hash lookup protocol.

5.2 Experimental Analysis
5.2.1 Hamming Ranking. To evaluate the performance of our SVHNs
formore than twomodalities, the comparisonwith some real-valued
multimodal and hashing two-modality methods is conducted on
the PK XMedia dataset. The mAP scores of 20 cross-modal retrieval
tasks on the dataset are shown in Table 2. Because of the seri-
ously unbalanced modalities of PKU XMedia, these multimodal real-
valued methods cannot achieve satisfactory performance. Thanks
to the separated training of each modality, our SVHNs can extract
more discriminative information from each modality without the
pairwise limitation. In the comparison with two-modality hashing
methods, our method not only outperforms these cross-modal hash-
ing methods but also costs much less time to learn a single common

Session 4A: Cross-Modal Retrieval  MM ’19, October 21–25, 2019, Nice, France

1726

https://pytorch.org/
https://github.com/jhlau/doc2vec


Table 3: Performance comparison in terms of mAP scores on MIRFLICKR-25K, NUS-WIDE and MS-COCO. The best result is
shown in boldface.

Task Method MIRFLICKR-25K NUS-WIDE MS-COCO
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

Image → Text

SePH [23] 0.730 0.740 0.746 0.646 0.655 0.665 0.578 0.606 0.615
SePHlr [24] 0.730 0.748 0.756 0.597 0.621 0.641 0.551 0.563 0.597
RoPH [40] 0.733 0.743 0.748 0.640 0.652 0.664 0.608 0.635 0.639
LSRH [30] 0.730 0.774 0.792 0.601 0.632 0.663 0.550 0.558 0.542
DCMH [15] 0.737 0.754 0.763 0.581 0.603 0.628 0.557 0.558 0.586
SSAH [12] 0.782 0.790 0.800 0.642 0.636 0.639 0.591 0.606 0.576
CMDVH [13] 0.753 0.765 0.791 0.743 0.766 0.757 - - -
SVHNs 0.908 0.921 0.930 0.828 0.846 0.857 0.699 0.767 0.787

Text → Image

SePH [23] 0.751 0.757 0.765 0.656 0.661 0.667 0.573 0.608 0.611
SePHlr [24] 0.763 0.781 0.789 0.621 0.676 0.667 0.574 0.594 0.632
RoPH [40] 0.748 0.765 0.768 0.650 0.664 0.669 0.603 0.629 0.635
LSRH [30] 0.734 0.780 0.795 0.583 0.652 0.679 0.596 0.614 0.598
DCMH [15] 0.753 0.760 0.763 0.587 0.605 0.637 0.586 0.609 0.624
SSAH [12] 0.791 0.795 0.803 0.669 0.662 0.666 0.641 0.659 0.660
CMDVH [13] 0.755 0.751 0.783 0.667 0.729 0.757 - - -
SVHNs 0.823 0.843 0.848 0.761 0.780 0.790 0.720 0.783 0.796

space for the five modalities. This is mainly due to the following
two reasons: 1) Without the pairwise limitation, our SVHNs can
fully and separately exploit the whole data of each modality to pre-
serve the discrimination into the commonHamming space; 2) These
cross-modal hashing methods should be conducted m(m−1)

2 times
in a pairwise manner to learn m(m−1)

2 pairwise common Hamming
spaces form modalities, which will cost much more time than ours.
In brief, our approach outperforms all compared methods even with
16 bits, which verifies the effectiveness of our SVHNs for more than
two modalities.

For two-modality datasets, the mAP scores of two cross-modal re-
trieval tasks, i.e., retrieving text by image query (Image→ Text) and
retrieving image by text query (Text→ Image), on the MIRFLICKR-
25K, NUS-WIDE and MS-COCO datasets, are shown in Table 3. Like
Table 2, our approach also outperforms all cross-modal hashing
methods in Table 3. For all experiments, we set the length of hash
codes L as 16, 32 and 64 bits. From the experimental results of Ta-
bles 2 and 3, the following observations are given: 1) There is no
obvious gap between the results of traditional and deep methods,
and some shallow methods are even higher than the deep methods.
This is because the used deep features contain much high-level
semantic information, which may boost the performance of the
traditional methods. 2) All the cross-modal hashing methods have
the pairwise limitation, leading to inadequate usage of cross-modal
data, which limits their performance. 3) All supervised methods are
superior to the unsupervised ones. This is because the supervised
approaches explicitly explore more discriminative information, e.g.,
the class label, to boost the performance of cross-modal retrieval. 4)
The existing cross-modal hashing methods are specially designed
for two-modality cases. They cannot be used to project the multi-
modal data (more than two modalities) into a common Hamming
space. However, our SVHNs can separately learn the common hash-
ing representations from more than two modalities and achieve
the best performance even compared with real-valued multimodal
methods.

