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a b s t r a c t 

In many real-world applications, an object can be represented from multiple views or styles. Thus, it is 

important to design algorithms that are able to recognize objects from distinct views. To the end, a large 

number of approaches have been proposed to achieve the heterogeneous recognition tasks through the 

use of local features. However, most of them only focus on binary views and thus cannot be applied 

to multi-view analysis. In this paper, we propose a novel local feature based multi-view discriminant 

analysis approach (FMDA). The proposed approach consists of three steps: First, the input images are 

represented using representation matrices and local feature descriptor (LFD) matrices of their overlapping 

patches, where the representation matrices are the linear coefficients of the LFDs for different views. In 

this way, it brings two advantages, i.e., addressing the small sample size (SSS) problem and preserving 

the discriminative information while reducing the redundant information in the LFD matrices. Second, 

the multi-view discriminant representation and feature projections are learned by projecting the LFDs 

of different views into a common space using the Fisher criterion. Finally, a simple but effective view- 

similarity constraint is proposed to adaptively learn the relationships between different views. To verify 

the effectiveness of the proposed method, extensive experiments are carried out on the FERET, CAS-PEAL- 

R1, CUFSF and HFB databases comparing with some state-of-the-art methods. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

In many computer vision applications, the same object can be 

observed at various viewpoints or even by heterogeneous sensors. 

For example, a person can be described by several facial images 

depicting different poses, expressions, lighting conditions and even 

heterogeneities, such as in [1–4] . Moreover, there are an increasing 

number of applications in which it is necessary to match images 

captured from various viewpoints or heterogeneous sensors; such 

a task is usually termed heterogeneous recognition or cross-view 

recognition [5–11] . However, such multi-view images may be best 

described in different spaces because of the large gaps between 

them. Therefore, traditional methods, in which all samples are re- 

garded as being in the same space, may miss a great deal of infor- 

mation that could be used to achieve better performance. 

To address the problem described above, numerous tech- 

niques for heterogeneous recognition have been proposed in recent 

decades [6–21] . Among these methods, [10,22–24] have achieved 

states of art in multi-view analysis under different settings. Al- 

though impressive results have been obtained some challenge is- 

sues have still remained. First, some works [7,12,14,25–28] have fo- 
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cused only on binary views and thus are not applicable to multi- 

view analysis. Alternatively, they may be adopted for multi-view 

analysis if the multi-view problem is transformed into the binary 

case, although this may be inefficient and does not fully utilize 

the relations among views. Second, some methods [8,13,16,17] treat 

multiple views as independent views to be mapped into a com- 

mon latent space, without considering the similarities between 

the views, which may result in a loss of some useful discrimi- 

nant information between views. Moreover, most of them do not 

use the local features of the images, which have been proven to 

serve as an effective basis for heterogeneous recognition by virtue 

of the excellent robustness and strong discriminant power of such 

features [6,9,18–21] . Thus, these multi-view methods cannot suffi- 

ciently and effectively utilize the information available in the data. 

Third, some of these methods [6,9,18–21] successfully employ local 

feature descriptors (LFDs, see Appendix A ) to solve the heteroge- 

neous recognition problem, but they can only address the binary 

view problem and do not consider the similarities among views. 

Furthermore, many types of local features have been widely used 

in many face recognition systems because of their excellent ro- 

bustness and strong discriminant power [9,20,29–33] , and each of 

these LFDs has its own characteristics and advantages compared 

with the others [34] . However, some of these approaches cannot 

be easily extended to other LFDs since they are designed based on 

https://doi.org/10.1016/j.knosys.2018.02.008
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specific LFDs, which may cause the performance of these methods 

to be limited on the LFDs. 

In addition to the above-mentioned limitations, the small sam- 

ple size (SSS) problem [35] is a well-known problem in subspace 

face recognition applications in general [36,37] . For many appli- 

cations, such as face recognition, all scatter matrices in question 

may be singular because of the SSS problem [38] , which is also 

known as the undersampling or singularity problem [38,39] . Many 

methods, such as local-feature-based discriminant analysis (LFDA) 

[6] , Fisherface [40] , random sampling linear discriminant analysis 

[36] , two-dimensional principal component analysis [41] , and two- 

dimensional linear discriminant analysis [38,42] , have been pro- 

posed to address this problem. These methods can be classified 

into three main classes based on their approaches to solving the 

SSS problem. In methods of the first type, principal component 

analysis (PCA) is first used to preprocess the high-dimensional data 

into a low-dimensional feature space, and then, objective meth- 

ods are applied in the low-dimensional PCA subspace [10,17,40,43] . 

However, the abandoned eigenfaces with small eigenvalues may 

also possess some discriminant information that would be useful 

for subsequent processing. In methods of the second type, multi- 

ple low-dimensional data sets are obtained by downsampling the 

high-dimensional data and then processed using objective methods 

to obtain several projections for each low-dimensional set [6,36] . 

However, many projections must be calculated in these methods, 

and not all data are directly involved in the projection compu- 

tations; thus, they may not yield the best solutions. In methods 

of the third type, a two-dimensional trick is applied to address 

the SSS problem [38,41,42] . Every image is represented by a two- 

dimensional matrix instead of a one-dimensional vector. Then, all 

data are used to learn the most suitable space. However, if the di- 

mensionality of the data is so high that the numbers of rows and 

columns are much greater than the sample size, then this two- 

dimensional optimization procedure is still subject to the SSS prob- 

lem. 

In this paper, we propose a novel method in which the LFDs 

of samples are used to perform multi-view discriminant analy- 

sis. First, each image is split into many overlapping patches, and 

then, the LFDs are computed from these patches to extract as 

much redundant discriminative information as possible and re- 

duce the dimensionality of the data. To maximize the utilization 

of the discriminative information contained in these LFDs, a repre- 

sentation matrix is proposed to sample the LFDs in feature-based 

multi-view discriminant analysis (FMDA). Thus, two types of pro- 

jections, the multi-view discriminant representation and the fea- 

ture projections, should be calculated through multi-view discrim- 

inant analysis. Moreover, there are evidently certain latent rela- 

tionships between the different views; however, it is difficult to 

formulate these relationships under complex conditions. We there- 

fore propose a simple but effective view-similarity constraint to in- 

corporate the characteristics of these relationships. With this con- 

straint, the multi-view projections can be adapted to better con- 

sider the relative characteristics of different views. Fig. 1 shows 

the framework of the proposed method. Generally speaking, FMDA 

is a multi-view method that employs local features; FMDA is not 

implemented based on any specific LFD, and any LFD can be eas- 

ily applied in FMDA, even when using simply the raw data of 

the patches. In addition, FMDA can avoid the SSS problem since 

the dimensionality of the LFDs of the patches can be substantially 

smaller than the sample size, and the sizes of the feature matri- 

ces are flexible because of the ability to use different LFDs as well 

as different patch sizes and step lengths. Overall, with the imple- 

mentation of local feature representations and the view-similarity 

constraint, an improvement in accuracy is achieved compared with 

the tested/evaluated methods. 

Fig. 1. The FMDA framework. The local features are first extracted from the sam- 

ples and used to represent the corresponding images with representation matrices. 

These representative features extracted from the different views are then projected

into a common discriminant space with a view-similarity constraint. In this figure, 

the different shapes denote different classes, and the different colors represent dif- 

ferent distinct views. 

The main contributions of this work can be summarized as fol- 

lows: 

• To learn more useful discriminative information for face 

recognition, we proposed a feature-based multi-view learning 

method based on the Fisher criterion. 

• Different local regions of a facial image play different roles in 

recognition. To utilize such a difference, we proposed a method 

to learn representation for faces using the linear combination 

of the LFDs wherein the linear coefficients on regions reflect 

its importance. Thus, the discriminant of our method is further 

improved. 

• A view-similarity constraint is proposed to incorporate the re- 

lationships between different views. With the help of this con- 

straint, the multi-view projections can better reflect and in- 

corporate the relationship of different views into our objective 

function. 

The remainder of this paper is organized as follows. 

Section 2 introduces related works, Section 3 details the pro- 

posed method, Section 4 evaluates the proposed method on four 

different databases, and Section 5 concludes the paper. 

Notations: lower-case bold letters represent column vectors 

and upper-case bold letters denote matrices. A 

T denotes the trans- 

pose of the matrix A . Table 1 summarizes some notations used 

throughout the paper. 

2. Related works 

2.1. Multi-view Canonical Correlation Analysis (MCCA) 

In [16] , the authors discussed generalizations of Canonical Cor- 

relation Analysis (CCA) [12] to analysis of multiple sets of variables, 

which is termed as the Multi-view Canonical Correlation Analysis 

(MCCA) or Multi-set Canonical Correlation Analysis. MCCA [16] at- 

tempts to find a set of linear transforms w 

(i ) | v 
i =1 

to respectively 

project the samples of v views { X (1) , · · · , X (i ) , · · · , X (v ) } to a com- 

mon space such that the correlations among the projections of 

samples from all views are mutually maximized, where v is the 
number of views, w 

( i ) is the transform of i th view and X (i ) ∈ R 

g i ×n 

is the data matrix of the i th view with n samples of g i dimension. 
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Table 1 

Some notations used throughout the paper. 

