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Pneumonia Diagnosis From Chest

X-Ray Images
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Abstract—Pneumonia is one of the most common treat-
able causes of death, and early diagnosis allows for
early intervention. Automated diagnosis of pneumonia can
therefore improve outcomes. However, it is challenging to
develop high-performance deep learning models due to
the lack of well-annotated data for training. This paper
proposes a novel method, called Deep Supervised Do-
main Adaptation (DSDA), to automatically diagnose pneu-
monia from chest X-ray images. Specifically, we propose
to transfer the knowledge from a publicly available large-
scale source dataset (ChestX-ray14) to a well-annotated but
small-scale target dataset (the TTSH dataset). DSDA aligns
the distributions of the source domain and the target do-
main according to the underlying semantics of the training
samples. It includes two task-specific sub-networks for the
source domain and the target domain, respectively. These
two sub-networks share the feature extraction layers and
are trained in an end-to-end manner. Unlike most existing
domain adaptation approaches that perform the same tasks
in the source domain and the target domain, we attempt
to transfer the knowledge from a multi-label classification
task in the source domain to a binary classification task
in the target domain. To evaluate the effectiveness of our
method, we compare it with several existing peer meth-
ods. The experimental results show that our method can
achieve promising performance for automated pneumonia
diagnosis.

Index Terms—Domain adaptation, pneumonia diagnosis,
transfer learning, chest X-ray images.
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I. INTRODUCTION

PNEUMONIA is a form of an acute respiratory infection
that affects the lungs and can be caused by viruses, bacteria,

fungi, or other pathogens [1]. Recently, a novel coronavirus dis-
ease 2019 (COVID-19) caused by the Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a global
pandemic [2]. There have been more than 185 million confirmed
cases, including more than 4 million COVID-19-related deaths
globally since the outbreak has occurred [3]. Rapid diagnosis
and early treatment of pneumonia can potentially reduce the
mortality rate of COVID-19. Pneumonia is usually diagnosed
through imaging, either through chest radiography, computed
tomography (CT) or even ultrasonography (USG). Chest radio-
graphy is one of the most common and cost-effective medical
imaging examinations available [4]. Traditionally, pneumonia
is diagnosed through careful assessment and evaluation of chest
radiographs (also known as chest X-rays or CXRs) by trained
radiologists. However, it is often time-consuming, and human
radiologists occasionally fall prey to fatigue and errors in inter-
pretation. Fortunately, computer-assisted pneumonia diagnosis
methods can help make the diagnosis workflow more efficient
and accurate.

Recently, many advancements in deep learning approaches
have demonstrated the promise of deep models for a variety
of medical image analysis tasks [5]–[8]. Deep learning models
have also been developed for the analysis of CXRs. For instance,
Wang et al. released a large-scale CXRs database (ChestX-
ray14), which contained 112 120 frontal-view X-ray images
collected from 30 805 subjects and each image labelled with one
or more of 14 disease labels [9]. They adopted some widely-used
deep learning models, e.g., AlexNet [10], GoogLeNet [11] and
ResNet50 [12], to detect lung diseases. Yao et al. used LSTMs
to leverage inter-dependencies among target labels for predict-
ing 14 pathologic patterns from the ChestX-ray14 dataset and
achieved promising results without pre-training [13]. Pranav
et al. proposed a deep learning model called ChexNet [14]. It
adopts a 121-layer convolutional neural network to detect lung
diseases from raw images, and achieved a higher F1 score than
four board-certified radiologists. Based on the location-aware
Dense Networks (DNetLoc), Guendel et al. [15] proposed a
novel approach that incorporates both high-resolution image
data and spatial information for abnormality diagnosis.
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Fig. 1. Chest X-ray images from the source dataset (top row) and the target dataset (bottom row). (a) Four samples without pneumonia from the
ChestX-ray14 dataset. (b) Four positive pneumonia samples from the ChestX-ray14 dataset. (c) Four samples without pneumonia from the TTSH
dataset. (d) Four positive pneumonia samples from the TTSH dataset.

Despite their promising performance, these deep learning
methods usually require a large-scale dataset with reliable
ground-truth for training. However, large sets of well-labelled
data remain a challenge in many institutions, especially for the
purpose of medical data analysis. A common technique for
tackling this issue is pre-training the deep learning model on
a publicly available large-scale dataset, e.g., ImageNet [10],
and then fine-tuning the model on the target dataset to improve
the accuracy. For instance, Baltruschat et al. used ResNet50
as the backbone network and proved that the pre-training on
ImageNet outperforms the training from scratch. However, this
approach does not take into account the difference between
the distributions of the two domains, which may lead to the
difficulty of knowledge transfer, also known as domain-shift
problem [16]. The largest publicly available pneumonia diag-
nosis dataset, ChestX-ray14 [9], is a multi-label dataset (the
source domain). Each sample from ChestX-ray14 is labelled
with up to 14 different disease labels (i. e., Atelectasis, Car-
diomegaly, Consolidation, Edema, Effusion, Emphysema, Fi-
brosis, Hernia, Infiltration, Mass, Nodule, Pleural Thickening,
Pneumonia and Pneumothorax). In contrast, our target dataset
at hand, collected from Tan Tock Seng Hospital (TTSH), is a
binary labelled dataset, in which each image is labelled with
a single value to indicate if it is a positive or negative case of
pneumonia. Transferring knowledge from a multi-label dataset
domain to a target binary domain may result in more noise
than signal. Thus, this study aims to solve the problem of
transferring knowledge between heterogeneous tasks. Fig. 1
shows some images from the publicly available ChestX-ray14
dataset and the TTSH dataset in the first row and the second
row, respectively. From the figure, we can see that the images
from different datasets look different even though the image
labels are similar. This results in domain shift for deep learning
algorithms.

