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a b s t r a c t 

Visualising a solution set is of high importance in many-objective optimisation. It can help 

algorithm designers understand the performance of search algorithms and decision makers 

select their preferred solution(s). In this paper, an objective reduction-based visualisation 

method (ORV) is proposed to view many-objective solution sets. ORV attempts to map a 

solution set from a high-dimensional objective space into a low-dimensional space while 

preserving the distribution and the Pareto dominance relation between solutions in the 

set. Specifically, ORV sequentially decomposes objective vectors which can be linearly rep- 

resented by their positively correlated objective vectors until the expected number of pre- 

served objective vectors is reached. ORV formulates the objective reduction as a solvable 

convex problem. Extensive experiments on both synthetic and real-world problems have 

verified the effectiveness of the proposed method. 

© 2019 Published by Elsevier Inc. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Many-objective optimisation problems (MaOPs) which involve more than three (conflicting) objectives to be optimised

exist in many industrial and engineering applications [20] . Over the last decade, many-objective optimisation has attracted

increasing interest in the evolutionary computation community [16,20] . One inherent challenge in many-objective optimi-

sation is that we cannot directly view solutions in such a four- or higher-dimensional objective space [28] . This brings

difficulties for algorithm design, performance assessment, decision making, etc [21,41] . 

In many-objective optimisation, the goal of visualising solutions is to enable researchers and practitioners to understand

the given problem (e.g., the shape of its Pareto front) and the characteristics of the solutions (e.g., their Pareto dominance

relation) [28] . In other words, a good visualisation can reveal the underlying structure of the problem, helps researchers and

practitioners make a proper decision and illustrates the relation between solutions and also between objectives. 

There are many multi-dimensional data visualisation methods, some of which have been applied to show many-objective

solution sets, such as parallel coordinates [15] , radar chart [18,36] , and heatmaps [29] . These methods directly plot the

objective values of the solutions in a two-dimensional plane without any sophisticated transformations and can be easily
∗ Corresponding author at: CERCIA, School of Computer Science, University of Birmingham, B15 2TT Birmingham, UK. 
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extended to cases with higher dimensionality and to more solutions. However, in order to represent the conflicts between

objectives, they require the objectives of interest to be positioned adjacent to each other. Also, the contour information of a

given approximate Pareto-front is unavailable. 

In recent years, dimension reduction-based visualisation techniques, which transform the input vectors into a lower-

dimensional space, have attracted much interest from the evolutionary computation community. These techniques can help

data analysts obtain new observations and insights through viewing the mapped data in the reduced space. To preserve

the distribution of solutions, many dimension reduction methods have been applied, such as principal component analysis

(PCA) [17] , Sammon mapping [30] , and neuroscale [26] . They do not care much about preserving the dominance relation

between solutions and the conflicts between the objectives. 

There exist several dimension reduction-based visualisation methods that consider the dominance relation between so-

lutions. For instance, Köppen and Yoshida [19] used two different strategies to map the dominated and non-dominated

solutions, respectively. He and Yen [13] proposed to map high-dimensional solutions into a 2D polar coordinate plot so that

a large number of solutions can be viewed in a plane and the dominance relation between them can be approximately per-

severed. Tušar and Filipi ̌c [38] used the prosection approach to visualise four-dimensional solution sets, and it can preserve

the dominance relation between solutions despite working only for problems with four objectives. 

Two desirable properties in the many-objective solution set visualisation are preserving (1) the distribution of solutions

and (2) the dominance relation between solutions. The distribution of solutions can be implied by the diversity and density

of solutions and the contour information about the Pareto front. The dominance relation between solutions is a fundamental

criterion of convergence, and considering it can help algorithm designer and decision maker select the optimal solutions. 

In this paper, we propose an objective reduction-based visualisation method (ORV) for showing many-objective solution

set. In ORV, we sequentially decompose objective vectors which can be linearly represented by their positively correlated

objective vectors until the expected number of preserved objective vectors is reached. The main contributions and novelty

of this work include the following: 

• An objective reduction-based method is proposed for viewing many-objective solution sets. The method is able to pre-

serve the distribution of solutions and the dominance relation between solutions as far as possible. 

• The strategy of sequentially decomposing objective vectors makes the whole objective reduction process visible, which

helps researchers and participators understand the conflicts between objectives through viewing the objective vector

decomposition in each iteration. 

• It formulates the underlying objective vector representation as a convex optimisation problem, which can be solved

efficiently. This formulation makes ORV capable of handling large-scale many-objective solution set. 

• Using ORV, algorithm designers can observe the evolutionary behaviour of their algorithms; decision makers can read

the distribution of solutions, which help them in both quality evaluation and preference articulation processes. 

The rest of this paper is organised as follows. Section 2 reviews the terminology and related work. Section 3 is devoted

to the description of the new objective reduction method for displaying many-objective solution sets. Section 4 provides

experimental results to illustrate the effectiveness of the proposed method. Finally, Section 5 concludes the paper. 

2. Related work 

Without loss of generality, a multi-objective optimisation problem (MOP) can be formulated as a minimisation problem

and defined as follows: 

min F (x ) = ( f 1 (x ) , f 2 (x ) , . . . , f M 

(x )) T 

s.t. x ∈ �, (1)

where � ⊆ R 

n is the decision space, x = (x 1 , x 2 , . . . , x n ) 
T is a candidate solution, and F : � → R 

M consists of M (conflict-

ing) objective functions. The multi-objective optimisation problem with more than three conflicting objectives, i.e., M > 3, is

referred to as a many-objective optimisation problem (MaOP). 

Let a and b be two feasible solutions for the above MOP, a is better than b if the following conditions hold: 

∀ i f i (a ) ≤ f i (b ) and ∃ j f j (a ) < f j (b ) , (2)

where i, j ∈ { 1 , 2 , . . . , M} . We can also say that a dominates b , and denote it as a ≺ b . A solution that is not dominated by

any other solutions is Pareto optimal. The set of Pareto optimal solutions in the decision space is denoted as the Pareto set,

and the corresponding outcome in this objective space is denoted as the Pareto front. 

During the optimisation process or after obtaining the solution set, one of the important issues for algorithm designers

and decision makers is the visualisation of the solutions in the objective space. In the following, we review several popular

methods for visualisation of many-objective solution sets, which can be generally divided into directly plotted methods and

dimension reduction-based methods. 
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2.1. Directly plotted visualisation methods 

This class of methods show the original objective values of solutions without any sophisticated mapping and can be

easily scaled to more objectives. The scatter plot matrix, parallel coordinate plot, radar chart, and heatmaps belong to this

class. In the following, we will introduce them in detail. 

2.1.1. Scatter plot matrix 

Scatter plot matrix [37] considers two of objectives at one time, then draws solutions in the selected objective space.

If this is done for all the combinations of M objectives, we will have 
(

M 

2 

)
subplots, which can be ordered as a scatter plot

matrix. However, the number of subplots will increase dramatically as more objectives are involved in the optimisation

problem, which makes it difficult to view solutions of a problem with more than five objectives. 