Notation Definition 

v The number of views 

s The size of the square patches 

g The dimension of the selected LFDs 

q The number of the patches for a giving image 

δ The step length of patch moving 

c The number of classes 

d 1 The desired reduced dimensionality of W 

( k ) 

d 2 The desired reduced dimensionality of P ( k ) 

n The number of all samples from all views in all classes 

X ( i ) The data matrix of the i th view 

�ij The patch of i th row and j th column for an image 

ϕij The local descriptor vector of �ij 

� = [ ϕ 11 , · · · , ϕ MN ] A feature matrix for an image 

�(k ) 
i j 

The feature matrix of j th image in i th class from the k th view 

W 

(k ) = 

�
w 

(k ) 
1 

, · · · , w 

(k ) 
d 1 

�
The linear transform matrix of the k th view 

P (k ) = 

�
p (k ) 
1 

, · · · , p (k ) 
d 2 

�
The representation matrix of the k th view

The linear transforms can be obtained by maximizing the sum of 

correlations among each pair of views as follows: 

max 
w 

(1) , w 

(2) , ··· , w 

(v ) 

v � 

i< j 

w 

(i ) T X 

(i ) X 

( j) T w 

( j) 

s.t. w 

(i ) T X 

(i ) X 

(i ) T w 

(i ) = 1 , i = 1 , 2 , · · · , v . 

(1) 

Using the Lagrange multiplier method, Eq. (1) can be easily solved 

as an eigenvalue problem [16] . Like CCA, the samples must have

pairwise relationships among the all views and MCCA is also an 

unsupervised method. 

2.2. Multi-view Discriminant Analysis (MvDA) 

In [10] and [17] , a Multi-view Discriminant Analysis (MvDA) ap- 

proach is proposed to seek a single common discriminant space 

for multiple views in a non-pairwise manner by jointly learning 

multiple view-specific linear transforms. The MvDA approach at- 

tempts to find the multi-view transforms that project each view 

into a common space such that samples from the same class are 

as close to each other as possible, even when they are from differ- 

ent views, and samples from different classes are as far apart from 

each other as possible, even when they are from the same view. 

This is achieved as follows: 

max 
w 

(1) , ··· , w 

(v ) 

w 

T Dw 

w 

T Sw 

, (2) 

where w = [ w 

(1) T , · · · , w 

(i ) T , · · · , w 

(v ) T ] T (i = 1 , 2 , · · · , v ) , w 

( i ) is 

the projection of the i th view, v is the number of views, and D and 

S are the between-class and within-class scatter matrices, respec- 

tively, for all views. Since observations from different views share 

similar data structures, a constraint is introduced in [10] to enforce 

the view consistency of the multiple linear transforms, resulting in 

a method called MvDA-VC, as follows: 

max 
w 

(1) , ··· , w 

(v ) 

w 

T Dw 

w 

T Sw + λ
v � 

i, j=1 

� βi − β j � 

2 
2 

, (3) 

where βi = ( X (i ) 
T 
X (i ) ) −1 X (i ) 

T 
w 

(i ) and λ is the balance parameter. 

Under this constraint, the view consistency among the multi-view 

transforms can be ensured. However, MvDA-VC requires that the 

number of samples from each view be the same, as in CCA, and the 

consistency among different views may not be maintained under 

complex conditions. 

2.3. Local-Feature-based Discriminant Analysis (LFDA) 

LFDA [6] attempts to address the problem of matching a foren- 

sic sketch to a gallery of mug shot images (heterogeneous face 

recognition). In the LFDA framework, the feature vector of each im- 

age is first divided into “slices” of smaller dimensionality, where 

these slices correspond to concatenations of the feature descrip- 

tor vectors from each column of the image patches. Next, discrim- 

inant analysis is performed separately on each slice through the 

following three steps: PCA, within-class whitening, and between- 

class discriminant analysis. Finally, PCA is applied to the new fea- 

ture vector to remove redundant information among the feature 

slices to extract the final feature vector. 

In LFDA, both sketches and photos are represented by SIFT 

feature descriptors and multi-scale local binary patterns (MLBPs). 

Multiple discriminant projections are then used on the partitioned 

vectors of the feature-based representation for minimum distance 

matching. LFDs are successfully used to improve heterogeneous 

face recognition. However, LFDA can only be applied in the two- 

view case. Moreover, similar to CCA, the samples must have pair- 

wise relationships between the two views for LFDA. 

As summarized above, most multi-view methods do not con- 

sider the discriminative information contained in local features, 

as in [8,10,13,16] , or can only address binary-view problems, as in 

[6,18–20] . Moreover, minimal work has been conducted on multi- 

view discriminant representation and feature projection learning 

for multi-view problems. The most closely related work is the cou- 

pled discriminant face descriptor (C-DFD) approach [19] , in which 

many image filters and soft sampling matrices are learned to ex- 

tract features for all non-overlapping regions in an image for each 

view. However, in the C-DFD method, numerous projections must 

be calculated for each view, and only binary-view problems can be 

addressed. Moreover, view-similarity characteristics are not consid- 

ered in the above methods. 

3. Feature-based multi-view discriminant analysis 

Image feature descriptors are widely used to represent the 

distinct characteristics of an image or image region [34] . LFDs 

have been successfully used in many face recognition applications 

by virtue of their excellent robustness and strong discriminative 

power [20] . In the following, we will present how to use LFDs 

and representation matrices as features to represent a correspond- 

ing sample. Then, multi-view discriminant analysis is applied to 

project the features corresponding to different views into a com- 

mon space with a view-similarity constraint, as shown in Fig. 1 . 
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Fig. 2. This figure shows how to slice an H ×W image into an M ×N grid. To sim- 

plify the description, we set δ = 

s 
2 
, as shown in this graph. Each patch is selected 

by sliding a window (the red square area) over the image with a step length of δ, 

such that each patch overlaps with its vertical or horizontal neighbors by s − δ. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 3. This figure shows how to represent an image using a feature matrix � and a 

representation matrix P . The location of each patch feature vector ϕij is the spatial 

location of the corresponding patch �ij as defined by the red M ×N grid superim- 

posed on the image. These feature vectors ϕ11 , ϕ 12 , ���, ϕ MN are used to linearly 

represent the image as �P. (For interpretation of the references to color in this fig-

ure legend, the reader is referred to the web version of this article.) 

3.1. Local-feature-based representation 

In this section, we will introduce how to represent images using 

their local features and the corresponding representation matrix. 

First, an image should be segmented into several overlapping re- 

gions (or patches), chosen based on two parameters: a patch size s 

and a step length δ. Every s × s square patch defined with a δ step 

is used to compute a local feature vector. More simply, this is sim- 

ilar to slide an s × s square window across the image with a δ step 

to extract the feature descriptor of each corresponding window. 

Obviously, in this way, an image can be split into a grid composed 

of M ×N overlapping squares, as shown in Fig. 2 , where M and N 

are the total numbers of vertical and horizontal patches, respec- 

tively. It is very easy to obtain M = � V −s 
δ

� + 1 and N = � H−s 
δ

� + 1 

for a V ×H ( V ≥ s , H ≥ s ) image. Then, we can denote any patch in 

the image by �ij , where i and j are the row and column numbers, 

respectively. Moreover, we denote the feature descriptor of �ij by 

ϕ i j = F (�i j ) , where F ( ·) represents the feature extraction method 

used. Thus, all M ×N feature vectors can be constructed to repre- 

sent the corresponding image as shown in Fig. 3 . Finally, the fea- 

ture vectors of all patches can be combined into a feature matrix 

representing the image features, which is denoted by 

� = 

�
ϕ 11 , · · · , ϕ i j , · · · , ϕ MN 

�
, 

as shown in Fig. 3 . Here, � ∈ R 

g×q ; i = 1 , · · · , M; j = 1 , · · · , N; g is 

the dimensionality of the feature descriptor; and q = M × N. It is 

clear that the feature matrix includes a substantial amount of re- 

dundant information since the columns were obtained from over- 

lapping patches, and each image is linearly represented in terms 

of its patches. Thus, to preserve as much discriminative informa- 

tion as possible while eliminating redundant information from re- 

dundant features, each image can be linearly represented in terms 

of these local feature vectors as �P , where P is the representation 

matrix. In the following, we will show how to use these features to 

perform multi-view discriminant analysis and to learn multi-view 

discriminant feature and representation projections. 

3.2. Local-feature-based multi-view discriminant analysis 

In this section, we will show how to project the features ob- 

tained from v views using the method described in the previous 

section into a common discriminant space by means of their linear 

feature transforms W 

(1) , W 

(2) , ���, W 

(v ) and the respective repre- 

sentation transforms P (1) , P (2) , ���, P (v ) . These projections are ob- 
tained via the Fisher criterion, which maximizes the between-class 

variation while minimizing the within-class variation. First, we de- 

fine X (k ) 
i j 

as the jth ( j = 1, · · · ,n(k ) 
i 

) sample in the ith (i = 1, · · · , c)

class from the k th ( k = 1 , · · · , v ) view, where n (k ) 
i 

is the number of 

samples in the i th class from the k th view and c is the number of 

classes. The local feature matrix of X (k ) 
i j 

can be denoted by �(k ) 
i j 

; 

then, the image can be represented as X (k ) 
i j 

P (k ) , where P ( k ) is the 

representation matrix for the k th view. 

