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Abstract— Color fundus photography (CFP) and Optical
coherence tomography (OCT) images are two of the most
widely used modalities in the clinical diagnosis and man-
agement of retinal diseases. Despite the widespread use
of multimodal imaging in clinical practice, few methods for
automated diagnosis of eye diseases utilize correlated and
complementary information from multiple modalities effec-
tively. This paper explores how to leverage the information
from CFP and OCT images to improve the automated diag-
nosis of retinal diseases. We propose a novel multimodal
learning method, named geometric correspondence-based
multimodal learning network (GeCoM-Net), to achieve the
fusion of CFP and OCT images. Specifically, inspired by
clinical observations, we consider the geometric corre-
spondence between the OCT slice and the CFP region to
learn the correlated features of the two modalities for robust
fusion. Furthermore, we design a new feature selection
strategy to extract discriminative OCT representations by
automatically selecting the important feature maps from
OCT slices. Unlike the existing multimodal learning meth-
ods, GeCoM-Net is the first method that formulates the
geometric relationships between the OCT slice and the
corresponding region of the CFP image explicitly for CFP
and OCT fusion. Experiments have been conducted on a
large-scale private dataset and a publicly available dataset
to evaluate the effectiveness of GeCoM-Net for diagnosing
diabetic macular edema (DME), impaired visual acuity (VA)
and glaucoma. The empirical results show that our method
outperforms the current state-of-the-art multimodal learn-
ing methods by improving the AUROC score 0.4%, 1.9% and
2.9% for DME, VA and glaucoma detection, respectively.

Index Terms— Multimodal learning, multimodal fusion,
multimodal retinal imaging, ophthalmic image analysis
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I. INTRODUCTION

THE retina contains millions of light-sensitive cells and
other nerve cells that receive and organize visual infor-

mation to enable the capability of visual perception. Retinal
diseases such as diabetic retinopathy, diabetic macular edema
(DME) and age-related macular degeneration are among the
leading causes of severe vision loss and blindness world-
wide [1]. Early detection of these retinal diseases allows for
prompt treatment, which can often prevent or reverse visual
loss. Color fundus photography (CFP) and optical coherence
tomography (OCT) images are two of the most widely used
modalities in the clinical management of retinal diseases.
CFP imaging provides a two-dimensional (2D) image of the
posterior aspect of the interior surface of the eye, including
the posterior retina, retinal vasculature, optic disc, macula, and
posterior pole [2], [3]. OCT is used to obtain non-invasive,
high-resolution three-dimensional (3D) volume scans of the
retina in vivo, which are often viewed by clinicians as 2D
cross-sectional scan slices [4]. These two imaging modalities
provide different, but complementary information on the retina
in healthy and diseased states, which is used by clinicians
to make the diagnosis of retinal disease. Based on such
imaging data, many CFP-based and/or OCT-based methods
have recently been proposed for automated retinal disease
diagnosis [5], [6]. However, most of these methods are based
on single modal input, i.e., either using CFP images or OCT
slices as the input to diagnose the diseases. For example,
using CFP images to classify DR [5] and Glaucoma [7],
or using OCT scans to detect DR [6] and DME [8]. The
critical component of such an automated retinal disease diag-
nosis system is the feature extraction module, which extracts
discriminative features for image classification. Convolutional
neural networks (CNNs) have achieved great success in natural
image classification [9], [10]. Additionally, CNNs have been
used as feature extractors to extract features from medical
images [11]–[13], including CFP and OCT images [5], [8].
CFP imaging has shown promising performance in diagnosing
eye diseases, and the captured images lie in a 2D space, which
can be directly inputted into CNNs [5], [7], [14]–[16]. While
OCT scans are with 3D volumes, they are hard to be handled
by classical CNNs (2D CNNs) to extract features from 3D
volumes directly. One way to solve this problem is to treat
the 3D volume as a multi-instance sample. Taking one slice
as one image, 2D CNN can be used to extract features of
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Fig. 1. Illustration of the geometric relationship between CFP image
and OCT slices in a DME-positive example. The green box is the general
region of the OCT scan. Three blue lines, i.e., s1, sj , and sM , on the
CFP image demonstrate the locations of three slices corresponding to
OCT volume. The right column shows three specific OCT slices, which
are chosen from the OCT volume. This example demonstrates that
different slices have different appearances for a DME-positive patient,
i.e., the slice of sj has an obvious abnormal region, but sM looks
normal.