To conquer the two challenges above, we present a new
transfer learning approach called deep supervised domain adap-
tation (DSDA) to detect pneumonia from CXRs automatically.
Specifically, to address the domain-shift problem, we propose
to align distributions of the two domains progressively. To
overcome the challenge of transferring knowledge between
heterogeneous tasks, we design a new neural network that

contains two task-specific sub-networks. One of them is for
the multi-label classification in the source domain, and another
one is for the binary classification in the target domain. These
two sub-networks share the feature extraction layers and are
trained in an end-to-end manner. In this work, we conducted a
multi-label classification task instead of a binary classification
in the source domain. The reason is that the classifications of
other diseases, which share the feature extraction layers, can
help to improve the accuracy of pneumonia diagnosis (see the
experimental results in Section IV-D). Furthermore, we align
the distributions of the samples from the two datasets in the
shared space in an interactive way to progressively transfer the
knowledge from the source domain to the target domain. The tar-
get dataset contains 4185 chest X-ray images from TTSH; each
CXR was individually and manually reviewed by a radiologist
with 14 years of experience. These images are split into two
classes (i.e., pneumonia or non-pneumonia). Even if there are
other abnormalities in the CXR (e.g. mass, cardiomegaly etc.)
they will still be labelled as non-pneumonia. Furthermore, we
take the publicly available ChestX-ray14 dataset [9] as the source
domain. Pneumonia is one of the 14 lung diseases labelled in the
ChestX-ray14 dataset and can be difficult to be detected in CXR,
especially in mild infections [17]. To the best of our knowledge,
this work is the first one that adopts domain adaptation between
heterogeneous tasks for pneumonia diagnosis.

The novelty and contributions of this work are summarised
as follows:

� We propose a domain adaptation method to transfer knowl-
edge from a multi-label classification task in the source
domain to a binary classification task in the target domain.

� A novel domain alignment strategy is proposed to align
the source domain and the target domain according to the
underlying semantics of the samples progressively. It ex-
plicitly minimises the inter-class similarity and maximises
the intra-class similarity across different domains.

� A new CXR dataset (the TTSH dataset) is collected and
well-annotated to verify the effectiveness of our proposed
pneumonia diagnosis method. Extensive experiments are
conducted and show that our proposed domain alignment
and the multi-task learning strategy can improve the pneu-
monia diagnosis performance significantly.
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II. RELATED WORK

Deep learning for chest X-ray analysis: Inspired by the
recent success of deep learning algorithms in many real-world
applications, researchers in digital healthcare have made great
efforts to develop automated disease diagnosis methods using
chest X-ray images [9], [18]–[20]. For example, to help alert
clinicians and radiologists of potential abnormal findings in
the lungs and to help triage and prioritise reporting of certain
radiographs, Tang et al. employed various deep learning models
to detect the abnormal cases from CXRs [18]. They investigated
the performance of different deep convolutional neural networks
(such as AlexNet [10], VGGNet [21], ResNet [12], Inception-
v3 [22], and DenseNet [23]) on the ChestX-ray14 dataset [9].
To evaluate the generalisation ability of deep learning models
on data from different sources, Pan et al. used DenseNet and
MobileNetV2 [24] to classify CXRs into normal or abnormal
categories on the ChestX-ray14 dataset and the Rhode Island
Hospital chest radiograph dataset. To overcome the problem
of difficulty in learning from a small-scale dataset, Stephen
et al. proposed a convolutional neural network model trained
from scratch to classify and detect the presence of pneumo-
nia [25]. They adopted several data augmentation algorithms to
improve the performance of the deep learning model. Liang et al.
proposed a transfer learning framework that combines residual
structure and dilated convolution to detect childhood pneumo-
nia [26]. A large-scale dataset is exploited for improving per-
formance. In recent years, several studies [27]–[29] have been
conducted to investigate the modality-specific transfer learning
for CXRs, which consider exploiting the source dataset that
shares the same modality with the target dataset. For instance,
Rajaraman et al. proposed to construct ensembles based on the
modality-specific knowledge transfer to perform the detection
of COVID-19, which has achieved promising results. However,
these methods do not sufficiently bridge the domain gap between
the target dataset and the source dataset in an iterative manner.