To project the samples from the v views into a common latent 

space using the Fisher criterion, we denote the projected result of 

�(k ) 
i j 

P (k ) by Y (k ) 
i j 

= W 

(k ) T �(k ) 
i j 

P (k ) , where W 

( k ) is the feature projec- 

tion matrix for the k th view. In the common space, the between- 

class scatter should be maximized, whereas the within-class scat- 

ter should be minimized, as shown in Fig. 1 . We can obtain the 

objective function as follows based on the Fisher criterion: 

�
W 

(1) , · · · , W 

(v ) ;P (1) , · · · , P (v ) 
�

= arg max 
W 

(1) , ··· , W 

(v ) 

P (1) , ··· , P (v ) 

Tr (S b ) 

Tr (S w ) 
, (4) 

where Tr( ·) is the trace operator and S b and S w are the 

between-class and within-class matrices, respectively. Moreover, 

the between-class matrix is 

S b = 

c � 

i =1 

n i | M i − M|2 

= 

c � 

i =1 

n i | M i | 2 − n | M| 2 , 
(5) 

and the within-class matrix is 

S w = 

c � 

i =1 

v � 

k =1 

n (k ) 
i � 

j=1 

| Y (k ) 
i j 

− M i | 2 

= 

v � 

k =1 

c � 

i =1 

n (k ) 
i � 

j=1 

| Y k 
i j 
| 2 −

c � 

i =1 

n i | M i | 2 , 
(6) 

where n i = 

� v 
k n 

(k ) 
i 

is the total number of samples in the i th class, 

M i = 

1 
n i 

� v 
k =1 

� n 
(k ) 
i 
j=1 

Y (k ) 
i j 

is the mean of the samples of the i th class, 

M = 

1 
n 

� v 
k =1 

� c 
i =1 

� n 
(k ) 
i 
j=1 

Y (k ) 
i j 

is the mean of all samples over all 

views and all classes, and n is the number of all samples from all 

views in all classes. 
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Because Y (k ) 
i j 

= W 

(k ) T �(k ) 
i j 

P (k ) , it is clear that 

M i = 

1 
n i 

v � 

k =1 

n (k ) 
i � 

j=1 

W 

(k ) T �(k ) 
i j 

P (k ) 

= 

1 
n i 

v � 

k =1 

W 

(k ) T 

� 

n (k ) 
i � 

j=1 

�(k ) 
i j 

� 

P (k ) 
(7) 

and 

M = 

1 
n 

v � 

k =1 

c � 

i =1 

n (k ) 
i � 

j=1 

Y (k ) 
i j 

= 

1 
n 

v � 

k =1 

W 

(k ) T 

� 

c � 

i =1 

n (k ) 
i � 

j=1 

�(k ) 
i j 

� 

P (k ) . 

(8) 

We solve the optimization problem defined in Eq. (4) in an iter- 

ative manner. In each iteration, either the W variables or the P 

variables are fixed; the values of the other variables are then com- 

puted by optimizing Eq. (4) . First, we fix the P to compute the W . 

Thus, Eq. (5) and Eq. (6) can be rewritten as 

S b = 

c � 

i =1 

n i | M i | 2 − n | M| 2 

= 

v � 

k,l 

W 

(k ) T 

�
c � 

i 

1 
n i 
S (k ) 
i 

P (k ) P (k ) 
T 
S (l) 
i 

T 

− 1 
n 
S (k ) P (k ) P (k ) 

T 
S (l) 

T 
	
W 

(l) 

= W 

T BW 

(9) 

and 

S w = 

v � 

k =1 

c � 

i =1 

n (k ) 
i � 

j=1 

| Y k 
i j 
| 2 −

c � 

i =1 

n i | M i | 2 

= 

v � 

k,l 

W 

(k ) 

� 

c � 

i 

� 

(k == l) 
n (k ) 
i � 

j=1 

�(k ) 
i j 

P (k ) P (k ) 
T 
�(k ) 

i j 

T 

− 1 
n i 
S (k ) 
i 

P (k ) P (k ) 
T 
S (l) 
i 

T 
		

W 

(l) 

= W 

T CW , 

(10) 

where S (k ) 
i 

= 

� n 
(k ) 
i 
j=1 

�(k ) 
i j 

is the sum of all samples in the i th class 

from the k th view; S (k ) = 

� c 
i =1 S 

(k ) 
i 

is the sum of all samples from 

the k th view; W = [ W 

(1) T , W 

(2) T , · · · , W 

(v ) T ] 
T 
is constructed from 

the transform matrices for all views; k == l is a Boolean equation, 

whose value is 1 if k = l and 0 otherwise; and B and C are block 

matrices with the following forms: 

B = 

⎡ 

⎢ ⎢ ⎣ 

B 11 B 12 · · · B 1 v 
B 21 B 22 · · · B 2 v 
. . . 

. . . 
. . . 

. . . 
B v 1 B v 2 · · · B vv 

⎤ 

⎥ ⎥ ⎦ 

(11) 

and 

C = 

⎡ 

⎢ ⎢ ⎣ 

C 11 C 12 · · · C 1 v 
C 21 C 22 · · · C 2 v 
. . . 

. . . 
. . . 

. . . 
C v 1 C v 2 · · · C vv 

⎤ 

⎥ ⎥ ⎦ 

. (12) 

Moreover, from Eqs. (9) and (10) , each matrix block of B and C 

should satisfy 

B kl = 

c �
i =1 

1 
n i 
S (k ) 
i 

P (k ) P (k ) 
T 
S (l) 
i 

T − 1 
n 
S (k ) P (k ) P (k ) 

T 
S (l) 

T 
(13) 

and 

C kl = 

c � 

i =1 

� 

(k == l) 
n (k ) 
i � 

j=1 

�(k) 
i j

P (k ) P (k )
T 
�(k ) 

i j

T 

− 1 
n i 
S (k ) 
i 

P (k ) P (k ) 
T 
S (l) 
i 

T 
	
. 

(14) 

Therefore, under the Fisher criterion, to achieve the goal of 

maximizing the between-class value and minimizing the within- 

class value, it is easy to obtain the following objective function: 

W opt = arg max 
W 

Tr (S b ) 
Tr (S w ) 

= arg max 
W 

Tr (W 

T BW ) 
Tr (W 

T CW ) 
. 

(15) 

Since Eq. (15) cannot be solved analytically, ones could relax it 

as the following tractable determinant ratio problem according to 

[44] : 

W opt = arg max 
W 

| W 

T BW | 
| W 

T CW | , (16) 

which can be equivalently solved using the following generalized 

eigenvalue decomposition (GED) problem [10,17,40,44] : 

Bw k = τk Cw k , (17) 

where τk (k = 1 , 2 , · · · , d 1 ) is the k th largest eigenvalue of the GED 

with the corresponding eigenvector w k , w k constitutes the k th col- 

umn vector of the matrix W , and d 1 is the desired dimensionality. 

Thus, we obtain the desired W by fixing the P . Similar to W , we 

can define 

P = 

� 
P (1) T , · · · , P (k ) 

T 
, · · · ,P (v ) 

T 
� T 

,

where P ( k ) is the representation matrix for the k th view. Because 

Tr (AA 

T ) = Tr (A 

T A ) , we can easily obtain P in a manner similar to 

W . Then, the columns of P are the eigenvectors corresponding to 

the top d 2 eigenvalues of the formulation presented below, which 

is derived through a process similar to that shown for the case of 

W , where d 2 is the desired dimensionality: 

Dp k = τk Ep k , (18) 

where τk (k = 1 , 2 , · · · , d 2 ) is the k th largest eigenvalue of the GED 

with the corresponding eigenvector p k , p k constitutes the k th col- 

umn vector of the matrix P , and D and E are also block matrices, 

similar to B and C . Moreover, each block of these matrices should 

satisfy the following: 

D kl =
c � 

i =1 

1 

n i 
S (k ) 
i 

T 
W 

(k ) W 

(k ) T S (l) 
i 

− 1 

n 
S (k ) 

T 
W 

(k ) W 

(k ) T S (l) (19) 

and 

E kl = 

c � 

i =1 

� 

(k == l) 
n (k ) 
i � 

j=1 

�(k ) 
i j 

T 
W 

(k ) W 

(k ) T �(k ) 
i j 

− 1 
n i 
S (k ) 
i 

T 
W 

(k ) W 

(k ) T S (l) 
i 

	
. 

(20) 

To summarize, the complete FMDA algorithm is illustrated in 

Algorithm 1 . LDA [40] can be used to further reduce the dimen- 

sionality of the common space obtained through FMDA. 

3.3. FMDA with a view-similarity constraint (FMDAvs) 

Intuitively, certain latent relationships will exist between differ- 

ent views because the multi-view samples depict the same sub- 

ject. However, it is difficult to formulate these relationships un- 

der complex conditions such as differing poses, illumination con- 

ditions, and expressions. Therefore, it might not be easy to convert 

from a view to another, as in [10] . To simplify the representation, 
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Algorithm 1 Feature-based Multi-view Discriminant Analysis 

(FMDA). 