2.1.2. Parallel coordinates 

Parallel coordinates plot [15] , also called value paths [28] , is a general visualisation tool for high-dimensional data. To

show a set of M -dimensional solutions, the parallel coordinates plot displays them on a two-dimensional plane with M

vertically and equally spaced parallel axes. One solution is represented by a polygonal line with vertices on these parallel

axes, and the position of the vertex on the i th axis corresponds to the value of the solution on the i th objective. Parallel

coordinates plot is an effective visualisation method as it is easy to interpret and scales well to a large number of objectives

(simply by adding more axes for new objectives). However, it makes interpretation and comparison of solutions difficult

when the number of polygonal lines becomes large [46] . In addition, this way of presentation only shows M − 1 relationships

of a total of 
(

M 

2 

)
conflicting relationships existing among M objectives. A large portion of conflicts between objectives cannot

be displayed. 

2.1.3. Radar chart 

Radar chart [18] , also known as the spider-web chart, is originally provided for comparing multiple quantitative variables.

It is easy to see which variables score high or low within a dataset, and making it ideal for displaying performance of the

candidates. In a radar chart, each variable is provided an axis that starts from the origin. All axes are arranged radially, with

equal relative angles between each other. For a data point, each variable value is plotted along its individual axis as a vertex,

and these vertices are connected together to form a polygon. However, in some optimisation problems, there are hundreds

of Pareto-optimal solutions, which involve hundreds of polygons in one radar chart and make them hard to read, confusing

and cluttered. In addition, having more objectives creates more axes and makes the polygons more prone to overlap. 

2.1.4. Heatmaps 

Heatmaps are frequently used to view multivariate datasets and have recently been used to show multi-objective solution

sets [29,40] . A heatmap represents objectives as columns, solutions by rows, and relative objective values in different colours.

To show the values of different objectives with the same colour map, one should normalise values in each objective to

a similar range, otherwise, the heatmap will be dominated by a small portion of colours. Also, the order of solutions is

arbitrarily placed in the rows of a heatmap. Finally, perceiving the distribution of many-objective solutions is difficult in a

heatmap. 

2.2. Dimension reduction-based visualisation methods 

Since it is difficult for human beings to perceive the solutions in a high-dimensional space, a natural way to understand

a solution set is mapping the solution set into a low-dimensional space and viewing the solutions in this low-dimensional

space. In the following, we briefly review several popular dimension reduction methods that have been used for visualisation

of many-objective solution sets. 

2.2.1. Principal component analysis 

Principal component analysis (PCA) [17] is the most widely used linear dimension reduction method. It finds a new set

of coordinates, known as principal components, so that projection of the data set onto these coordinates captures the maxi-

mum variance among all linear projections. These coordinates can be easily obtained since they can be the eigenvectors with

the largest eigenvalues of the covariance matrix of the dataset. PCA has been used for visualisation of the multi-objective

solution set of nurse scheduling problem in [27] . One of the problems of the PCA method is that it may misleadingly project

two remote solutions to two adjacent points in the low-dimensional space. The dominance relation between solutions is also

ignored in the visualisation of many-objective solution sets. 

2.2.2. Sammon mapping and NeuroScale 

Sammon mapping [30] aims to approximately preserve the latent structure of the dataset under the mapping from the

high-dimensional space to the low-dimensional space by minimising the Sammon’s stress function. Specifically, it enforces

the distances between any two data points in the reduced low-dimensional space to be as close as possible to the corre-

sponding distances in the original high-dimensional space and uses the steepest gradient descent procedure to search the
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Table 1 

Summary of the visualisation methods with regard to the desirable properties. Prop- 

erty 1 denotes the preservation of dominance relation, Property 2 denotes the preser- 

vation of distribution, Property 3 stands for it being scalable to the number of objec- 

tives, and Property 4 denotes it being able to handle large data sets. The symbol of 

“� ” indicates that the property holds, the “ × ” indicates that the property does not 

hold, and the “ ≈ ” indicates that the property does not necessarily hold despite the 

method being designed for it. 

Method Property 1 Property 2 Property 3 Property 4 

Scatter plot matrix [37] × ≈ × ≈
Parallel coordinates [15] � ≈ � ×
Radar chart [18] � × � ×
Heatmaps [29] × × � ×
PCA [17] × ≈ � � 

Sammon mapping [30] × ≈ � � 

Two-stage mapping [19] ≈ ≈ � � 

Polar coordinate [13] ≈ ≈ � � 

Prosection [38] � ≈ × � 

The proposed method ≈ ≈ � � 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

low-dimensional mapped data points which achieve a minimum of the Sammon’s stress function. It has been used to view

solution sets of multi-objective optimisation problems in [39] . Neuroscale [26] follows the same goal as Sammon mapping

to preserve the neighbourhood relationships in data by using neural network techniques and is based upon a radial basis

function (RBF) architecture. However, it utilises an RBF neural network to predict the coordinates of the data points in the

transformed low-dimensional space. It has been conducted to map the solutions on the Pareto front in the high-dimensional

objective space into the two- or three-dimensional space for visualisation [8] . 

2.2.3. Two-stage mapping 

Two-stage mapping [19] aims to preserve the Pareto dominance and the distribution relation between solutions as much

as possible. It uses two different strategies to map the dominated and non-dominated solutions. In the first stage, all non-

dominated solutions are mapped onto a quarter-circle in the first quadrant, where the radius reflects the average norm of

these solutions. The two-stage mapping method finds a permutation for the ordering of the solutions by optimising a multi-

objective problem so that both the relations of Pareto dominance and distribution among these solutions are preserved

as much as possible. Then, it maps the solutions on the circle in the order given by the obtained permutation with new

distances proportional to the original distances for all pairs of adjacent solutions. In the second stage, each dominated

solution is mapped to the minimal vector of all non-dominated vectors that dominate it. While the two-stage mapping

method splits the dominated and non-dominated solutions, it is rather complex as a multi-objective optimisation problem

is involved in the mapping, and also this method fails to show the conflicts between objectives. 

2.2.4. Polar coordinate method 

This method [13] maps solutions from a high-dimensional space into a 2-D polar coordinate system. Each solution is

assigned a radial coordinate value reflecting its convergence performance and an angular coordinate value revealing its

diversity performance. The radial coordinate value is determined by the shape of the approximate front and the original

objective values of the solution. A solution with a small radial coordinate implies it has a good convergence to the PF.

Angular coordinates of all solutions show distribution of the solutions among each subregion and the crowdedness in each

subregion of the high-dimensional objective space. The solutions with poor distribution and spread of the approximate PF

would share the same angular coordinate values. This method can preserve the dominance relation. However, it fails to

provide the distribution information of PF inside each subregion and relations between different subregions [12] . 

2.2.5. Prosection 

The prosection method [38] tries to project the vectors in a section to visualise four-dimensional solution set. For a given

solution set, it selects an origin and two objectives to construct a prosection plane. Then, it defines a section by choosing the

angle and section width on the prosection plane. Finally, it projects all the solutions inside the previously defined section

into a three-dimensional space by mapping these two-dimensional vectors into a line, and ignores other solutions outside

the section. This method is able to correctly show the dominance relation between solutions but is not easily scalable to

more than four objectives. 