Domain adaptation: Deep learning methods usually require
massive amounts of labelled data for training to achieve a high
prediction accuracy [30]. While structured and well-annotated
data are difficult to collect in many real-world applications,
transferring the learnt knowledge from a label-rich source do-
main to a label-poor or an unlabelled target domain can address
the lack of well-annotated data [31]–[33]. However, the source
domain and the target domain are often drawn from different
distributions, which may result in a domain-shift problem [16],
[34], [35]. In such a challenging case, many domain adaptation
approaches have been developed to address this issue by aligning
the two domains [36]–[41] in the feature space. For example,
Kang et al. proposed a contrastive adaptation network (CAN),
which models the intra-class and inter-class domain discrep-
ancy explicitly [42]. You et al. proposed a universal adaptation
network (UAN) to quantify sample-level transferability and
discover the common label set for learning, thus encouraging the
adaptation automatically [43]. Long et al. proposed a framework
named conditional domain adversarial networks [39]. The model
contains two novel conditioning strategies: multi-linear con-
ditioning and entropy conditioning. Multi-linear conditioning

helps capture the cross-covariance between feature representa-
tions and classifier predictions, and entropy conditioning helps
control the uncertainty of classifier predictions. Zhang et al.
proposed a novel measurement, margin disparity discrepancy
(MDD), to measure the distribution difference and achieve the
domain adaptation in an adversarial learning manner [44].

Note that these approaches all consider the scenarios where
the two domains have homogeneous tasks. In this work, we
consider the case where the source dataset has been labelled for
multi-label classification while the target dataset is labelled for
binary classification. The domain adaptation methods mentioned
above cannot be applied to solve this task directly. Unlike these
existing domain adaptation approaches, ours considers hetero-
geneous tasks, and we align the distributions of the two domains
according to the underlying semantics of the training samples
progressively.

III. OUR PROPOSED METHOD

A. Problem Formulation

In this work, we aim to improve the performance of a model
on the target domain by transferring knowledge from a source
domain [45]. Assuming that we have a source data matrix
of ns samples Xs = [xs

1,x
s
2, . . . ,x

s
ns
]. Each data sample xs

i

has a semantic label vector ys
i = [ys1i, y

s
2i, . . . , y

s
ci]

t ∈ {0, 1}cs ,
where cs is the number of categories. If xs

i belongs to the jth
category, then ysji = 1, otherwise ysji = 0. Note that ys

i may
contain several non-zero elements as it can belong to multiple
categories. We denote the data labels of the source domain in a
matrix form as Ys = [ys

1,y
s
2, . . . ,y

s
ns
].

In the target domain, we have the data matrix of nt samples
Xt = [xt

1,x
t
2, . . . ,x

t
nt
]. Its associated label matrix is Yt =

[yt
1,y

t
2, . . . ,y

t
nt
], where yt

i ∈ {0, 1}ct and ct is the number
of categories of the target dataset. In this work, we consider
the binary classification in the target domain, i.e., each sample
xt
i is annotated into a pneumonia or non-pneumonia category

as yt
i = [0, 1]T or yt

i = [1, 0]T . Let us denote the probability
distributions of the source and target domains as Ds(xs,ys)
and Dt(xt,yt), respectively, and Ds �= Dt. We trained a deep
neural network on the union set of the source dataset and target
dataset and attempted to align these two distributions (i.e., Ds

and Dt) in an interactive way. This work considers the scenario
where the samples from the source dataset and the target dataset
are all CXRs, i.e., the two domains have the same modality but
with different distributions as they cover different populations.

B. Framework of DSDA

Our method aims to accurately diagnose pneumonia in the
target dataset by leveraging the knowledge from a publicly
available multi-label dataset as the source domain. The task for
the source dataset is a multi-label classification task, while the
task for the target dataset is a binary classification task, i.e., these
two tasks are heterogeneous. For such a case, we design two
sub-networks for the multi-label classification and the binary
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Fig. 2. The architecture of the proposed method. DSDA takes samples from both the source domain and the target domain as inputs at the same
time. It contains two task-specific sub-networks: 1) a multi-label classifier with a linear activation function for the source domain and 2) a binary
classifier with a softmax activation function for the target domain. The proposed architecture shares the convolutional feature extraction layers.
Furthermore, we explicitly impose a new distribution alignment constraint on the samples from the source domain and the target domain in the
shared space.

classification, respectively. They share the feature extraction lay-
ers, which can be from off the shelf existing convolutional neural
networks (CNNs), such as ResNets [12] and DenseNets [23].

The architecture of the proposed domain adaptation model is
shown in Fig. 2, from which we can see that our DSDA has two
task-specific sub-networks. One is to discriminate 14 diseases
(including pneumonia) for the source domain, and another one
is to distinguish pneumonia and non-pneumonia images for
the target domain. The shared feature extraction layers enforce
DSDA to map the input samples into a shared common space
and learn the shared features for the source domain and the target
domain. More importantly, we explicitly align the distributions
of the feature vectors of the source domain and that of the target
domain according to their underlying semantics. Specifically,
we enforce the intra-class samples to be close, while the inter-
class samples to be far away, no matter which domain they are
come from. Thus, unlike the pre-training strategy, the proposed
model can leverage the knowledge from both the source domain
and the target domain to improve the model’s performance by
interactively learning discriminative features. Thus, it leads to
better performance than the widely-used pre-training strategy.