Input: A set of abstracted local feature matrices, { �(k ) 
i j 

, i = 

1 , · · · , c, k = 1 , · · · , v , j = 1 , · · · , n (k ) 
i 

} , where �(k ) 
i j 

∈ R 

g×q , g 

is the dimensionality of the LFDs, and q is the number of 

patches used to compute the local features for each image. The 

desired reduced dimensionalities d 1 and d 2 and the number of 

iterations T are set in advance. 

1: Initialize: W = I and P = I. 

2: for t = 1 , 2 , · · · , T do 

3: Compute the between- and within-class block scatter matri- 

ces B and C using Eqs. (13) and (14) by fixing P . 

4: Solve the generalized eigenvalue problem defined in Eq. (17) 

and obtain the eigenvectors W 

� with the d 1 largest eigenval- 

ues. 

5: W ← W 

� 
6: Calculate the between- and with-class block scatter matrices 

D and E using Eqs. (19) and (20) by fixing W . 

7: Solve the generalized eigenvalue problem defined in Eq. (18) 

and obtain the eigenvectors P � with the d 2 largest eigenval- 

ues. 

8: P ← P � 
9: end for 

Output: The projections W 

(k ) ∈ R 

g×d 1 and P (k ) ∈ R 

q ×d 2 , where d 1 
and d 2 are the desired reduced dimensionalities. 

we use the similarities between different views to describe their 

relationships. Moreover, for simplicity, the similarities between dif- 

ferent views can be described in terms of the Euclidean distances 

between the corresponding projections. Therefore, we first define 

the distance between the projections of the k th and l th views as 

dis (W 

(k ) , W 

(l) ) = � W 

(k ) −W 

(l) � 

2 
F , (21) 

where �·� F is the Frobenius norm and W 

( k ) and W 

( l ) are the pro- 

jection matrices for the k th and l th views, respectively. Then, we 

can obtain the total distances between all pairs of views from W 

as follows: 

s 1 = 

v � 

k =1 

v � 

l= k +1 

dis (W 

(k ) , W 

(l) ) 

= (v − 1) 
v � 

k 

Tr 

�
W 

(k ) T W 

(k ) 

	
−

v � 

k 
 = l 
Tr 

�
W 

(k ) T W 

(l) 

	

= Tr 
�
W 

T �W 

�
, 

(22) 

where � is a block matrix, as in Eqs. (11) and (12) : 

� = 

⎡ 

⎢ ⎢ ⎣ 

�11 �12 · · · �1 v 
�21 �22 · · · �2 v 
. . . 

. . . 
. . . 

. . . 
�v 1 �v 2 · · · �vv 

⎤ 

⎥ ⎥ ⎦ 

. (23) 

Thus, it is very easy to obtain the kl th block of � as follows: 

�kl = 

�
(v − 1) I, k = l 

−I, otherwise, 
(24) 

where I is the identity matrix. Similarly, it is very easy to obtain 

the total distances between all views for P as follows: 

s 2 = Tr 
�
P T �P 

�
. (25) 

Clearly, these distances can be used to formulate a constraint to 

increase or decrease the deviations between the transforms. In this 

way, the transform matrices can be made more consistent with the 

relationships between the views; we call this consistency the view 

similarity. Thus, under the view-similarity constraint, the objective 

function given in Eq. (4) can be easily rewritten as 

[ W opt ;P opt ] = arg max W ; P 
Tr ( S b ) 

Tr ( S w ) + κ

s.t. κ = 

2 � 

k 

λk s k + 

v � 

k =1 

ηk � W 

(k ) � 

2 
F + 

v � 

k =1 

γk � P (k ) � 

2 
F , 

(26) 

where λ1 , λ2 , η1 , · · · , ηv , and γ1 , · · · , γv are real numbers and 

� W 

(k ) � 2 
F 
and � P (k ) � 2 

F 
are the shrinkage constraints, also known as 

the Tikhonov regularizers [45,46] , which help to improve the gen- 

eralizability of the solutions. The LDA model with Tikhonov regu- 

larization is usually referred to as Regularized Discriminant Anal- 

ysis [47,48] . Moreover, λ1 and λ2 control the balance of the view 

similarity. When their values are positive, the transform matrices 

for the different views will be closer together. When their values 

are negative, these matrices will be farther apart. Clearly, a value of 

0 will not work. Therefore, Eqs. (17) and (18) can be easily rewrit- 

ten as 

Bw k = τk ( C + λ1 � + �) w k (27) 

and 

Dp k = τk ( E + λ2 � + ϒ) p k , (28) 

where � and Y are block matrices, as in Eqs. (11) , (12) and (23) : 

� = 

⎡ 

⎢ ⎢ ⎣ 

�11 �12 · · · �1 v 
�21 �22 · · · �2 v 
. . . 

. . . 
. . . 

. . . 
�v 1 �v 2 · · · �vv 

⎤ 

⎥ ⎥ ⎦ 

(29) 

and 

ϒ = 

⎡ 

⎢ ⎢ ⎣ 

ϒ11 ϒ12 · · · ϒ1 v 
ϒ21 ϒ22 · · · ϒ2 v 
. . . 

. . . 
. . . 

. . . 
ϒv 1 ϒv 2 · · · ϒvv 

⎤ 

⎥ ⎥ ⎦ 

. (30) 

Moreover, from Eq. (26) , it is easy to obtain the kl th blocks of �
and Y as follows: 

�kl = 

�
ηk I, k = l 

0 , otherwise 
(31) 

and 

ϒkl = 

�
γk I, k = l 

0 , otherwise . 
(32) 

Therefore, W and P can be obtained by solving the eigenvalue 

problems defined in Eqs. (27) and (28) , respectively, by fixing the 

other set of variables, as in Algorithm 1 . 

3.4. Time complexity analysis 

Suppose the computational cost of LFD method F ( ·) 
is denoted by O ( ρ( s )). In the training stage, our method 

takes O ( ρ( s ) nq ) to extract LFDs from n training samples, 

and O 

�
cn + T 

�
gq (cv 2 + n )(d 1 + d 2 + g + q ) + v 3 g 3 + v 3 q 3 

��
to compute the projections W and P for T iterations, 

where O 

�
v 3 g 3 

�
is the time complexity of Eqs. (17) and 

(27) , O 

�
v 3 q 3 

�
is the cost of Eqs. (18) and (28) , and the 

left O 

�
cn + T gq (cv 2 + n )(d 1 + d 2 + g + q ) 

�
is the compu- 

tational cost of B , C , D , E , � and ϒ for T iterations. 

Therefore, the complexity for training is O ( ρ(s ) nq + cn + 

T 
�
gq (cv 2 + n )(d 1 + d 2 + g + q ) + v 3 g 3 + v 3 q 3 

��
in terms of 

T iterations. Similarly, for the feature extraction, it takes 

O ( ρ(s ) q + d 1 q (g + d 2 ) ) for each image, where O ( ρ( s ) q ) is the 

time cost for the LFD extraction regarding to a single image and 

O ( d 1 q (g + d 2 ) ) is used to obtain the projection. 
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Fig. 4. The first two subjects in the subset of the FERET database used in this ex- 

periment. From left to right, the columns show the images of the 0 °, 25 °, 15 °, −15 ◦, 
and −25 ◦ poses, followed by the smiling and dim images. 

4. Experiments 

In this section, FMDA is evaluated on four different datasets for 

four different heterogeneous face recognition tasks, i.e., face recog- 

nition across poses, illumination conditions and expressions; face 

recognition across poses; photo vs. sketch face recognition; and vi- 

sual (VIS) vs. near-infrared (NIR) face recognition. 

4.1. Datasets 

1. The Facial Recognition Technology Database (FERET) [1] is used 

to evaluate the performance of the proposed method for face 

recognition across different poses, illumination conditions and 

expressions. The subset used in this experiment is simply a 

subset of the FERET database. This dataset includes images of 

200 subjects, each in 5 poses ( −25 ◦, −15 ◦, 0 ° (neutral), 15 °, 
and 25 °), with 2 expressions (neutral and smiling for the 0 °
pose) and under 2 illumination conditions (neutral and dim for 

the 0 ° pose). This subset was further divided into two parts to 

serve as the training set and the test set. For tuning the pa- 

rameters of all methods, the first 140 subjects (140 ×7 images) 

were selected as the training set, and the remaining 60 sub- 

jects (60 ×7 images) were used as the test set. Then the mean 

and standard deviations of the 10 times running results were 

reported to evaluate the performance of the methods by fixing 

the tuned parameters. For each time, 140 subjects were ran- 

domly selected as the training set, and the remaining subjects 

were used as the test set. In addition, all images were cropped 

to 80 ×80 pixels, as shown in Fig. 4 . 

2. The CAS-PEAL-R1 Database [2] is applied to evaluate the per- 

formance of the proposed method across different poses. CAS- 

PEAL-R1 contains 21,832 face images of 1040 individuals across 

21 poses [49] . All images were captured under ambient illu- 

mination conditions and with the subjects showing neutral ex- 

pressions. Only one image exists for each subject in each pose. 