The main characteristics of the above visualisation methods are summarised in Table 1 , and the readers can find the

plot results of these methods in references [13,28] and [38] . As can be seen, the methods of direct plotting have difficulties

to handle a large-size, high-dimensional solution set. The methods of PCA, Sammon mapping and neuroscale are unable to

preserve the dominance relation between solutions. The two-stage mapping method splits the solutions into non-dominated

and dominated sets, but the information loss is noticeable in terms of their distribution maintenance. The polar coordinate

method can preserve the dominance relation between solutions, but it is not good at preserving the distribution of solutions.
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Fig. 1. A toy example of the basic idea of our method. Three non-dominated solutions in the three dimensional objective space are transformed into two 

dimensional objective space by representing the objective vector on f 1 with the objective vector on f 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While the prosection method tries to preserve both the dominance and distribution relations between solutions, it works

only for a problem with less than five objectives. 

There are also some other dimension reduction-based methods designed specially for many-objective optimisation (rather

than for visualisation) [2,25,32] . For instance, by selecting the smallest set of objectives without changing the Pareto set of

the original optimisation problem [9] , Brockhoff and Zitzler [3] presented both exact and heuristic algorithms to reduce the

number of objectives, while preserving as much as possible of the dominance structure. In [34] , Singh et al. proposed to

find out non-correlated objectives by analyzing the relation between the solutions from the search results of the corners of

a Pareto front. In [33] , Saxena et al. applied principal component analysis and maximum variance unfolding to select con-

flicting objectives according to the correlation information. In [42] , Wang and Yao used nonlinear correlation information

entropy [43] to measure the correlations among objectives, and proposed an online objective reduction-based method for

evolutionary many-objective optimisation. In [44] , Yuan et al. formulated the objective reduction as a tri-objective optimi-

sation problem, where two of the objectives are based on the dominance structure and the third objective is based on the

correlation between objectives of the considered solution set. 

Note that the dimension reduction methods for optimisation and those for visualisation are of different purposes and

focuses. The dimension reduction-based methods designed for many-objective optimisation focus mainly on preserving the 

conflicts between objectives; this may change the distribution of solutions and the dominance relation between solutions

during the dimension reduction process. In contrast, the dimension reduction methods for visualisation of many-objective

solution sets often attempt to preserve the dominance and the distribution relations between solutions, aiming to provide

the user the original landscape of the solution sets. 

3. Our proposed method 

In this section, we present an objective reduction method to visualise a many-objective solution set. The basic idea of the

proposed method is to decompose some objective vectors of a solution set into the remaining objective vectors in succession,

thus forming a new set with lower dimensionality. In each iteration, we represent each objective vector by other objective

vectors which are positively correlated with it. We then remove the objective vector that has the minimal representation

error by decomposing it into other objective vectors. The reason for doing so is that we try to preserve the distribution and

the dominance relations between solutions as much as possible, and the conflicts between objectives as well. 

Fig. 1 gives a toy example of our proposed method. As can be seen from the figure, in the left plot there are three non-

dominated solutions in the objective space a (0, 0, 2), b (1, 1, 1), and c (2, 2, 0). The first objective vector, which consists of

the first objective values of these three solutions, is y 1 = (0 , 1 , 2) T . The second and third objective vectors are y 2 = (0 , 1 , 2) T 

and y 3 = (2 , 1 , 0) T . It is clear that y 1 is positively linearly dependent with y 2 , and y 3 is negatively linearly dependent with

y 2 . Following the basic idea of our proposed method, we represent y 1 with y 2 by transforming the information from the first

objective to the second objective, and obtain the new objective vectors y ′ 
2 

= (1 + 1) y 2 = (0 , 2 , 4) T and y ′ 
3 

= y 3 = (2 , 1 , 0) T 

in the reduced objective space for these three solutions, as shown at the right plot of Fig. 1 . The corresponding solutions in

the reduced space are a ′ (0, 2), b 

′ (2, 1), and c ′ (4, 0). They are still non-dominated with each other, and the distribution of

them remains unchanged in terms of Manhattan distance. The conflict between the second objective and the third objective

is preserved as well. 

In the following, we introduce the main procedure of our proposed method and show some of its observations. 

Given a set of N solutions (denoted as x 1 , x 2 , . . . , x N ) for an optimisation problem with M objectives, we use their corre-

sponding values on the i th objective to construct an objective vector y i = ( f i (x 1 ) , . . . , f i (x N )) 
T ∈ R 

N , where i = 1 , 2 , . . . , M. 

We sequentially decompose some objective vectors. In each iteration, we represent one objective vector by a few other

objective vectors which are positively correlated with the target objective vector. Specifically, we first obtain the correlations

between all the objective vectors, and find the positively correlated objective vectors for each objective vector. Here, we

treat each objective as a variable, and the objective values of solutions on it as the corresponding scalar observations. Then,

the Spearman’s rank correlation coefficient of any two objective vectors, a measure of their rank correlation, is calculated.

It equals the Pearson correlation between the rank values of the two variables. Technically, the two objective vectors y i 
and y j are converted to rank vectors r y i and r y j , respectively, according to the ranks of the elements at the corresponding
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objective vector. For example, for an given objective vector y 1 = (6 , 9 , 2) T , the corresponding rank vector is r y 1 = (2 , 3 , 1) T .

The Spearman’s rank correlation coefficient is defined as 

ρ(y i , y j ) = 

cov (r y i , r y j ) 

σr y i 
σr y j 

, (3)

where σr y i 
and σr y j 

are the standard deviation of r y i and r y j , respectively, and cov (r y i , r y j ) is the covariance of r y i and r y j . 

We can rewrite the correlations among all the objective vectors in a matrix form as: 

R = 

[ 

ρ(y 1 , y 1 ) . . . ρ(y 1 , y M 

) 
. . . . . . . . . 

ρ(y M 

, y 1 ) . . . ρ(y M 

, y M 

) 

] 

. (4)

From the definition in (3) , we have that the correlation coefficients between y i and its positively correlated objective

vectors are greater than zero, where i = 1 , . . . , M. We thus can represent each objective vector with other objective vectors

which have a positive correlation coefficients with the considered objective vector. Please note that to select positively cor-

related vectors for the target objective vector, some other criteria can also be adopted. In this paper we use the Spearman’s

rank correlation since it is a nonparametric measure of correlation and has a low computational complexity. Formally, for

each objective vector y i , we select the objective vectors in the set D i = { y j | R i j > 0 , j � = i } , where j ∈ { 1 , . . . , M} , to construct

a dictionary matrix D i , and represent y i by minimising the following optimisation problem: 

min 

c i 
‖ y i − D i c i ‖ 2 + λ‖ c i ‖ 1 , s.t. c i ∈ R 

k 
≥0 , (5)

where c i is the representation coefficient vector corresponding to y i , the first term is the representation error, the second

term is a regularisation term which enforces using the fewest number of columns in D i to represent y i , λ is a tradeoff

parameter (typically is set as 0.001), k is the number of columns in D i , and the constraint ensures that all the representation

coefficients are non-negative. In view of this being a convex optimisation problem, we can solve it efficiently using existing

convex optimisation methods [1] . Here, we use the solver from Matlab: CVX, a package for specifying and solving convex

problems [10,11] . 