C. Objective Function

To achieve accurate pneumonia diagnosis, our method pro-
poses to minimise the following objective function:

L(Θ|Xs,Xt,Ys,Yt) = Lt + λ1Ls + λ2LD, (1)

whereΘ denotes the parameters of our model, that is, the weights
and biases, Ls and Lt are the classification losses of the source
domain and the target domain, respectively. LD is the domain
adaptation loss, and λ1 and λ2 denote the hyper-parameters
that trade-off the contributions of the three different terms. The
details of Ls, Lt and LD will be illustrated in the following.

1) Classification Loss for the Target Domain: Since the
dataset of the target domain is class-imbalanced, we optimise

the weighted cross entropy loss (WCEL) for the classifier. For a
single sample in the training dataset, WCEL can be calculated
as:

Lt(x
t
i, y

t
i) = − (

yt1i log(ŷ
t
1i) + uyt2i log(ŷ

t
2i)

)
, (2)

where u is a manual rescaling weight given to the positive class,
and we set u as the ratio of the number of negative training
samples to the number of positive training samples in this work.
ŷt
i denotes the network output for the ith input image xt

i from
the target domain.

2) Classification Loss for the Source Domain: For the multi-
label classifier of source domain, we optimise the BCEWith-
LogitsLoss, which combines a sigmoid layer and the BCELoss
in each class. For a single sample in the training dataset, the
BCEWithLogitsLoss can be described as:

Ls(x
s
i , y

s
i ) =

1

ct

ct∑

j=1

−wj(y
s
ji log(σ(ŷ

s
ji))

− (1− ysji) log(1− σ(ŷsji))), (3)

where wj is the weight for the jth class, and we set it as the ratio
of the number of negative samples to the number of positive
samples for the jth class, σ(·) is the sigmoid function and ŷsi
denotes the network output for the input image xs

i from the
source domain.

3) Domain Adaptation Loss: For the given source data ma-
trix Xs and the target data matrix Xt, we use the shared fea-
ture extractor to obtain their high-level representations in the
shared common space, denoted as Zs = [zs1, z

s
2, . . . , z

s
ns
] and

Zt = [zt1, z
t
2, . . . , z

t
nt
]. The proposed method attempts to align

the distributions of Zs and Zt by minimising the inter-class
similarity and maximising the intra-class similarity across the
two domains.

The main idea of the proposed domain adaptation strategy
is shown in Fig. 2. In the training process, we computed the
similarity between the samples across domains. If the samples
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belong to the same class, we maximise their similarity, and if
they are in different classes, we minimise their similarity. In
this manner, we can align the distributions of different domains,
resulting in different classes being far away. Specifically, to
measure the similarity of the input images xs

i and xt
j , we firstly

compute their high-level representations zsi and ztj in the shared
space. Then we use the Gaussian kernel metrics to calculate the
similarity:

k(zsi , z
t
j) = e−

‖zs
i
−zt

j
‖2
2

b and b =
1

nsnt

ns∑

i

nt∑

j

‖zsi − ztj‖22.

Next, we perform distribution alignment by minimising the
mean inter-class similarity and maximising the mean intra-class
similarity across two domains using the following loss function:

LD =
1

nsnt

ns∑

i

nt∑

j

δ(xs
i , x

t
j)k(z

s
i , z

t
j), (4)

where δ(xs
i , x

t
j) is an indicator function to show whether xs

i

and xt
j belong to the same class. If xs

i and xt
j belong to the

same class (i.e., both have pneumonia or non-pneumonia), then
δ(xs

i , x
t
j) = −1, otherwise δ(xs

i , x
t
j) = 1.

The advantage of our method is that our method can transfer
knowledge during the interactions between the source and target
domains progressively. Moreover, our proposed model can be
optimised in an end-to-end manner via the commonly used back-
propagation algorithms, such as the stochastic gradient descent
method.

D. Implementation Details

In this work, we employ the convolutional layers of the
ResNets [12] or DenseNets [23] as the backbone of our model.
On the top of the CNN backbone, we add a fully connected
layer of 14 neurons with the linear activation function for the
source domain sub-network and add a fully connected layer of
2 neurons with the Softmax activation function for the target
domain sub-network. The weights of the feature extractor in our
model are initialised with the weights from a model pre-trained
on ImageNet [46]. The network is trained end-to-end using
Adam [47] with default parameters (beta1=0.9, beta2=0.999).
The batch size of our model is 32. We use a learning rate of
0.0001, λ1 = 0.5 and λ2 = 0.5. In addition, we trained our
model for 20 epochs and selected the model with the highest
AUC score on the validation set for testing. Our model is trained
on two NVIDIA Titan XP GPUs in PyTorch.