The 21 poses are sampled from a pose space with 7 discrete 

yaw values and 3 discrete pitch values. For this experiment, 

we chose a subset of the database in which the yaw values 

range from −45 ◦ to +45 ◦ and the pitch value is approximately 

+30 ◦, namely, the PD set, which contains 7 ×939 images of 939 

individuals. This subset was further divided into two parts to 

serve as the training set and the test set. For tuning the pa- 

rameters of all methods, the first 500 subjects (500 ×7 images) 

were selected as the training set, and the remaining 439 sub- 

jects (439 ×7 images) were used as the test set. Then the mean 

and standard deviations of the 10 times running results were 

reported to evaluate the performance of the methods by fixing 

the tuned parameters. For each time, 500 subjects were ran- 

domly selected as the training set, and the remaining subjects 

were used as the test set. In addition, all images were aligned 

and cropped to 80 ×80 pixels according to the provided eye co- 

ordinates. Fig. 5 shows cropped face examples from the selected 

subset. 

Fig. 5. The first two subjects in the subset of the CAS-PEAL-R1 PD database used 

in this experiment. From left to right, the yaw values of the images in each column 

are −45 ◦, −30 ◦, −15 ◦, 0 °, 15 °, 30 °, and 45 °. 

Fig. 6. The photos and sketches of six subjects in the CUFSF database. The first row 

shows the photos of the subjects, and the second row shows the corresponding 

sketches. 

Fig. 7. The VIS and NIR face images of a subject in the HFB database. The first row 

shows the 8 VIS images of the subject, and the second row shows the 8 NIR images 

of the subject. 

3. The CUHK Face Sketch FERET (CUFSF) Database [3,5] is employed 

to evaluate the performance of the proposed method for photo 

vs. sketch face recognition. CUFSF includes images correspond- 

ing to 1194 persons from the FERET database [1] . For each per- 

son, the database includes a face photo with lighting variations 

and a sketch with shape exaggeration drawn by an artist while 

viewing that photo. For tuning the parameters of all methods, 

the first 500 subjects were selected for training, and the re- 

maining 694 subjects were used for testing. Then the mean and 

standard deviations of the 10 times running results were re- 

ported to evaluate the performance of the methods by fixing 

the tuned parameters. For each time, 500 subjects were ran- 

domly selected as the training set, and the remaining subjects 

were used as the test set. Moreover, all images were cropped to 

80 ×64 pixels, as shown in Fig. 6 . 

4. The Heterogeneous Face Biometrics (HFB) [4] database is used to 

evaluate the performance of FMDA for VIS vs. NIR heteroge- 

neous face recognition. This database consists of images of 200 

subjects, each corresponding to 8 VIS and 8 NIR face images. 

Each face image was aligned and cropped to 128 ×128 pixels 

according to the position of the eyes as provided by the au- 

thors. Fig. 7 shows several cropped example images from the 

HFB dataset. For tuning the parameters of all methods, the first 

100 subjects were chosen as the training data, and the remain- 

ing 100 subjects were used as the test set. Then the mean and 

standard deviations of the 10 times running results were re- 

ported to evaluate the performance of the methods by fixing 

the tuned parameters. For each time, 100 subjects were ran- 

domly selected as the training set, and the remaining subjects 

were used as the test set. 
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4.2. Experimental setting 

All images from FERET were cropped to 80 ×80 pixels, as 

shown in Fig. 4 ; all images from CAS-PEAL-R1 were aligned and 

cropped to 80 ×80 pixels using a standard protocol, as shown in 

Fig. 5 ; all images from CUFSF were cropped to 80 ×64 pixels using 

a standard protocol, as shown in Fig. 6 ; and all samples from HFB 

were cropped to 128 ×128 pixels as specified by the authors of 

[4] , as shown in Fig. 7 . The proposed method was then evaluated 

by comparison with the most closely related existing algorithms: 

PCA [50] , Multiset CCA (MCCA) [16] , GMA [8] , PLS [7] , LDA [40] , 

SIFT [33] , SIFT+LDA [9] , HOG [31] , HOG+LDA [9] , C-DFD [19] , MvDA 

[17] , MvDA-VC [10] , CDFL [21] , LRDE [11] , GSS-SL [28] , and C-DFD 

[19] . The MATLAB codes for GMA, 1 PLS, 1 MvDA, 2 MvDA-VC 2 and 

GSS-SL 3 as implemented by the original authors were downloaded 

from the Internet. The SIFT and HOG algorithms were obtained 

from [51] . The MCCA and LDA algorithms were implemented by 

ourselves. For a comprehensive comparison, we use the raw data, 

SIFT and HOG in experiments. The corresponding dimensions are 

s 2 , 128 and 124, where s denotes size of the square local region. 

In our experiments, we empirically set s as 16 or 15, δ as 4 or 5, 

and T = 3 . For raw data, d 1 was determined to give the best result 

from 5 to 60 with an interval of 5. For HOG and SIFT, the d 1 was 

chosen from 50 to 100 with an interval of 10. Moreover, the value 

ranges of d 2 , λ1 , λ2 , ηk and γ k are [20, 200] with an interval of 

10, [10 −3 , 3] , [10 −3 , 3] , [10 −5 , 0 . 3] and [10 −5 , 0 . 3] , respectively. To 

reduce the effort for tuning parameters, we use the tuned d 1 and 

d 2 of FMDA for FMDAvs and seek an optimal combination of λ1 , 

λ2 , ηk and γ k by 

a i = 

�
a i −1 + 10 � lg ( a i −1 ) � (a i −1 < end and i = 1 , 2 , · · · ) 
start i = 0 

, 

where a i indicates the value of i th possible choice for the param- 

eter a = { λ1 , λ2 , ηk , γk } , [ start , end ] denotes the value range of the 
corresponding parameter, lg (·) is the logarithm operator to base 10 

and �·� is the rounded down operator. When the number of views 

is large (on the FERET and PEAL data sets), it is a daunting task to 

tune all ηk and γ k (k = 1 , 2 , · · · , v ) . Thus, we simply use the same 

value for ηk , as well as γ k . 

To reduce the dimensionality of the data and avoid the SSS 

problem, PCA [50] was first applied to reduce the dimensionality 

of all of the data to obtain the best performances of the MCCA, 

GMA , PLS, LDA , MvDA and MvDA-VC methods. Then, the reduced 

training data were used to obtain the transform matrices produced 

by each of the above methods. The obtained projections were then 

applied to the reduced test data to obtain the final test set, which 

was used to compute the best accuracies across all dimensionali- 

ties in terms of the rank-1 recognition rate. The rank-1 testing was 

conducted in a pairwise manner; i.e., the images from one view 

were used as the gallery, and the images from another view were 

used as the probe. The means of all of the pairwise accuracies were 

then used to compare the performances of all methods on the cor- 

responding dataset. It is notable that GMA and GSS-SL only can be 

used on HFB and fail to work on FERET, CAS-PEAL-R1 and CUFSF, 

since there is only one sample per class per view in these dataset. 

4.3. Parameter analysis 

In this section, we investigate the influence of parameters on 

the performance of our method on the HFB data set with SIFT. For 

1 The code is available at: https://www.cs.umd.edu/ ∼bhokaal/Research.htm . 
2 The code is available at: http://sourcedb.ict.cas.cn/cn/jssrck/201511/t20151119 _ 

4 47034 4.html . 
3 The code is available at: http://people.ucas.edu.cn/ ∼bpma . 

each investigation, we change the value of one parameter and fix 

the others. Fig. 8 a and b show the recognition rate of FMDAvs ver- 

sus different values of λ1 and λ2 . We can see that the recognition 

rate is significantly improved after considering the view-similarity 

constraint. Fig. 8 c–f show the influence of η1 , η2 , γ 1 and γ 2 , re- 

spectively. From the results, we can see that these shrinkage con- 

straints give slight improvements in the recognition rate. However, 

they have much smaller influence on the results than the view- 

similarity does. Therefore, when the number of views is large, all 

ηk and γ k (k = 1 , 2 , · · · , v ) could be set to be the same as did in 

following experiments. 

4.4. Face recognition across poses, illumination conditions and 

expressions 

The face recognition performance across different poses, illu- 

mination conditions and expressions (PIE) was evaluated on the 

FERET database by considering each pose, illumination condition 

or expression as one view for the calculation of the pairwise accu- 

racies. The samples in FERET correspond to seven different views, 

thus leading to 7 × 6 = 42 evaluations of the rank-1 recognition 

rate. All 42 results were averaged to obtain the mean accuracy, 

as shown in Fig. 9 . In the figure, methods in boldface are signifi- 

cantly better than the others, according to the t -test with a signifi- 

cance level at 0.05. From the results, we can see that SIFT+LDA and 

HOG+LDA achieve better performances compared with traditional 

LDA by virtue of the incorporation of the local features. However, 

when the view differences are disregarded, their performances are 

worse than those of the multi-view methods. It is clear that the 

proposed method achieves better PIE performance compared with 

the other methods on the FERET database. The proposed method 

achieves improvements over MvDA-VC by 6.68% , over MCCA by 

7.84% and over HOG+LDA by 15.27% , indicating that our method 

is a good multi-view learning method for cross-view recognition. 