5.2.2 Hash Lookup. In the hash lookup protocol, the precision
and recall are computed for the returned points given any Ham-
ming radius following [15]. The precision-recall curves with code
length 64 on the MIRFLICKR-25K, NUS-WIDE and MC-COCO
datasets are drawn for additional comparison as shown in Fig. 2.
The precision-recall evaluations are consistent with the mAP scores
for cross-modal retrieval tasks, where our SVHNs can dramatically
outperform all the compared methods. Our SVHNs can also achieve
the best performance on other cases with different values of code
length, i.e., 32 bits and 64 bits, whose results are omitted due to
space limitation. Overall speaking, our SVHNs has achieved the
best performance compared with the existing cross-modal hashing
methods.

5.2.3 Ablation Study. We also investigate the performance of the
variants for our SVHNs to verify the effectiveness of our different
modules. There are two variants of our SVHNs: 1) SVHNs-1 jointly
learns the common Hamming space throughm modality-specific
networks with the loss of LabNet without LabNet, 2) SVHNs-2 is
trained as SVHNs but all binary representations of retrieval and
query sets are computed by MVNs, and 3) SVHNs-3 separately
learns the common Hamming space with LabNet andm modality-
specific networks without variational inference. Table 4 shows
the mAP scores of these methods on the MS-COCO dataset. We
can see that the LabNet is much important for our model to learn
more effective binary representations. Furthermore, the variational
inference also helps our model to obtain more effective hash codes.

5.2.4 Efficiency Study. To further investigate the efficiency of our
SVHNs, we compare it with some baselines in terms of the cost of
training time and GPU memory on the MS-COCO dataset. SVHNsj ,
a variant of our SVHNs, whose MVNs are jointly trained on all
modalities, is used to investigate the efficiency of the separated
training. For a fair comparison, the maximal epochs of all meth-
ods are set to 10. Specifically, the maximum epochs of LabNet and
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Figure 2: The precision-recall curves on the MIRFLICKR-25K, NUS-WIDE and MS-COCO datasets. The code length is 64.

Table 4: Ablation study of SVHNs in terms of mAP scores on
the MS-COCO dataset. The best result is shown in boldface.

Method Task 16 bits 32 bits 64 bits
SVHNs-1

Image → Text

0.624 0.657 0.656
SVHNs-2 0.644 0.678 0.697
SVHNs-3 0.697 0.762 0.774
SVHNs 0.699 0.767 0.787
SVHNs-1

Text → Image

0.621 0.649 0.649
SVHNs-2 0.639 0.672 0.670
SVHNs-3 0.719 0.777 0.795
SVHNs 0.720 0.783 0.796

Table 5: Comparison of the training time cost andGPUmem-
ory usage on the MS-COCO dataset. The code length is 64.

Method Time Cost Memory Usage
DCMH [15] 91.16s 1441MiB
SSAH [12] 3671.59s 1441MiB
SVHNsj 25.24s 951MiB
SVHNs 21.69s 911MiB

each MVN are both set to 10 for SVHNsj and SVHNs. The perfor-
mance verification is omitted from the training stage in all methods.
The results are shown in Table 5, from which we can see that the
separated training can improve training efficiency.

6 CONCLUSION
In this paper, we proposed a novel approach called Separated Vari-
ational Hashing Networks (SVHNs) to separately transform any
number of modalities into a common Hamming space. SVHNs con-
sists of a label network (LabNet) and multiple modality-specific
networks. LabNet is used to exploit all available label annotations to
learn a latent common Hamming space by projecting the semantic
labels into the common binary codes. Then, the modality-specific
variational networks can separately project multiple modalities into
their common semantic binary representations learned by LabNet.
It is achieved by conducting the variational inference that matching
the aggregated posterior of the hashing code vector of LabNet with
an arbitrary prior distribution. Extensive experimental results on
four widely-used benchmark datasets and the comprehensive analy-
sis have demonstrated the effectiveness of the designed LabNet and
the variational inference, leading to superior cross-modal retrieval
performance compared to current state-of-the-art methods.
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