Next, we determine which objective vector to be removed according to the representation error. We consider the objec-

tive vector that has the minimal representation error for the minimal information loss. Technically, we remove the objective

vector with the index 

α = arg min 

i 

‖ y i − D i c 
∗
i 
‖ 2 

‖ y i ‖ 2 

, (6)

where c ∗
i 

is the optimal representation coefficient vector of the i th objective vector via (5) , and the effect of different scales

of objective vectors is reduced by dividing by ‖ y i ‖ 2 . 
Assume that the positively correlated vectors in D α are y σ1 

, . . . , y σk 
, we update them using 

y (t) 
σ j 

= (1 + c ∗i j ) y 
(t−1) 
σ j 

, j ∈ { 1 , . . . , k } , (7)

where t ∈ { 1 , 2 , . . . , M − m } denotes the number of the current iteration, m is the expected dimensionality of the observed

objective space, and y (t) 
σ j 

denotes the value of y σ j 
at the t th iteration and y (0) 

σ j 
is the input y σ j 

. 

In this manner, we can sequentially remove more objective vectors until the expected number of preserved objective

vectors is reached. 

Finally, we have the new objective function with m components as 

F(x ) = ( f (M−m ) 
τ1 

(x ) , f (M−m ) 
τ2 

(x ) , . . . , f (M−m ) 
τm 

(x )) , (8)

where m is the number of preserved objective vectors, the index set of preserved objective vectors is { τ1 , τ2 , . . . , τm 

} ⊂
{ 1 , 2 , . . . , M} , and f (M−m ) 

τ1 
(x ) , f (M−m ) 

τ2 
(x ) , . . . , f (M−m ) 

τm 
(x ) are objective values of f τ1 

(x ) , f τ2 
(x ) , . . . , f τm (x ) after (M − m ) it-

erations of objective reduction, respectively. The objective reduction process of our proposed method is summarised in

Algorithm 1 , from which we can see that the proposed method iteratively decomposes objective vectors to achieve objective

reduction. In each iteration, it firstly constructs a dictionary matrix for each objective objective by selecting the positively

correlated objective vectors to the target vector. Then, it represents each objective vector by the columns in the dictionary

matrix and finds out the objective α which has the minimal reconstruction error at step 10 of Algorithm 1 . At last, it updates

the preserved objective vectors, which belong to the columns of the dictionary matrix D α , and removes the objective α. The

computational complexity of the proposed method is O ((M − m )(M + N ) tN M 

3 ) , where N is the number of the solutions and

t denotes the total number of iterations for the optimisation algorithm in solving step 7 in Algorithm 1 . 

The proposed method has the following two properties when the linear representation error is equal to zero in the

objective reduction process. 

Proposition 1. For any x i , x j ∈ �, it holds that x i ≺ x j in the reduced objective space if and only if x i ≺ x j in the original objective

space. 

Proof. Proof of Sufficiency : For any x i , x j ∈ �, if x i ≺ x j in the original objective space, and since the preserved objectives are

included in the set consists of all original objectives, there exists two cases: 
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Algorithm 1 The objective reduction procedure of our proposed method for a many-objective solution set. 

Input: The objective vectors of the solution sets y i = ( f i (x 1 ) , . . . , f i (x N )) 
T ∈ R 

N , i = 1 , 2 , . . . , M, and the expected dimension- 

ality of the observed objective space, m . 

1: Initialise ϒ(0) = { 1 , . . . , M} , and y (0) 
i 

= y i , for all i ∈ ϒ(0) . 

2: R i j ← ρ(y i , y j ) , for all i, j ∈ ϒ t−1 . 

3: for each t ∈ { 1 , . . . , M − m } do 

4: for each i ∈ ϒ(t−1) do 

5: S i ← { j| R i j > 0 ; j � = i ; j ∈ ϒ(t−1) } . 
6: D i ← { y (t−1) 

j 
| j ∈ S i } . /*Use the elements in the set to construct a matrix.*/ 

7: c ∗
i 

← arg min 

c i ∈ R k ≥0 

‖ y (t−1) 
i 

− D i c i ‖ 2 + λ‖ c i ‖ 1 . 

8: e i ← 

‖ y i −D i c 
∗
i 
‖ 2 

‖ y i ‖ 2 . 

9: end for 

10: α ← arg min 

i 
{ e i | i ∈ ϒ(t−1) } . 

11: y (t) 
σ j 

← (1 + c ∗ασ j 
) y (t−1) 

σ j 
, for all σ j ∈ S α . 

12: ϒ(t) ← ϒ(t−1) − { α} . 
13: end for 

14: Y ← { y (M−m ) 
l 

| l ∈ ϒ(M−m ) } . /*Use the elements in the set to construct a matrix.*/ 

Output: The representations of the solutions in the reduced m -dimensional objective space Y , where each row represents 

the result for one solution. 

 

  
(a) x i ≺ x j in the reduced objective space, which directly completes the proof. 

(b) the objective values of x i and x j are equal on the preserved objectives, i.e., 

f (0) 
τ1 

(x i ) = f (0) 
τ1 

(x j ) , 

f (0) 
τ2 

(x i ) = f (0) 
τ2 

(x j ) , 

· · ·
f (0) 
τm 

(x i ) = f (0) 
τm 

(x j ) , (9) 

and ∃ μ ∈ { 1 , . . . , M} − { τ1 , τ2 , . . . , τm 

} satisfies 

f (0) 
μ (x i ) < f (0) 

μ (x j ) . (10) 

Considering the decomposition of the objective f μ, we have 

f (t−1) 
μ (x i ) = c ϕ1 f 

(t−1) 
σ1 

(x i ) + · · · + c ϕk f 
(t−1) 
σk 

(x i ) , 

f (t−1) 
μ (x j ) = c ϕ1 f 

(t−1) 
σ1 

(x j ) + · · · + c ϕk f 
(t−1) 
σk 

(x j ) , (11) 

where t ∈ { 1 , . . . , M − m } , and { σ1 , . . . , σk } ⊆ { τ1 , . . . , τm 

} . 
Combining (9) and (11) , we have f (M−m −1) 

μ (x i ) = f (M−m −1) 
μ (x j ) , which contradicts with the result in (10) . This means the

case b) does not exist. 

Proof of Necessity : For any x i , x j ∈ �, since x i ≺ x j in the reduced objective space, we obtain that 

f (M−m ) 
τ1 

(x i ) ≤ f (M−m ) 
τ1 

(x j ) , 

f (M−m ) 
τ2 

(x i ) ≤ f (M−m ) 
τ2 

(x j ) , 

· · ·
f (M−m ) 
τm 

(x i ) ≤ f (M−m ) 
τm 

(x j ) , (12) 

and ∃ τη ∈ { τ1 , τ2 , . . . , τm 

} satisfies 

f (M−m ) 
τη

(x i ) < f (M−m ) 
τη

(x j ) . (13) 

Consider any objective function f ϕ in the objective space, if ϕ ∈ { τ1 , . . . , τm 

} , then f (0) 
ϕ (x i ) ≤ f (0) 

ϕ (x j ) , else if ϕ /∈
{ τ1 , τ2 , . . . , τm 

} , 
We assume that f ϕ is the last decomposed objective, and obtain that 

f (t−1) 
ϕ (x i ) = c ϕ1 f 

(t−1) 
σ1 

(x i ) + · · · + c ϕk f 
(t−1) 
σk 

(x i ) , 

f (t−1) 
ϕ (x j ) = c ϕ1 f 

(t−1) 
σ1 

(x j ) + · · · + c ϕk f 
(t−1) 
σk 

(x j ) , (14) 
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where t = M − m, and { σ1 , σ2 , . . . , σk } ⊆ { τ1 , τ2 , . . . , τm 

} . 
Moreover, based on the model in (5) , we have 

c ϕ1 , c ϕ2 , . . . , c ϕk ∈ R ≥0 (15)

Combining the results in (15), (12) and (14) , we have f (M−m −1) 
ϕ (x i ) ≤ f (M−m −1) 

ϕ (x j ) . 