Moreover, we also compare the performances achieved by our 

method when using different local features. As seen, the perfor- 

mances with SIFT and HOG are better than those achieved when 

using the raw patch data since these LFDs may contain more dis- 

criminative information than the raw data. However, our method 

can also efficiently extract more discriminative information from 

the raw patch data than can the other methods. Even when us- 

ing raw data, our method achieves improvements over MvDA-VC 

by 5.48%, over MCCA by 6.64% and over HOG+LDA by 14.07% . Fur- 

thermore, when the view similarity is considered (denoted by FM- 

DAvs), the performances of FMDA and FMDA+LDA are further im- 

proved, as shown in this figure. 

To enable more detailed performance comparisons, some of the 

cross-view recognition results are shown in Table 6 ; these results 

are the rank-1 recognition accuracies achieved when the 0° view

is used as the gallery and the remaining 6 views are used as the 

probes. As seen, our method performs the best, achieving signifi- 

cant improvements of up to 6% for some views, e.g., 25 °. Therefore, 
our method is more effective than the other methods for the PIE 

recognition task. 

4.5. Face recognition across poses 

Face recognition across different poses was evaluated on the 

CAS-PEAL-R1 database by considering each pose as one view for 

the calculation of the pairwise accuracies. Similar to FERET, the 

samples from CAS-PEAL-R1 correspond to seven views, thus lead- 

ing to 7 × 6 = 42 evaluations of the rank-1 recognition rate. All 42 

results were averaged to obtain the mean accuracy, as shown in 

Fig. 10 . In the figure, methods in boldface are significantly bet- 

ter than the others, according to the t -test with a significance 

level at 0.05. From the results, we can see that SIFT+LDA and 



42 P. Hu et al. / Knowledge-Based Systems 149 (2018) 34–46 

Fig. 8. Rank-one recognition rate of FMDAvs on HFB versus different values of λ1 , λ1 , η1 , η2 , γ 1 and γ 2 , respectively. 

Fig. 9. Evaluation of the PIE recognition performance on the FERET dataset in terms 

of the mean accuracy. 

HOG+LDA achieve better performances compared with traditional 

LDA by virtue of the incorporation of the local features. However, 

when the view differences are disregarded, their performances are 

worse than those of the multi-view methods. It is clear that the 

proposed method achieves better performance across poses com- 

pared with the other methods on the CAS-PEAL-R1 database. The 

proposed method achieves improvements over MvDA-VC by 5.60%, 

over MCCA by 6.76% and over HOG + LDA by 14.19%, indicating that 

our method is a good multi-view learning method for cross-view 

recognition. Moreover, we also compare the performances achieved 

by our method using different local features. As seen, the perfor- 

Fig. 10. Comparison of the best mean recognition accuracy rates on the CAS-PEAL- 

R1 dataset for the cross-pose face recognition task. 

mances with SIFT and HOG are better than those achieved us- 

ing the raw patch data since these LFDs may contain more dis- 

criminative information than the raw data. However, our method 

can also efficiently extract more discriminative information from 

the raw patch data than can the other methods. Even with the 

raw data, our method achieves improvements over MvDA-VC by 

0.37%, over MCCA by 1.53% and over HOG + LDA by 8.96% . When 

the relationships between views are disregarded, the performance 

of FMDA with the raw data is worse than that of MvDA-VC, but 
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Table 2 

Evaluation of the PIE recognition performance on the FERET dataset (with the 0 ° view as the training set). Results in boldface are significantly better 

than the other methods, according to the t -test with a significance level at 0.05. 

Method 25 ° 15 ° −15 ◦ −25 ◦ smile dim Average 

PCA [50] 27.83 ± 4.65 53.33 ± 4.97 61.50 ± 3.96 29.67 ± 5.37 81.67 ± 5.09 72.83 ± 4.23 54.47 ± 2.48 

LDA [40] 88.67 ± 4.57 91.83 ± 3.37 93.83 ± 4.23 91.00 ± 3.26 95.83 ± 3.36 89.00 ± 5.34 91.69 ± 2.78 

SIFT [33] 34.83 ± 4.93 60.00 ± 4.84 71.83 ± 4.74 36.67 ± 6.43 86.17 ± 4.01 88.67 ± 3.91 63.03 ± 1.29 

SIFT + LDA [9] 90.67 ± 4.53 95.50 ± 2.94 94.67 ± 3.22 92.83 ± 4.31 96.50 ± 2.77 95.83 ± 3.36 94.33 ± 2.23 

HOG [31] 38.17 ± 8.48 78.67 ± 5.08 87.50 ± 5.17 51.00 ± 5.40 88.17 ± 2.54 88.33 ± 2.94 71.97 ± 2.24 

HOG + LDA [9] 87.83 ± 5.78 95.33 ± 3.12 96.83 ± 2.14 89.50 ± 3.34 98.67 ± 1.89 94.67 ± 3.22 93.81 ± 2.65 

MCCA [16] 92.50 ± 2.97 93.67 ± 3.58 94.00 ± 4.17 92.67 ± 2.74 91.50 ± 3.55 86.33 ± 4.43 91.78 ± 2.62 

MvDA [17] 92.50 ± 2.97 93.67 ± 3.58 94.00 ± 4.17 92.67 ± 2.74 91.50 ± 3.55 86.33 ± 4.43 91.78 ± 2.62 

MvDA-VC [10] 92.17 ± 3.43 93.33 ± 3.51 94.00 ± 3.44 92.33 ± 3.44 91.67 ± 2.83 87.67 ± 4.25 91.86 ± 2.75 

FMDA (RAW) 94.67 ± 2.92 96.67 ± 2.94 96.50 ± 2.77 96.83 ± 2.54 96.17 ± 2.36 96.17 ± 3.34 96.17 ± 2.53 

FMDAvs (RAW) 96.83 ± 2.42 97.00 ± 2.58 97.17 ± 2.49 97.00 ± 2.70 96.67 ± 2.61 96.33 ± 3.75 96.83 ± 2.60 

FMDA (HOG) 96.33 ± 2.46 97.00 ± 2.58 98.00 ± 1.72 97.17 ± 2.23 98.33 ± 1.92 97.8 ± 2.09 97.44 ± 2.00 

FMDAvs (HOG) 96.83 ± 2.42 97.17 ± 2.49 98.00 ± 1.72 97.50 ± 2.12 98.50 ± 2.00 97.67 ± 2.38 97.61 ± 2.08 

FMDA (SIFT) 96.17 ± 2.73 96.67 ± 2.61 98.00 ± 1.72 97.33 ± 2.11 98.00 ± 1.72 97.33 ± 2.38 97.25 ± 2.06 

FMDAvs (SIFT) 96.33 ± 2.46 96.83 ± 2.66 98.00 ± 1.72 97.33 ± 2.11 98.00 ± 1.72 97.33 ± 2.51 97.31 ± 2.04 

FMDA (RAW) + LDA 96.83 ± 2.14 97.33 ± 2.11 98.17 ± 1.83 97.17 ± 2.73 97.67 ± 2.11 96.67 ± 2.36 97.31 ± 1.91 

FMDAvs (RAW) + LDA 97.50 ± 1.80 97.33 ± 2.25 98.67 ± 1.31 97.17 ± 2.49 98.67 ± 2.05 98.17 ± 2.00 97.92 ± 1.82 

FMDA (HOG) + LDA 98.17 ± 2.00 98.17 ± 2.00 98.17 ± 2.28 97.67 ± 1.79 98.17 ± 2.28 97.50 ± 1.80 97.97 ± 1.72 

FMDAvs (HOG) + LDA 98.00 ± 1.53 98.00 ± 1.53 98.17 ± 2.28 97.33 ± 2.25 98.00 ± 1.89 97.83 ± 1.77 97.89 ± 1.62 

FMDA (SIFT) + LDA 98.50 ± 1.66 98.00 ± 2.05 98.50 ± 1.66 97.83 ± 1.77 98.50 ± 1.66 98.50 ± 1.83 98.31 ± 1.58 

FMDAvs (SIFT) + LDA 98.50 ± 1.66 98.17 ± 2.14 98.00 ± 1.72 97.67 ± 2.11 98.67 ± 1.72 98.67 ± 1.72 98.28 ± 1.71 

Table 3 

Evaluation of the face recognition performance across different poses on the CAS-PEAL-R1 dataset (with the 0 ° view as the training set) Results in 

boldface are significantly better than the other methods, according to the t -test with a significance level at 0.05. 