each OCT slice and fuse all slices’ feature maps [17]. Another
way is using 3D CNN as a feature extractor [18] where one
dimension aims to learn the relationships between adjacent
slices. Recently, some studies propose to use multimodal
inputs to improve performance by utilizing the complementary
information of multiple input modalities [19]–[22].

In multimodal learning, there are three multimodal fusion
strategies, i.e., early fusion, intermediate fusion, and late
fusion, to fuse representations for different modalities. Early
fusion combines different modalities’ original input data [23]
or feature representations [24] before making a prediction, and
late fusion fuses each modality’s predictions to obtain the final
predictions. Intermediate fusion is similar to early fusion, but
the model of intermediate fusion strategy has an interaction
among modalities during the training process, and the model
attempts to discover within-modality correlations [23]. Several
recent works of literature have combined multi-modality inputs
to classify eye diseases from CFP and OCT images [25]–[28].
However, these works do not take into account the geometric
correspondence between the CFP and OCT modalities to learn
the correlated features of the two modalities. In contrast,
when retinal imaging is evaluated by human clinicians, the
anatomic correlation between multimodal imaging inputs is
often crucial to making accurate diagnoses. Figure 1 illustrates
the geometric correlation between a CFP image and OCT
scan, in a sample case with DME. There exists a geometric
correspondence; that is, each slice in the OCT volume can
find a potential corresponding location on the enface plane
of the fundus image [29]. This geometric information may
help to localize and confirm potential lesions for a specific
disease diagnosis. For example, if a lesion exists on slice s1,
the corresponding rows of the CFP image may have different
characteristics from other regions. Besides, the different slices
of OCT volume have different appearances, as shown in the
right column of Fig 1. Specifically, slice sj has intraretinal
cysts and retinal thickening from DME, slice s1 has hard exu-
dates (hyper-reflective lesions) related to DME, and sM does
not have any obvious lesions related to DME. Thus, keeping
the key features and removing the redundant information for
the OCT volume is essential for the feature extraction of OCT

modality.
Inspired by the importance of the geometric relationship

between a CFP and corresponding OCT slices in clinical prac-
tice, this paper proposes a novel multimodal method named
geometric correspondence-based multimodal learning network
(GeCoM-Net) to perform ophthalmic image analysis. We uti-
lize this correspondence in the feature space for representation
learning of two modalities. Specifically, based on the clinical
observations, we consider the geometric correspondence be-
tween the OCT slice and the CFP image region to learn the
correlated features of the two modalities for robust fusion. The
correlated information is learned by a new proposed module
(named geometric correspondence-based attention, GeCoA).
It can be utilized to boost confidence in the learned features
for both modalities by encouraging the consistency of the
feature vectors from the two modalities. Furthermore, we
design a new feature selection strategy to extract discriminative
OCT representations by automatically selecting the important
feature maps from OCT slices. Our proposed new feature
selection (named multi-instance feature selection, MIFS) can
extract more discriminative features of 3D OCT volume and
reduce redundant information. MIFS is based on the activation
of a feature map that represents a certain pattern of the input
image. By selecting the activated feature maps from all slices,
our method can reduce the redundant feature representations
while maintaining the discriminative of the final OCT feature
representations. MIFS can also benefit the feature extraction of
CFP modality by involving an attention mechanism to the CPF
image based on the geometric correspondence information. To
be specific, we first compute the responses of OCT slices and
then map the responses into the rows of CFP image feature
maps. Thus, we can know which area of the CFP image is
more likely to be a lesion area.