IV. EXPERIMENTAL STUDY

We conducted the experiments using the ChestX-ray14
dataset (as the source dataset) [9] and our own TTSH dataset
(as the target dataset). We first compare the DSDA method with
state-of-the-art methods, including traditional machine learn-
ing methods, the deep learning methods for CXRs, and some
domain adaptation methods, to evaluate its performance. We
then evaluate the importance of learning from the multi-labelled
source domain, the influence of different transfer strategies, and

TABLE I
CHARACTERISTICS OF THE TTSH DATASET, WHERE ntrain, nvalidation

AND ntest ARE THE NUMBERS OF IMAGES IN THE TRAINING,
VALIDATION, AND TEST SETS, RESPECTIVELY

TABLE II
CHARACTERISTICS OF THE CHESTX-RAY14 DATASET

the impact of three different terms of our objective function in
Equation (1).

A. Datasets

1) The TTSH dataset: we collected this dataset from Tan
Tock Seng Hospital (TTSH) in Singapore, which contains 4185
CXRs. Each CXR was individually and manually reviewed by a
radiologist with 14 years of experience. The images in the TTSH
dataset are split into two classes (pneumonia or non-pneumonia).
The dataset comprises 3021 non-pneumonia and 1164 pneumo-
nia cases. We divided the dataset into three subsets: training set,
validation set and test set. The characteristics of the target dataset
are summarised in Table I.

2) ChestX-ray14 [9]: ChestX-ray14 is compiled by the Na-
tional Institutes of Health (NIH) and is currently one of the
largest public repository of CXRs. It includes 112 120 front-view
X-ray images of 30 805 patients. Each image in the ChestX-
ray14 dataset is labelled with up to 14 different labels that are
chosen based on the frequency of observation and diagnosis
in clinical practice [9]. The labels for each CXR are obtained
by an automatic extraction method on radiology reports with an
estimated accuracy of 90%; multiple diseases can be presented in
one image. The nature of the ChestX-ray14 dataset is oriented to
the formulation of a multi-label classification problem. ChestX-
ray14 is also divided into three subsets, and its characteristics
are summarised in Table II.

3) The RSNA dataset: The Radiological Society of North
America (RSNA) Pneumonia Detection Challenge1 dataset
(Stage I) is a collection of 26 684 samples taken from ChestX-
ray14 dataset. It contains 20 672 non-pneumonia and 6012

1[Online]. Available: https://www.kaggle.com/c/ rsna-pneumonia-detection-
challenge
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pneumonia2. The nature of the ChestX-ray14 dataset is ori-
ented to the formulation of a multi-label classification problem,
whereas the RSNA dataset formulates a multi-class classifica-
tion problem. Although the RSNA dataset is a subset of the
ChestX-ray14 dataset, each sample in the RSNA dataset will
be categorised with only one class. Therefore, it is an improved
dataset focused on pneumonia cases, providing accurate and use-
ful information to be used in classification and detection tasks.

B. Comparison With Other Methods

We verify the effectiveness of DSDA by comparing it with
three different types of methods, including six traditional meth-
ods, namely support-vector machine (SVM) [50]), linear dis-
criminant analysis (LDA) [51], adaBoost classifier [52], de-
cision tree (DT) [53], random forest (RF) [54], and logistic
regression (LR) [55], and five deep learning methods for CXRs,
ChexNet [14] and the methods proposed by Baltruschat et
al. [56], Tang et al. [18], Varma et al. [19], and Pan et al. [20]. We
also compare our method with four different domain adaptation
methods, namely deep adaptation neural network (DANN) [35],
beyond sharing weights (BSW) [57], margin disparity discrep-
ancy (MDD) [44], and conditional domain adversarial network
(CDAN) [39]. We implement each compared domain adaption
method in both supervised (S) and unsupervised (U) learning
settings. In addition, for all the traditional methods, we extract
two different types of features, respectively. The first type is
the local descriptors over the oriented fast and rotated brief
(ORB) [58] feature using the bag-of-words (BoW) method [59].
It has been proven to be well-adapted to recognition and match-
ing tasks, as they are robust to partial visibility. The second type
is the CNN-based feature, and we used the feature extractor of
DenseNet121 [23], which was pre-trained on the ChestX-ray14
dataset and fine-tuned on the TTSH dataset to extract the feature
representations of the TTSH dataset. Lastly, ChexNet is pre-
trained on ImageNet as in the original paper; and the method
in [56] is pre-trained on the ChestX-ray14 dataset. Original
MDD, CDAN, and DAN are unsupervised domain adaptation
methods, and we implemented a variant of these methods to
exploit the label information on the target dataset by adding a
target domain classifier that minimises Equation (2). All the
compared domain adaptation methods require the classifiers
for the source dataset and the target dataset to have the same
architecture; we constructed a binary (pneumonia cases and
non-pneumonia) classification dataset based on the labels and
the data from ChestX-ray14 for them in our experiments.