Following the same manner, we can obtain that objective values for x j on the second last decomposed objective is not

larger than that for x j . Likewise, we obtain the same conclusion for the first decomposed objective. Based on above results

and (13) , we have 

f (0) 
1 

(x i ) ≤ f (0) 
1 

(x j ) , 

f (0) 
2 

(x i ) ≤ f (0) 
2 

(x j ) , 

· · ·
f (0) 
M 

(x i ) ≤ f (0) 
M 

(x j ) , (16)

and ∃ ς ∈ { 1 , 2 , . . . , M} satisfies 

f (0) 
ς (x i ) < f (0) 

ς (x j ) , (17)

i.e., x i ≺ x j in the original objective space. 

This completes the proof. �

Proposition 2. For any x i , x j ∈ �, it holds that x i and x j are non-dominated to each other in the reduced objective space if and

only if x i and x j are non-dominated to each other in the original objective space. 

Proof. Proof of Sufficiency : Assume that the sufficiency does not hold, i.e., ∃ x i , x j ∈ �, when x i and x j are non-dominated

to each other in the original objective space, but x i ≺ x j or x j ≺ x i in the reduced objective space. It is clear that above

conclusion contradicts with that in Proposition 1 . 

Proof of Necessity : Assume that the necessity does not hold, i.e., ∃ x i , x j ∈ �, when x i and x j are non-dominated to each

other in the reduced objective space, but x i ≺ x j or x j ≺ x i in the original objective space. It is clear that above conclusion

also contradicts with that in Proposition 1 . 

This completes the proof. �

Proposition 3. For any x i , x j ∈ �, the Manhattan distance between x i and x j in the reduced objective space equals the distance

in the original objective space if the Spearman’s rank coefficients between the removed objective vector and the vectors in its

representation dictionary are equal to one. 

Proof. For any x i , x j ∈ �, suppose the first decomposed objective is f ϕ , and represented by the objectives σ1 , . . . , σk with

corresponding coefficients as c ϕ1 , . . . , c ϕk , we have 

f (0) 
ϕ (x i ) = c ϕ1 f 

(0) 
σ1 

(x i ) + · · · + c ϕk f 
(0) 
σk 

(x i ) , 

f (0) 
ϕ (x j ) = c ϕ1 f 

(0) 
σ1 

(x j ) + · · · + c ϕk f 
(0) 
σk 

(x j ) , (18)

where � = { σ1 , . . . , σk } ⊆ { 1 , . . . , ϕ − 1 , ϕ + 1 , . . . , M} . 
If the Spearman’s rank coefficients between y ϕ and y σ1 

, . . . , y σk 
are equal to one, we can obtain that ∣∣ f (0) 

ϕ (x i ) − f (0) 
ϕ (x j ) 

∣∣ = c ϕ1 

∣∣ f (0) 
σ1 

(x i ) − f (0) 
σ1 

(x j ) 
∣∣ + · · · + c ϕk 

∣∣ f (0) 
σk 

(x i ) − f (0) 
σk 

(x j ) 
∣∣. (19)

Thus, the Manhattan distance between x i and x j in the original objective space 

‖ F (x i ) − F (x j ) ‖ 1 = 

∑ 

κ∈{ 1 , ... ,M} 

∣∣ f (0) 
κ (x i ) − f (0) 

κ (x j ) 
∣∣

= 

∑ 

ι∈{ 1 , ... ,M}−{ ϕ} 

∣∣ f (0) 
ι (x i ) − f (0) 

ι (x j ) 
∣∣ + 

∣∣ f (0) 
ϕ (x i ) − f (0) 

ϕ (x j ) 
∣∣

= 

∑ 

α∈ �

∣∣ f (0) 
α (x i ) − f (0) 

α (x j ) 
∣∣

+ 

∑ 

β∈ �
(1 + c ϕβ ) 

∣∣∣ f (0) 
β

(x i ) − f (0) 
β

(x j ) 

∣∣∣, (20)

where � = { 1 , . . . , M} − { ϕ} − �. 

For the Manhattan distance between x i and x j in the new objective space 
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‖ F (1) (x i ) − F (1) (x j ) ‖ 1 = 

∑ 

τη∈ �∪ �

∣∣ f (1) 
τη

(x i ) − f (1) 
τη

(x j ) 
∣∣

= 

∑ 

p∈ �

∣∣ f (1) 
p (x i ) − f (1) 

p (x j ) 
∣∣ + 

∑ 

q ∈ �

∣∣ f (1) 
q (x i ) − f (1) 

q (x j ) 
∣∣

= 

∑ 

p∈ �

∣∣ f (0) 
p (x i ) − f (0) 

p (x j ) 
∣∣ + 

∑ 

q ∈ �

∣∣ f (1) 
q (x i ) − f (1) 

q (x j ) 
∣∣

= 

∑ 

p∈ �

∣∣ f (0) 
p (x i ) − f (0) 

p (x j ) 
∣∣

+ 

∑ 

q ∈ �

∣∣(1 + c ϕq ) 
(

f (0) 
q (x i ) − f (0) 

q (x j ) 
)∣∣

= 

∑ 

p∈ �

∣∣ f (0) 
p (x i ) − f (0) 

p (x j ) 
∣∣

+ 

∑ 

q ∈ �
(1 + c ϕq ) 

∣∣ f (0) 
q (x i ) − f (0) 

q (x j ) 
∣∣. (21) 

Combine the results in (20) and (21) , we have 

‖ F (1) (x i ) − F (1) (x j ) ‖ 1 = ‖ F (x i ) − F (x j ) ‖ 1 . (22)

Likewise, we have the similar results for the reminding representation of objective vectors, and finally obtain that 

‖F(x i ) − F(x j ) ‖ 1 = ‖ F (x i ) − F (x j ) ‖ 1 . (23)

This completes the proof. �

Propositions 1 and 2 provide the theory behind the proposed method with respect to the consistency of convergence

(both Pareto dominance and Pareto non-dominance) before and after the objective reduction. Proposition 3 provides the

theory with respect to the consistency of distribution (based on Manhattan distance). The Manhattan distance calculates

the sum of absolute difference along with all the dimensions. Despite being less popular than the Euclidean distance, the

Manhattan distance which treats each dimension equally can be more reliable than the Euclidean distance to reflect the

difference between vectors in a high-dimensional space. 

Note that the above properties hold theoretically only when the representation error is zero. However, when the repre-

sentation error is small these properties can be reasonably preserved (as will be seen in the following experimental studies).

A large representation error indicates that no objective can be decomposed, i.e., there is a lot of information loss if decom-

posing any one objective into others. 