Method −45 ◦ −30 ◦ −15 ◦ 15 ° 30 ° 45 ° Average 

PCA [50] 2.26 ± 0.47 5.26 ± 0.69 19.84 ± 2.45 20.21 ± 1.37 3.64 ± 0.56 2.44 ± 0.46 8.94 ± 0.71 

LDA [40] 57.45 ± 1.93 88.66 ± 1.71 99.04 ± 0.37 98.95 ± 0.42 92.69 ± 0.93 75.03 ± 2.42 85.30 ± 0.67 

SIFT [33] 10.73 ± 1.90 25.76 ± 2.32 4 9.4 8 ± 3.39 50.36 ± 2.17 23.26 ± 2.36 11.21 ± 1.33 28.47 ± 1.15 

SIFT + LDA [9] 65.17 ± 1.82 93.30 ± 0.85 99.66 ± 0.25 99.45 ± 0.19 96.47 ± 0.64 82.94 ± 1.59 89.50 ± 0.41 

HOG [31] 2.44 ± 0.54 6.31 ± 1.23 29.20 ± 4.02 30.64 ± 1.97 6.15 ± 0.96 2.78 ± 0.58 12.92 ± 0.87 

HOG + LDA [9] 61.91 ± 2.96 92.89 ± 0.90 99.86 ± 0.16 99.98 ± 0.07 97.49 ± 0.58 82.64 ± 1.62 89.13 ± 0.50 

MCCA [16] 89.32 ± 1.04 97.40 ± 0.66 99.86 ± 0.12 99.25 ± 0.47 97.18 ± 0.65 86.47 ± 0.68 94.91 ± 0.24 

MvDA [17] 89.32 ± 1.04 97.40 ± 0.66 99.86 ± 0.12 99.25 ± 0.47 97.18 ± 0.65 86.47 ± 0.68 94.91 ± 0.24 

MvDA-VC [10] 90.30 ± 1.35 97.52 ± 0.54 99.86 ± 0.16 99.23 ± 0.31 97.59 ± 0.66 88.15 ± 0.70 95.44 ± 0.29 

FMDA (RAW) 86.45 ± 1.00 94.92 ± 0.78 99.48 ± 0.19 98.61 ± 0.29 94.08 ± 1.16 82.64 ± 1.06 92.70 ± 0.47 

FMDAvs (RAW) 88.27 ± 1.27 95.65 ± 1.03 99.64 ± 0.27 98.84 ± 0.33 94.49 ± 0.98 85.60 ± 1.11 93.75 ± 0.59 

FMDA (HOG) 91.46 ± 1.11 96.90 ± 0.74 99.75 ± 0.13 99.04 ± 0.32 96.72 ± 0.70 88.95 ± 0.89 95.47 ± 0.41 

FMDAvs (HOG) 91.44 ± 0.97 96.95 ± 0.82 99.79 ± 0.07 99.07 ± 0.33 96.90 ± 0.72 89.38 ± 0.78 95.59 ± 0.36 

FMDA (SIFT) 88.63 ± 1.63 96.04 ± 0.77 99.38 ± 0.39 98.91 ± 0.4 95.63 ± 0.88 87.29 ± 1.35 94.31 ± 0.63 

FMDAvs (SIFT) 88.59 ± 1.49 95.97 ± 0.73 99.41 ± 0.42 98.91 ± 0.41 95.56 ± 0.91 87.22 ± 1.40 94.27 ± 0.60 

FMDA (RAW) + LDA 89.75 ± 0.79 96.90 ± 0.43 99.79 ± 0.23 99.32 ± 0.26 96.54 ± 0.91 86.08 ± 1.14 94.73 ± 0.28 

FMDAvs (RAW) + LDA 91.57 ± 0.84 97.15 ± 0.34 99.79 ± 0.17 99.29 ± 0.36 97.24 ± 0.56 88.29 ± 0.97 95.56 ± 0.24 

FMDA (HOG) + LDA 97.27 ± 0.67 99.54 ± 0.26 10 0.0 0 ± 0.00 99.95 ± 0.10 99.64 ± 0.24 96.17 ± 0.64 98.76 ± 0.22 

FMDAvs (HOG) + LDA 97.27 ± 0.50 99.59 ± 0.26 10 0.0 0 ± 0.00 99.95 ± 0.10 99.64 ± 0.34 96.45 ± 0.65 98.82 ± 0.18 

FMDA (SIFT) + LDA 96.10 ± 0.86 98.70 ± 0.42 99.95 ± 0.10 99.84 ± 0.11 99.27 ± 0.44 95.44 ± 0.94 98.22 ± 0.37 

FMDAvs (SIFT) +LDA 96.01 ± 0.80 98.70 ± 0.42 99.95 ± 0.10 99.84 ± 0.11 99.27 ± 0.50 95.38 ± 1.05 98.19 ± 0.38 

the performance of FMDAvs+LDA is better than that of MvDA-VC. 

Furthermore, when the view similarity is considered, the perfor- 

mances of FMDA and FMDA+LDA are improved, as shown in this 

figure. Therefore, the view-similarity constraint is a powerful tool 

for adapting the relationships between views. 

To enable more detailed performance comparisons, some of the 

cross-view recognition results are shown in Table 3 ; these results 

are the rank-1 recognition accuracies achieved when the 0 ° view 

is used as the gallery and the remaining 6 views are used as the 

probes. As seen, our method performs the best, achieving signifi- 

cant improvements of up to 8% for certain views, e.g., 45 °. There- 
fore, our method is more effective than the other methods for the 

cross-pose recognition task. ( Table 2 ) 

4.6. Photo vs. sketch face recognition 

Face recognition between photos and sketches was evaluated on 

the CUFSF database. The photos and sketches were considered as 

different views for the computation of the pairwise accuracies. The 

results are shown in Fig. 11 and Table 4 . To present the recogni- 

tion accuracies for different dimensionalities on the tuning set in 

this figure, for the FMDA and FMDAvs methods, the dimensions of 

their results were first further reduced to 100 by PCA, and LDA 

was applied to the reduced data for comparison with the other 

methods. For the other methods, the dimensions of the raw data or 

local features were first reduced to 100 by PCA, and these meth- 

ods were then applied to the reduced data. From the results, we 

can see that the proposed method achieves better performance in 

photo vs. sketch face recognition compared with the other meth- 

ods. The proposed method achieves improvements over LRDE by 

20.37, MvDA by 25.48%, over MCCA by 29.09%, over SIFT+LDA by 

14.19% and over CDFL by 4.7%, indicating that our method is a good 

multi-view learning method for photo vs. sketch recognition. With 

the view-similarity constraint, FMDAvs and FMDAvs+LDA achieve 

better performances than those of FMDA and FMDA+LDA in terms 

of the recognition rate, as shown in Fig. 11 and Table 4 . From the 

results, we can see that the LFDs provide more discriminative in- 
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Fig. 11. Photo vs. sketch face recognition. This figure shows the mean accuracies of 

the different methods for various reduced dimensionalities in increments of 5. 

Table 4 

Photo vs. sketch face recognition rates. Results in boldface are significantly 

better than the other methods, according to the t -test with a significance 

level at 0.05. 

Method Photo-Sketch Sketch-Photo Average 

PCA [50] 15.52 ± 1.27 16.46 ± 1.32 15.99 ± 1.09 

LDA [40] 50.10 ± 1.56 54.41 ± 1.39 52.26 ± 1.36 

SIFT [33] 23.01 ± 1.83 33.47 ± 1.05 28.24 ± 0.92 

SIFT + LDA [9] 70.09 ± 1.70 74.35 ± 1.00 72.22 ± 1.09 

HOG [31] 27.10 ± 1.34 39.39 ± 1.79 33.25 ± 1.31 

HOG + LDA [9] 55.09 ± 1.78 57.16 ± 1.42 56.12 ± 1.50 

PLS [7] 52.15 ± 1.80 59.02 ± 1.89 55.58 ± 1.72 

MCCA [16] 58.46 ± 1.66 56.18 ± 2.21 57.32 ± 1.66 

MvDA [17] 59.87 ± 1.07 61.99 ± 1.40 60.93 ± 1.04 

MvDA-VC [10] 59.09 ± 2.15 62.54 ± 1.42 60.81 ± 1.55 

CDFL [21] a 81.3 – –

LRDE [11] a 65.94 66.13 66.04 

FMDA (RAW) 61.04 ± 0.74 66.17 ± 1.04 63.60 ± 0.77 

FMDAvs (RAW) 61.21 ± 1.36 66.71 ± 1.60 63.96 ± 1.35 

FMDA (HOG) 74.83 ± 1.72 79.18 ± 1.91 77.00 ± 1.75 

FMDAvs (HOG) 79.39 ± 1.53 82.25 ± 1.58 80.82 ± 1.46 

FMDA (SIFT) 82.25 ± 1.40 83.78 ± 1.37 83.01 ± 1.13 

FMDAvs (SIFT) 82.32 ± 1.49 83.78 ± 1.39 83.05 ± 1.19 

FMDA (RAW) + LDA 64.35 ± 1.41 66.33 ± 1.02 65.34 ± 0.95 

FMDAvs (RAW) + LDA 65.65 ± 0.72 66.70 ± 1.10 66.17 ± 0.87 

FMDA (HOG) + LDA 84.18 ± 1.47 85.07 ±0.77 84.63 ±1.01 

FMDAvs (HOG) + LDA 85.27 ±1.05 86.14 ±1.34 85.71 ±1.06 

FMDA (SIFT) + LDA 85.84 ±1.08 86.82 ±1.35 86.33 ±1.02 

FMDAvs (SIFT) + LDA 85.99 ±0.90 86.83 ±1.22 86.41 ±0.89 

a The results are reported in the original papers. 

formation than do the raw data for photo vs. sketch face recog- 

nition. When LFDs are used, LDA and CDFL can achieve good per- 

formances. Moreover, even when using only the raw patch data, 

our method achieves improvements over LRDE by 0.13%, MvDA 

by 5.24% and over MCCA by 8.85% . Therefore, our method can 

extract more useful information for face recognition from either 

these LFDs or the raw data than can the other methods. 