Table III reports the Precision, F1, AUC, Sensitivity
and Specificity scores of the proposed method and other peer
methods, from which we have the following observations:

� All the traditional methods that used the CNN-based fea-
tures (DN) outperform its corresponding method with the
ORB features (ORB) in terms of AUC score. It indicates
that the CNN-based feature is more suitable for our task.

2RSNA unifies the categories of pneumonia and diseases with similar patholo-
gies such as consolidation and infiltration [48], [49]. It contains three classes:
normal, lung opacity and not-normal. We treated the Lung opacity class as
pneumonia, Normal and Not-Normal as non-Pneumonia.

TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH THE PEER
METHODS IN TERMS OF Precision (PRC) SCORES, F1 SCORES, AUC
SCORES, Sensitivity (SEN) AND Specificity (SPE). (ORB) DENOTES

THE ORB FEATURE AND (DN) DENOTES THE DENSENET FEATURE

� Deep learning methods (deep X-ray methods and deep
domain adaptation methods) outperform the traditional
methods significantly. Also, the deep learning methods
obtain higher scores than the traditional ones in terms of
Sensitivity and Specificity. It indicates that the X-ray
images may need deep neural networks to extract the
complex nonlinear structure of the dataset for pneumonia
diagnosis.

� Deep X-ray methods are specifically designed to handle
X-ray images and work well for the Pneumonia classi-
fication from CXRs. They can achieve comparable AUC
scores with the domain adaptation methods, especially the
method proposed by Pan et al. obtains the second-highest
AUC score.

� Domain adaptation methods perform well, especially the
supervised variants. Even without the label information
on the target dataset, the domain adaptation methods of
DANN (U), MDD (U), and CDAN (U) can achieve more
than 83.3% in terms of the AUC score, and MDD (U)
obtains 90.96%. These results show the importance of
domain adaptation. When using the label information on
the target dataset, the domain adaptation methods achieve
an improvement of 12.04% for DANN, 20.63% for BSW,
3.89% for MDD, and 8.18% for CDAN. Note that there
are some noisy labels for the ChestX-ray14 dataset (source
domain), which has a negative impact for the performance
of the domain adaptation methods.

� Our method outperformed all other methods by a
large margin. There are two potential reasons why the
proposed method outperformed the adversarial-based
method. Firstly, although adversarial-based methods have
achieved state-of-the-art performance on several natural
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TABLE IV
COMPARISON OF THE PROPOSED METHOD UNDER SEVEN DIFFERENT BACKBONES WITH FOUR DIFFERENT PRE-TRAINING STRATEGIES

IN TERMS OF THE AUC SCORE

Fig. 3. The ROC curves of our DSDA method and the peer methods.

image classification tasks, they are hard to train, espe-
cially on the small-scale medical image dataset. Secondly,
our method transfers knowledge between heterogeneous
tasks. It conducts a multi-label classification task instead
of only considering the pneumonia binary classification in
the source domain, which boosts the performance on the
binary classification of the target domain significantly.

Fig. 3 shows the ROC curves of our DSDA method, deep
X-ray methods and the other domain adaptation methods. From
the results, we can find that our DSDA method outperforms
other methods. Besides, the examined deep models (deep X-ray
methods and deep domain adaptation methods) obtain much
better performance than all the examined traditional machine
learning methods. These observations are consistent with the
findings in Table III.

C. Evaluation of Different Backbones and Training
Strategies

To investigate the effectiveness of different backbones to
the proposed method, we compare the proposed method under
seven different backbones with different pre-training strate-
gies. The backbones used in the experiments are Densenet121,
Densenet201 [23], ResNet18, ResNet34, ResNet50, ResNet101
and ResNet152 [12]. We also evaluated four different pre-
training strategies: pre-training on the ChestX-ray14 dataset
without fine-tuning (P-C); pre-training on ImageNet with fine-
tuning all layer (P-I-FA); pre-training on the ImageNet with
fine-tuning the fully connected layers and fixed convolution
layers (P-I-FC); pre-training on ChestX-ray14 and fine-tuning
the fully-connected layers with fixed convolutional layers (P-
C-FC); and pre-training on ChestX-ray14 and fine-tuning all
layers without freezing any layers (P-C-FA). For pre-training,

we adopted Ls in Equation (3) as the objective function; for
fine-tuning, we used Lt in Equation (2) as the objective function
by following our method.

Table IV reports the AUC score of the proposed method with
different backbones and training strategies, from which we can
see that:

� The models with fine-tuning (P-I-FA, P-C-FC and P-C-
FA) significantly outperformed the models without fine-
tuning for all the different backbones, which shows the
importance of the classification loss in the label space of
the target domain.

� The models pre-trained on ChestX-ray14 (P-C-FA) out-
performed the models pre-trained on ImageNet (P-I-FA).
It demonstrates the importance of the source dataset.

� Our method outperformed the others under different back-
bones, which indicates that our domain adaption method
can better utilize knowledge from the source domain to
the target domain and improve the performance on the
pneumonia diagnosis.