4. Experimental studies 

4.1. Test problems 

We evaluate the effectiveness of our method on both synthetic and real-world problems. The synthetic problems include

the scalable DTLZ5( I , M ) problem [6] , a proposed test problem based on DTLZ7 [7] , and the multi-line distance minimisation

problem (ML-DMP) [22] . 

The DTLZ5( I , M ) problem has the following three properties [6] : (1) the dimensionality of the Pareto front is I , where I

is smaller or equal to the number of the problem’s objectives M , (2) the first M − I + 1 objectives are linear dependent with

each other, i.e., they are perfectly correlated, while the remaining objectives are in conflict with each other, and are also in

conflict with the first M − I + 1 objectives, and (3) an essential objective set consists of one of the first M − I + 1 objectives

and the last I − 1 objectives. Mathematically, 

G = { f η, f M−I+2 , . . . , f M 

} , (24) 

where η ∈ { 1 , . . . , M − I + 1 } . 
The considered test problem DTLZ7V is modified from DTLZ7 [7] . The DTLZ7 problem has 2 (M−1) disconnected Pareto-

optimal regions in the search space, and all of its objectives are completely conflicting. We only add a new objective as

the one half sum of the first (M − 1) objectives to existing DTLZ7. This problem has some positively correlated objectives,

and is designed to demonstrate the results of the dimension reduction-based visualisation methods on the problem with

disconnected Pareto front. 

The definition of ML-DMP problem can be find in the reference [22] , and this problem has the following two proper-

ties: (1) the Pareto optimal solutions lie in a regular polygon in the two-dimensional decision space, and (2) the Euclidean

distance between any two Pareto optimal solutions in the decision space is equal to the Euclidean distance between their

objective images multiplied by a constant. 
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In the DTLZ5( I , M ) problem, some objectives are completely harmonious, while for the considered ML-DMP problem

there is not any two objectives that are completely harmonious or conflicting. 

The considered real-world problem is a many-objective optimisation problem, which chooses products from a software

product line (SPL) feature model based on a set of user preferences (objectives). An SPL [4] is a set of software-intensive

systems that share a common set of features satisfying specific needs of a particular market segment or mission and that

are developed from a common set of core assets in a prescribed way. In our experiment, we test a real-world SPL model,

Drupal [31] , with seven objectives as adopted in [14] . Drupal represents the variability in the open source Web content

management framework Drupal, and is the largest attributed feature model with non-synthetically generated attributes used

for the problem of optimal SPL product selection. The seven objectives are as follows [14] . 

• Minimise the number of missing features. 

• Minimise the number of lines of code. 

• Minimise the cyclomatic complexity. 

• Maximise the test assertions. 

• Maximise the number of installations that contain the feature. 

• Minimise the number of developers. 

• Minimise the number of changes. 

4.2. Metrics 

To evaluate visualisation methods, we define several metrics to see how they perform in preserving the dominance

relation and the distribution relation after the dimensionality reduction. Specifically, for the assessment of the preservation

of the dominance relation between solutions, we define the metric of dominance ratio (DR) as: 

DR = 

|D| 
|W| , (25)

where W denotes the set of all solution pairs and D denotes the set consisting of the pairs of solutions whose dominance

relation are changed after the dimension reduction. 

For evaluating the performance on preserving the distribution, we define two metrics to measure the difference of dis-

tances between the solutions in the original objective space and their corresponding distances in the reduced objective

space. These two metrics are related to two widely-used distance measurements, i.e., the Manhattan distance and the Eu-

clidean distance. Formally, the average distance difference metrics with the Manhattan distance and with the Euclidean

distance are respectively defined as: 

AD 1 = 

∑ N 
i =1 

∑ N 
j>i 

∣∣‖ F (x i ) − F (x j ) ‖ 1 − ‖F(x i ) − F(x j ) ‖ 1 

∣∣
C 2 

N 

, (26)

and 

AD 2 = 

∑ N 
i =1 

∑ N 
j>i 

∣∣‖ F (x i ) − F (x j ) ‖ 2 − ‖F(x i ) − F(x j ) ‖ 2 

∣∣
C 2 

N 

, (27)

where N is the number of solutions. In (26) and (27) , the absolute difference between the distance of every two solutions

in the original objective space and their corresponding distance in the reduced objective space is summed up, then divided

by the number of the solution pairs. 

4.3. Verification 

In this section, we examine the proposed method on the DTLZ5( I , M ) problem with I = 3 and M = 10 . In this problem,

the first eight objectives are linearly dependent with each other and the last three objectives are conflicting. This allows

us to verify the accuracy of the proposed method. In this experiment, we use a many-objective evolutionary algorithm,

SPEA2+SDE [23] , running for 200 generations with 200 individuals to find the Pareto-optimal solutions of DTLZ5(3, 10).

SPEA2+SDE modifies the density estimator of SPEA2 [47] to make it suitable in many-objective optimisation. We apply ORV

to visualise the obtained solutions in the three-dimensional space. 

Fig. 2 shows the objective reduction process of the proposed method on DTLZ5(3, 10), from which we obtain that: 

• The redundant objectives in the ten observed objective vectors are sequentially decomposed into three essential objective

vectors y 3 , y 9 and y 10 . It is consistent with the fact that DTLZ5(3, 10) has three essential objectives which include the

last two objectives and one of the first eight objectives. 

• The first eight objective vectors are sequentially decomposed to one of the first eight objective vectors. Specifically, the

objective vector y 5 is firstly decomposed to 0.3536 y 8 ; then objective vectors y 4 , y 1 , y 8 , y 2 , y 6 and y 7 are decomposed to

multiples of y 3 , sequentially; finally solutions, which are the rows of the matrix consisting of the objective vectors y 3 , y 9
and y , are obtained in the reduced objective space. 
10 
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Fig. 2. Decomposition process of our method for a set of solutions obtained by SPEA2+SDE on DTLZ5(3, 10). 

Fig. 3. The result of our method on the solution set obtained by SPEA2+SDE on DTLZ5(3, 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The representation error of the objective vector representation at each iteration is very close to zero as shown in the

right brackets in Fig. 2 . This is because they are linearly dependent with each other. 

Fig. 3 shows the solutions in the reduced objective space. We can see that the solutions in the reduced objectives lie on

the surface of the one-eighth ellipsoid. The proposed method can discover the essential objectives automatically. Moreover,

the proposed ORV does not discard the information on redundant objectives but transforms it into some other objectives

which they are positively correlated with. Finally, the results DR = 0 and AD 1 = 4 . 6423 × 10 −6 show that the dominance

relation between the solutions is unchanged in the reduced objective space, and the Manhattan distances between them are

nearly unchanged. However, the result AD 2 = 0 . 3015 shows that the Euclidean distances between the solutions changed to

some extent. 

4.4. Comparison with existing visualisation methods 

In this section, we compare ORV with six existing methods consisting of two directly plotted methods (the radar

chart [18] and the parallel coordinates [15] ), and four dimension reduction-based methods (two-stage mapping [19] , polar

coordinate method [13] , PCA [17] and the objective reduction method based on nonlinear correlation information entropy

(NCIE) [42] ) on DTLZ7V and ML-DMP. 