4.7. Visual vs. near-Infrared face recognition 

The performance of FMDA for the VIS vs. NIR face recognition 

task was evaluated on the HFB database. Difference of Gaussians 

Table 5 

VIS vs. NIR face recognition rates. Results in boldface are significantly better 

than the other methods, according to the t -test with a significance level at 

0.05. 

Method NIR-VIS VIS-NIR Average 

PCA [50] 6.14 ± 1.32 8.35 ± 1.18 7.24 ± 1.06 

LDA [40] 58.19 ± 3.76 61.59 ± 4.41 59.89 ± 3.80 

SIFT [33] 79.64 ± 1.56 61.71 ± 6.42 70.67 ± 3.43 

SIFT + LDA [9] 83.49 ± 2.05 85.71 ± 1.32 84.60 ± 1.55 

HOG [31] 53.40 ± 5.85 51.13 ± 5.86 52.26 ± 4.96 

HOG + LDA [9] 85.88 ± 2.23 87.33 ± 1.94 86.60 ± 1.81 

PLS [7] 31.60 ± 2.27 34.57 ± 2.83 33.09 ± 2.39 

MCCA [16] 44.65 ± 5.00 46.70 ± 5.92 45.67 ± 5.34 

GMA [8] 41.64 ± 4.87 43.93 ± 5.75 42.78 ± 4.68 

MvDA [17] 49.92 ± 5.03 49.64 ± 6.20 49.78 ± 5.48 

MvDA-VC [10] 49.17 ± 6.89 51.32 ± 5.19 50.25 ± 5.89 

GSS-SL [28] 35.41 ± 4.16 39.46 ± 5.74 37.44 ± 4.71 

C-DFD [19] a – 92.20 –

FMDA (RAW) 87.72 ± 1.46 89.76 ± 2.40 88.74 ±1.59 

FMDAvs (RAW) 89.89 ±1.12 92.28 ±1.73 91.08 ±1.17 

FMDA (HOG) 92.24 ±2.27 93.97 ±1.35 93.11 ±1.66 

FMDAvs (HOG) 94.01 ±1.65 95.94 ±1.64 94.97 ±1.49 

FMDA (SIFT) 93.85 ±1.21 95.41 ±1.39 94.63 ±1.01 

FMDAvs (SIFT) 94.71 ±0.91 96.42 ±1.25 95.57 ±0.78 

FMDA (RAW) + LDA 76.61 ± 2.86 81.65 ± 3.98 79.13 ± 3.30 

FMDAvs (RAW) + LDA 82.81 ± 1.11 86.79 ± 3.16 84.80 ± 2.01 

FMDA (HOG) + LDA 89.64 ±2.47 92.41 ±2.43 91.03 ±2.28 

FMDAvs (HOG) + LDA 92.28 ±2.31 94.34 ±1.39 93.31 ±1.66 

FMDA (SIFT) + LDA 92.60 ±1.31 95.76 ±0.85 94.18 ±0.83 

FMDAvs (SIFT) + LDA 94.39 ±1.32 96.36 ±1.25 95.38 ±1.02 

a The results are reported in the original papers. 

(DoG)-based preprocessing [52] was applied to each face image 

to reduce the effects of illumination variations, as in [19,20] . As 

in the photo vs. sketch face recognition experiment, the VIS and 

NIR images were considered as different views for the calculation 

of the pairwise accuracies, which are presented in Table 5 . From 

the results, we can see that the proposed method achieves better 

performance than the other methods for VIS vs. NIR face recogni- 

tion. The proposed method achieves improvements over C-DFD by 

4.22%, over MvDA-VC by 45.32, over SIFT+LDA by 10.97% and over 

HOG+LDA by 8.97%, indicating that our method is a good multi- 

view learning method for VIS vs. NIR recognition. Moreover, even 

when using only the raw patch data, our method achieves im- 

provements over C-DFD by 0.08%, over MvDA-VC by 40.83%, over 

MvDA by 41.30%, over SIFT+LDA by 6.48% and over HOG+LDA by 

4.48% . Therefore, our method can extract more useful informa- 

tion for face recognition from either these LFDs or the raw data 

than can the other methods. We can see that some discrimina- 

tive information may be lost when LDA is applied following FMDA 

or FMDAvs; however, LDA can reduce the higher-dimensional re- 

sults of FMDA and FMDAvs while retaining most of the discrimina- 

tive information. In addition, the view-similarity constraint leads to 

higher VIS vs. NIR face recognition performances of FMDAvs and 

FMDAvs+LDA compared with FMDA and FMDA+LDA regardless of 

whether the raw data or the SIFT or HOG features are chosen. 

4.8. Computational cost 

In this section, we compared the computational efficiency of 

different multi-view methods on the HFB dataset. All the compu- 

tational time is calculated on a PC with 3.2 GHz i5-3470 CPU and 

12GB RAM in MATLAB. Table 6 reports the computational time cost 

of FMDAvs with SIFT, MCCA [16] , MvDA-VC [11] , C-CBFD [19] and 

C-DFD [18] . For each method, we repeat it 10 time and compute 

the average time for training and feature extraction. From the re- 

sult, we can see that FMDAvs is a more efficient than C-CBFD and 

C-DFD in terms of the training and feature extraction time. The 

reason is that our method does not need to compute so many pro- 
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Table 6 

Time cost of different multi-view methods. 

Time (s) MCCA [16] MvDA-VC [10] C-CBFD [20] C-DFD [19] FMDAvs 

training 9.82 9.97 9996.58 5304.45 346.69 

feature extraction 0.0013 0.0013 0.22 3.32 0.028 

jections and cluster centers like them, thus leading to lower time 

cost. 

5. Conclusion 

In this paper, we propose a novel multi-view analysis method. 

To achieve flexible local feature abstraction, we propose a lo- 

cal feature representation approach in which an image is repre- 

sented by the features of its patches and the representation matrix 

for the corresponding view. To find the common discriminant la- 

tent feature space, we propose a feature-based multi-view anal- 

ysis method for calculating the multi-view discriminative repre- 

sentation and feature projections in that space. To better consider 

the relationships between different views, we propose a view- 

similarity constraint that makes the multi-view projections more 

consistent with the characteristics of the relationships between the 

views. Using FMDA, high-dimensional multi-view data can be ef- 

fectively projected into a common space of lower dimensionality, 

as demonstrated by our experiments. From the experimental re- 

sults, we can see that our method exhibits superiority over other 

methods on four heterogeneous face recognition tasks. Moreover, 

recent advances in deep learning have shown that deep networks 

can typically exploit more useful information to achieve better per- 

formance [20,53–56] . In the future, we plan to investigate how our 

method might benefit from deep learning or other feature learn- 

ing methods. Moreover, we also hope to investigate our method’s 

performance in a semi-supervised scenario. 
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Appendix A 

LFDs compute interest regions as features, which have shown 

effective in various tasks including object recognition and texture 

recognition [18,34] . The popular LFDs are SIFT [30] , HOG [31] , LBP 

[32] and Gabor [29] , which are designed in terms of different as- 

sumptions. 

• Each SIFT descriptor is a 3D histogram of gradient location 

and orientation, where the location is quantized into a 4 ×4 

grid and the gradient angle is quantized into eight orientations. 

Thanks to the localization strategy, SIFT could be invariant to 

uniform scaling, orientation, illumination changes, and partially 

invariant to affine distortion. 

• HOG counts occurrences of gradient orientation in localized 

portions of an image. The major difference between HOG and 

SIFT is that the former is computed on a dense grid of uni- 

formly spaced cells and uses overlapping local contrast normal- 

ization for improved accuracy. The major advantage of HOG is 

the invariance to geometric and photometric transformations. 

• LBP describes the neighboring changes around the central 

point, which is a simple yet effective way to represent faces. 

Thanks to the binary pattern, LBP could be invariant to mono- 

tone transformation and robust to illumination changes to some 

extent. 

• Gabor wavelets incorporate specific spatial frequency, spatial 

locality, and selective orientation into the extracted features. 

In consequence, it is robust to illumination and expression 

changes [19,29] . 

To make LFDs adaptive to data distribution, some recent 

works proposed to learn LFDs in a data-driven way. For example, 

[19–21] proposed LBP-like descriptors to solve heterogeneous 

recognition problems through learning and clustering instead of 

handcrafted ways adopted by traditional LBPs. Despite the im- 

provement in performance, the major disadvantage of these meth- 

ods [19,20] is the high computational complexity since they need 

to compute multiple projections for each patch of a view, as well 

as cluster the corresponding centers. 
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