D. Impact of Different Classification Strategies in the
Source Domain

To investigate the impact of different classification strate-
gies in the source domain, we compared our DSDA model
under seven different backbones with other two different source
datasets. The first one is the RSNA dataset, which is well-
annotated for the pneumonia detection task. The second one
treats the images in the ChestX-ray14 dataset as a binary labelled
dataset (pneumonia and non-pneumonia) (BCX14). The source
domain objective function (Ls) for this experiment was just set
as WCEL.

Table V reports the AUC scores of the proposed method with
different backbones and two other source datasets of 5-fold
cross-validation, from which we can see that:

� Our proposed heterogeneous tasks domain adaptation
strategy, i.e., conducting multi-label classification in the
source domain, significantly outperformed the strategy of
adopting binary classification in the source domain. It
denotes that the classifications of the other diseases can
help to improve the accuracy of pneumonia diagnosis, as
we hypothesized previously. This may be because multi-
label learning task may enforce the model to obtain more
information from shared features;

� Our method (trained on the RSNA dataset as the source
domain) outperformed the method trained on the BCX14
dataset as the source dataset. This may be because the
annotations of the samples are more accurate and more
positive pneumonia cases are contained in the RSNA
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TABLE V
COMPARISON OF THE PROPOSED METHOD UNDER SEVEN DIFFERENT BACKBONES WITH OTHER TWO DIFFERENT SOURCE DATASETS IN TERMS OF THE

AVERAGE AUC SCORE AND STANDARD DEVIATION. THE SYMBOL OF “†” INDICATES THAT THE VALUE OF THE PROPOSED METHOD IS SIGNIFICANTLY
DIFFERENT FROM ALL OTHER METHODS AT A 0.05 LEVEL BY THE T-TEST

TABLE VI
PERFORMANCE COMPARISON OF OUR DSDA METHOD WITH ITS THREE VARIANTS UNDER DIFFERENT BACKBONES IN TERMS OF AUC SCORE

Fig. 4. Performance (20 epoch) of the proposed method with the DenseNet121 backbone. (a) The AUC score of DSDA versus different value
of λ1 and λ2. (b) The AUC score of DSDA versus different values of λ1 under λ2 = 0.5. (c) The AUC score of DSDA versus different values of λ2
under λ1 = 0.5.

dataset than in the BCX14 dataset. Moreover, the perfor-
mance of our model can further improve if some of the
wrong annotations are corrected or more positive cases
are added to the BCX14 dataset.

E. Ablation Study

The objective function of DSDA consists of three terms,
including the domain adaptation loss of the feature space, and
the classification losses in the label space of the source domain
and the target domain, respectively. To investigate the impact
of the three different terms, we evaluate three variations of
the objective function L: the objective function without Lt

(w/o Lt), the objective function without LD (w/o LD) and
the objective function without Ls (w/o Ls). In addition, with-
out LD (w/o LD), the model is a simple multi-task learning
model.

Table VI reports the AUC scores of the proposed method with
its three variants, from which we find that:

� The full objective function (DSDA) performed the best
on the TTSH dataset. It indicates that all of the three
different terms (Ls, Lt, and LD) in the objective function
(L) contribute to the final AUC score.

� The full objective function (DSDA) outperforms the model
w/oLt with a large margin. It demonstrates the importance
of the Lt term (the classification loss in the label space of
the target domain).

� The full objective function (DSDA) is superior to the
model w/o Ls and the model w/o LD. It demonstrates the

significance of theLs term and theLD term of our DSDA.
This illustrates that formulating both the classification loss
of the source domain and the domain adaptation loss in
the objective function is a meaningful strategy for transfer
learning.

F. Parameter Analysis

DSDA has two hyper-parameters, λ1 and λ2. To investigate
the sensitivity of λ1 and λ2, we conducted the experiment with
the DenseNet121 backbone. We set λ1 and λ2 both from 0.01 to
100, the results are shown in Fig. 4, from which we have that: 1)
DSDAs with the backbone of DenseNet121 obtained the highest
AUC score with λ1 = 0.5 and λ2 = 0.5; and 2) DSDAs with the
backbone of DenseNet121 can achieve higher than the AUC
score of 95% with λ1 and λ1 both from 0.01 to 1.

G. Visualisation of Heatmaps

To visually investigate the effectiveness of our DSDA model,
we adopted the Gradient-weighted Class Activation Mapping
(Grad-CAM) approach [60] to visualise the regions of input that
are “important” for predictions from our model in the X-ray
images. The Grad-CAM can produce a coarse localisation map
highlighting the critical areas of the image for predicting the
concept.

Fig. 5 and Fig. 6 show several examples of Grad-CAM
visualisation of pneumonia and non-pneumonia X-ray images,
respectively. There are two images in each sub-figure of Fig. 5
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Fig. 5. Four examples of Grad-CAM visualisation of pneumonia x-ray images. (a), (b) and (c) show three positive cases and are predicted as
pneumonia. (d) is a positive case but is predicted as non-pneumonia. The areas in the X-ray that are most important for making the predictions are
highlighted.