For the DTLZ7V problem, we use the NSGA-II algorithm [5] running for 500 generations with a population size of 200

to obtain the solutions of the 4-objective DTLZ7V. In the DTLZ7V problem, the last objective is the one half sum of the first

M − 1 objective, i.e., f 4 (x ) = 

1 
2 f 1 (x ) + 

1 
2 f 2 (x ) . 

Fig. 4 shows the decomposition process of ORV for the solution set obtained by NSGA-II. In the process, y 4 is represented

by its two nearby objective vectors y and y with the representation error of 4 . 664 × 10 −11 . The representation error can
1 2 
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Fig. 4. Decomposition process of our method for a set of solutions obtained by NSGA-II on the 4-objective DTLZ7V. 

Fig. 5. Visualisation results of a non-dominanted solution set obtained by NSGA-II on the 4-objective DTLZ7V, which is based on DTLZ7 [7] . The red crosses 

and black circles denote the dominated and the non-dominated solutions in the reduced low-dimensional space, respectively. (a) The objective values of 

the solutions on the objectives f 1 , f 2 , f 3 . (b) The solutions shown by the radar chart [18] . (c) The solutions shown by the parallel coordinates plot [15] . 

(d) The solutions plotted by the two-stage mapping method [19] . (e) The solutions plotted by the polar coordinate method [13] ( DR = 0 . 9222 , AD 1 = 4 . 0721 , 

AD 2 = 3 . 3485 ). (f) The solutions after the objective reduction process of the NCIE-based method [42] ( DR = 0 . 7882 , AD 1 = 0 . 7035 , AD 2 = 0 . 1662 ). (g) The 

solutions after the objective reduction process of PCA [17] ( DR = 0 . 6164 , AD 1 = 0 . 1903 , AD 2 = 4 . 256 × 10 −16 ). (h) The solutions after the objective reduction 

process of the proposed method ( DR = 0 , AD 1 = 0 . 05590 , AD 2 = 0 . 1265 ). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reflect the degree of conflicts between the represented objective vector f 4 and the objective vectors f 1 and f 2 . It demonstrates

that ORV can automatically detect the correlation between the objectives on DTLZ7V. 

Fig. 5 shows the solution set obtained by NSGA-II on the 4-objective DTLZ7V. Fig. 5 (a) is the result of the plot with the

values on the first three objectives of the obtained solutions. From the results of the radar chart in Fig. 5 (b) and the parallel

coordinates plot in Fig. 5 (c), we can observe the ranges of these four objectives. However, the shape of the Pareto front and

the distances between different solutions are not easily understood. With more solutions involved, it becomes more difficult

to distinguish one solution from others in these two plots. 

In Fig. 5 (d), all the solutions are mapped onto a quarter-circle, from which we cannot see the distribution pattern of

the original set. In Fig. 5 (e), the solutions are transformed into four groups on a 2-D plane, and the shape and distribution

of the set are changed. From Fig. 5 (f), we can see that the NCIE-based objective reduction method automatically selects f 3 ,

and f 4 from the original four objectives and plots the solutions with their values on these two objectives. The results on

DR , AD 1 , and AD 2 are 0.7882, 0.7035, and 0.1662, respectively. The dominance and the distribution relations of the solutions

are not well preserved. That is because the NCIE-based objective reduction method aims to preserve the conflict between

the solutions rather than focusing on preserving the distribution and the dominance relations between the solutions. In

Fig. 5 (g), the distribution of the solutions is well preserved in terms of the Euclidean distance by using the method of PCA.

This is also confirmed by the computed AD 2 which is equal to 4 . 256 × 10 −16 . However, the Manhattan distances between

the solutions are not well preserved with AD 1 is equal to 0.1903. Also, the dominance relation between the solutions is not

well preserved, with DR equals 0.6164. 

Comparing Fig. 5 (a) and (h), we can easily find that all the solutions are distributed consistently in these two plots. The

AD 1 and AD 2 values are equal to 0.05590 and 0.1265, respectively, which also illustrates that the proposed method preserves

the distribution of solutions well. The result on DR equals zero, which means that the dominance relation between the

solutions is unchanged in the reduced space. 

For the ML-DMP problem, we use the decomposition-based multi-objective evolutionary algorithm with the penalty-

based boundary intersection aggregation function (MOEA/D+PBI) [45] running for 500 generations with a population size of

126 to obtain the solutions of the 5-objective ML-DMP (Type I). 

In the ML-DMP problem, the distribution of the solutions in the objective space is as same as that in the decision space.

This provides us a straightforward way to evaluate the accuracy of a visualisation method by comparing the distribution of

the solutions after the dimension reduction with the distribution of the solutions in the two-dimensional decision space. 
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Fig. 6. Decomposition process of our method for a set of solutions obtained by MOEA/D+PBI on the 5-objective ML-DMP. 

Fig. 7. Visualisation results of a non-dominated solution set obtained by MOEA/D-PBI on the 5-objective ML-DMP, where the solutions in the decision space 

are similar (in the sense of Euclidean geometry) to their images in the objective space [22] . The red crosses and black circles denote the dominated and the 

non-dominated solutions in the reduced low-dimensional space, respectively. (a) The original solutions in the decision space. (b) The solutions shown by 

the radar chart [18] . (c) The solutions shown by the parallel coordinates plot [15] . (d) The solutions plotted by the two-stage mapping method [19] . (e) The 

solutions plotted by the polar coordinate method [13] ( DR = 0 . 8559 , AD 1 = 2 . 9542 , AD 2 = 2 . 5335 ). (f) The solutions after the objective reduction process of 

the NCIE-based method [42] ( DR = 0 . 9004 , AD 1 = 1 . 2231 , AD 2 = 0 . 4046 ). (g) The solutions after the objective reduction process of PCA [17] ( DR = 0 . 9182 , 

AD 1 = 0 . 7482 , AD 2 = 5 . 6592 × 10 −14 ). (h) The solutions after the objective reduction process of the proposed method ( DR = 0 , AD 1 = 0 . 5198 , AD 2 = 0 . 3615 ). 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 shows the decomposition process of ORV for the solution set obtained by MOEA/D+PBI. In the process, y 3 is repre-

sented by its two nearby objective vectors y 2 and y 4 with the representation error of 0.2793, and then the y 5 is presented

by its two nearby objective vectors y 1 and y 4 , with the representation error of 0.2794. The representation errors are much

larger than those for DTLZ5 (3, 10), because the decomposed objective has stronger conflicts with other objectives in this

problem than those in the previous problems. 

Fig. 7 shows the solution set obtained by MOEA/D-PBI on the 5-objective ML-DMP. From Fig. 7 (a), we can see that the

solutions are located inside a two-dimensional pentagon. From the results of the radar chart in Fig. 7 (b) and the parallel

coordinates plot in Fig. 7 (c), we can observe the ranges of these five objectives. However, the shape of the Pareto front and

the distances between different solutions are also not easily understood. 