Fig. 6. Four examples of Grad-CAM visualisation of non-pneumonia X-ray images. (a), (b) and (c) show three negative cases that are predicted
as non-pneumonia. (d) shows a negative case that is predicted as pneumonia.

Fig. 7. Visualisation of representations using the t-SNE method. In all the sub-figures, (Orange star: pneumonia cases in the target domain. Blue
circle: non-pneumonia cases in the target domain. Green square: pneumonia cases in the source domain. Pink triangle: non-pneumonia cases in
the source domain.) (a) The feature representations obtained by ResNet152. (b) The feature representations obtained by DenseNet121. (c) The
feature representations obtained by training our method with the ResNet152 backbone. (d) The feature representations obtained by our method
with the DenseNet121 backbone.

and Fig. 6, the left one is the original X-ray image, and the right
one is the heatmap generated by Grad-CAM. From Fig. 5 and
Fig. 6, we have that:

� In most cases, the proposed model correctly identifies
manifestations of pneumonia in X-ray images as seen
in (a), (b) and (c) from Fig. 5. In Fig. 5(a), the model
highlights the pneumonia which presents radiopaque re-
gion in the right lung area; in Fig. 5(b) the model highlights
the pneumonia region in the left lung; in Fig. 5(c) the
model highlights pneumonia in the both sides. It indicates
that our model can predict pneumonia by focusing on the
lesion region presented in the lung area. On the contrary,
Fig. 5(d) is a pneumonia case but is misclassified as
a non-pneumonia case since the model focuses on the
incorrect region;

� Almost all of the true negative samples are highlighted in
the similar regions of the input images as shown in (a), (b)
and (c) from Fig. 6. Fig. 6(d) is a non-pneumonia case but
is misclassified as a pneumonia case as the model cannot
focus on the lung area. They demonstrate that our DSDA
method has a reasonable interpretation.

H. Visualisation of Representations From Different
Domains

We embed the representations of the samples which come
from different classes and different domains (in the shared
representation space) into a two-dimensional visualisation plane
by using the t-SNE method [61]. To visually investigate the
effectiveness of DSDA, we randomly chose 100 samples in each
class of target domain (in the test set) and randomly selected 100
positive pneumonia samples and 100 samples without pneumo-
nia from the source domain (in the test set).

The representations of the selected cases from different
classes of the source domain and the target domain are displayed
in Fig. 7. From Fig. 7, we can see that applying our DSDA
method makes the target samples more discriminative and the
target samples are aligned with each class of source samples.
Although the target samples are not separated well in the non-
adapted situation (Fig. 7(a) and (b)), they are separated as that
of the source samples in the adapted situation (Fig. 7(c) and
(d)). Fig. 7(c) and (d) show that our DSDA method effectively
separates the samples into two discriminative clusters. It denotes
that our formulation of the domain adaptation loss can model the
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discrimination between the samples from different classes and
different domains.

V. DISCUSSION AND CONCLUSION

Deep learning models can learn features that are generically
useful across a variety of tasks in various domains [62]. However,
due to the domain shift problem [16], deep learning models
trained on the source dataset do not perform well on the target
dataset [63]. To overcome such a challenge, domain adaptation
methods, which minimise the discrepancy between the source
domain and the target domain in the feature space, are developed.

This study investigated transferring knowledge from a pub-
licly available dataset as the source domain to improve models’
performance on the small-scale or medium-size target dataset.
A new framework is designed to transfer knowledge from the
source dataset to the target dataset by aligning the samples from
domains according to their underlying semantics. Different from
the widely-used pre-training strategies, our approach exploits
the samples both from the source domain and target domain to
transfer the knowledge in an iterative way. Extensive experi-
mental results on the X-ray dataset (our TTSH dataset) and the
comprehensive analysis have demonstrated the effectiveness of
our DSDA method.

There have been several attempts to diagnose Coronavirus
Disease 2019 (COVID-19) using data from CT scans [64].
They have been quoted to be helpful for the early detection
of COVID-19. However, chest radiography is performed in
significantly larger numbers in clinical practice, especially in
resource-constrained health systems where CT is not easily
available. Furthermore, several consensus statements by in-
ternational workgroups have raised concern for the untested
specificity of CT for diagnosis where the pre-test probability
of COVID-19 infection, and chest radiography is preferred to
minimise the risk of nosocomial transmission [65]–[68]. In a
recent report, the severity of CXR findings correlates well with
clinical severity and could predict severe pneumonia [69]. Thus,
deep learning models that aid in automated CXR detection of
COVID-19 pneumonia will be valuable for clinical practice.
Our proposed approach is very effective to rapid diagnosis
pneumonia, and we plan to further develop model that is able to
differentiate between COVID-19 pneumonia and non-COVID-
19 pneumonia.

In this work, we proposed DSDA to diagnose pneumonia
from CXRs. Although it has achieved a promising performance,
it does not consider the issue of imbalanced data. In practice,
the medical datasets are usually imbalanced, especially for rare
diseases. We plan to investigate combinations of domain adap-
tion with imbalanced learning to handle more changing tasks in
automated disease diagnoses in our further work.
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