From Fig. 7 (d), we can see the dominance relation between the solutions (here all the solutions are non-dominated to

each other), but we cannot see the distribution between the solutions. In Fig. 7 (e), similar to Fig. 7 (d), the obtained solution

set does not imply their original distribution in the high-dimensional space, despite the preservation of their dominance

relation. From the result of the NCIE-based objective reduction method in Fig. 7 (f), we can see that it automatically selects

the first and the third objectives from the original five objectives and plots the solutions with their values on these two

objectives. The results on DR , AD 1 , and AD 2 are 0.9004, 1.2231, and 0.4046, respectively. It means that the dominance and

the distribution relations of the solutions are not well preserved by automatically selecting two objectives with the NCIE-

based method. In Fig. 7 (g), the distribution of the solutions is well preserved in terms of the Euclidean distance by using the

method of PCA. This is also confirmed by the computed AD 2 which is equal to 5 . 6592 × 10 −14 . However, PCA cannot make

the Manhattan distances between the solutions be well preserved as AD 1 is equal to 0.7482. Also, the dominance relation

between the solutions is not well preserved, with DR equals 0.9182. Most of the non-dominated solutions in original space

are been dominated by other solutions in the reduced low-dimensional space as denoted as cross in Fig. 7 (g). 

Comparing Fig. 7 (a) and (h), we can easily find that all the solutions are distributed consistently in these two plots. The

AD 1 and AD 2 values are equal to 0.5198 and 0.3615, respectively, which also illustrates that the proposed method preserves

the distribution of solutions fairly well. The result on DR equals zero, which means that the dominance relation between
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Fig. 8. The decomposition process of the proposed method for the solution set obtained by SPEA2+SDE on a real-world problem. 

Fig. 9. The result of our method for the solution set obtained by SPEA2+SDE on a real-world problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the solutions is unchanged in the reduced space. These observations demonstrate that the proposed method can preserve

the relation between the solutions, especially, the dominance relation between them. 

4.5. On a real-world problem 

In this section, we evaluate the performance of ORV on the 7-objective SPL product selection problem. We first use

SPEA2+SDE 1 to obtain a set of 200 solutions. As the objective scale in this problem differs largely, we normalise the solution

set by its range, and then use ORV to process this solution set, aiming to reveal some properties of the considered problem

(e.g., the relationship between the objectives to be optimised). 

Fig. 8 shows the objective vector decomposition process, from which we have the following observations: 

• In the first iteration, y 3 is represented as a combination of y 6 and y 7 . It means that the objective f 3 (i.e., minimising

the cyclomatic complexity) correlates positively with the objectives f 6 (minimising the number of developers) and f 7
(minimising the number of changes). This sounds reasonable since simpler code might have fewer developers and also

fewer changes (since it is less likely that faults will have been introduced). 

• In the second iteration, y 5 is represented as a combination of y 1 and y 4 . It means that the objective f 5 (maximising the

number of installations that contain the feature) is somehow correlated with the objectives f 1 (maximising the richness

of features) and f 4 (maximising the test assertions). 

• The representation error in the last iteration is much larger than that in the previous iterations, which means that it

may not be accurate to represent y 6 with y 7 . 

The results of the solutions in the reduced objective space are shown in Fig. 9 . From the figure, we can see that most of

the solutions are non-dominated with respect to each other. Actually, the result on DR is 0.02828, i.e., there are around 3%

pairs changed their dominance relation when reduced to the three-dimensional space. 

The use of the proposed method is two-fold. On one hand, the decomposition process of ORV helps practitioners un-

derstand the relationships (i.e., conflict/harmony) among objectives, and also the produced representation error can tell

practitioners the cost of reducing the objectives. On the other hand, the scatter plot of solutions after the objective reduc-

tion lets the decision makers be aware of the shape of solution set and also the distribution of solutions (e.g., the boundary

solutions and knee solutions), which may facilitate the decision-making process. 
1 SPEA2+SDE had been found to be promising in the considered problem [14] . 
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Fig. 10. The solutions obtained by SPEA2+SDE on DTLZ5(4, 20) with the parallel coordinates plots. (a) The solutions in the original objective space. (b) The 

solutions after the objective reduction process of our method. The lines with the same colour in two plots are the same solution in two different spaces, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When executing the proposed method, it is desirable to provide the value of the expected dimensionality of the observed

objective space, m . However, in practice, we usually do not know the number of essential objectives in advance. In this case,

we suggest using the elbow method [35] to estimate the number of essential objectives. More specifically, one can run the

objective decomposition of M − 1 iterations and plot a line chart of the reconstruction error for each objective decomposition

iteration, where M is the number of the problem’s objectives. If the line chart looks like an arm, then the “elbow” on the

arm corresponds to the suitable number of decomposition iterations M − m and one can obtain the suitable value of the

parameter m . 

4.6. Extension to the case with more essential objectives 

In the above experiments, since the number of the essential objectives is less than four, we can plot the solutions in the

three-dimensional objective space. In this section, we apply our dimension reduction technique to show the solutions in the

parallel coordinate system. Fig. 10 (b) shows the result of ORV for the solution set obtained by SPEA2+SDE on DTLZ5(4, 20)

in the parallel coordinate system along with the solutions in the original objective space shown in Fig. 10 (a). The obtained

values of the metrics DR , AD 1 , and AD 2 are 0, 4 . 6423 × 10 −6 , and 0.3015, respectively. From these evaluation results and

Fig. 10 , we have the following observations: 

• The preserved objectives are f 17 , f 18 , f 19 , and f 20 . These objectives form an essential objective set for DTLZ5 (4, 20). This

means that the proposed method successfully detects the essential objectives and preserves the conflicts among the

objectives. 

• The maximal value of the 17th objective in the reduced objective space is larger than that in the original objective space

because the information on the first 16 objectives has been transformed to the 17th objective. 

• The dominance relation and the Manhattan distances between the solutions are well preserved. 

• Even if the proposed method can reduce the dimensionality of the observation objective space, it is still hard to see the

distribution of the solutions in Fig. 10 (b) since the overlapped lines in the parallel coordinates prevents solutions from

being clearly presented [24] . 

5. Conclusion 

Visualising a solution set of the many-objective optimisation problem is a challenging issue. Solutions lying in a high-

dimensional space make them hard to be observed and perceived. This paper presented an objective reduction-based visu-

alisation method, which tried to preserve the dominance and distribution relations between solutions during the objective

reduction process. This allows users to visually know the behaviour of the solutions (e.g., their convergence and distribution

shape) in certain cases. 

Extensive experiments have been carried out to verify the effectiveness of the proposed method. From the results on

three synthetic benchmarks, i.e., DTLZ5( I , M ), DTLZ7V ( Fig. 7 ), and ML-DMP ( Fig. 5 ), we have found that the distribution and

dominance relation between solutions are well preserved. The proposed method was also applied to discover the relation

between objectives in a real-world software engineering problem, and some connections between objectives have been

observed. 

It is worth mentioning that the proposed method cannot be applied to the situation where there is no redundant ob-

jective at all, unless allowing the compromise of preserving the distribution and the dominance relation between solutions.

For the situation where the number of objectives is not reducible but one still wants to proceed, the resultant solution set

will be different from the original set in terms of solutions’ distribution and dominance relations, despite that the proposed

method tries to preserve them unchanged as much as possible. 

Finally, we would like to note that the proposed method only considers the linear relation between objectives. However,

there are many optimisation scenarios where the relation between objectives is nonlinear. For such problems, a potential
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solution is to model the dominance relation preservation as a constraint to some existing nonlinear dimension reduction

techniques (e.g., Sammon mapping). This would be one important topic of our subsequent work. 
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