We summarize the novelty and main contributions of this
work as follows:

1) To improve automated ophthalmic image analysis, we
propose a novel multimodal geometric correspondence-
based multimodal learning network that leverages the
geometric relationships between the CFP image and
its corresponding OCT slices. To our best knowledge,
this work is the first to explicitly consider modeling
the geometric information between the CFP and OCT
modalities to enhance multimodal eye disease diagnosis.

2) A new feature selection module, MIFS, is designed to
select the activated feature maps from OCT slices. It
can reduce redundant information and simultaneously
preserve discriminative information for the feature ex-
traction of the OCT modality. The MIFS module can
also benefit the feature extraction of the CFP modality
by working together with the geometry correspondence
learning module.

3) A geometry-corresponding attention module, GeCoA,
is designed to learn the geometry relationship between
CFP image and OCT slices. It utilizes the OCT slice in-
formation to guide the attention of CFP feature learning.

The remainder of this paper is organized as follows: We
review related studies in Section II. In Section III, we present
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the details of our proposed method. In Section IV, we report
the experimental setup and results. Finally, we conclude this
paper in Section V.

II. RELATED WORK

The section reviews both the single-modal-based and
multimodal-based methods for ophthalmic image analysis.
Also, we will highlight how our method differs from the
existing ones.

A. Single-Modal-Based Approach for Ophthalmic Image
Analysis

CFP and OCT images are among the most commonly used
modalities to diagnose retinal and other eye diseases [30].
CFP images are 2D images, and CNNs are primarily used
for CFP image analysis. Among the existing studies, Juan
et al. exploited the application of different CNN models to
classify Glaucoma and used transfer learning to improve the
performance [31]. Hu et al. proposed a neural network that
contains two sub-networks. One sub-network is designed to
extract discriminative features, and another is designed to pre-
dict retinopathy of prematurity [32]. Shankar et al. proposed
a framework for preprocessing, segmenting, and classifying
diabetic retinopathy from CFP images [33]. In the framework,
the authors proposed a synergic deep learning model to clas-
sify the DR CFP images to various severity levels. Hervella et
al. proposed a method to do the classification and segmentation
tasks simultaneously [14]. In this method, the learning of two
tasks is optimized simultaneously to enhance the input image’s
feature learning. Furthermore, a multi-adaptive optimization
strategy is employed to ensure the equal contribution of two
tasks to classify glaucoma and segment optic disc and cup
from CFP images.

The 3D OCT volume contains multiple 2D slices, enabling
ophthalmologists to cross-sectionally examine distinct retinal
layers for more accurate diagnosis and evaluation. The meth-
ods for OCT image analysis can be grouped into two main
categories. The first group of strategies is to treat the clas-
sification of samples with multiple slices as a multi-instance
problem. This category of methods usually employs a 2D-
CNN for feature extraction and then applies a feature fusion
strategy to fuse the representations from multiple slices. For
instance, EVT-MIL proposes an iterative sampling framework
to classify 3D OCT volumes as a multi-instance problem [34].
It utilizes an iterative algorithm to infer slice labels that
increase the algorithm’s complexity. Li et al. proposed a multi-
instance multi-scale (MIMS)-CNN to fuse the representations
from multiple slices with multi-scale operation [17]. In MIMS-
CNN, a top-k pooling strategy is presented to select the most
active representations from different scale feature vectors and
fuse the selected representations as the final feature vector.
Wang et al. proposed an uncertainty-driven multi-instance
scheme that uses a recurrent neural network to generate
the bag-level representations for the final classification [35].
Alternatively, another group of methods is to classify 3D OCT
volumes using 3D-CNNs by treating the dimension associated
with indices of the slides as the third dimension. For example,

Thakoor et al. proposed Hybrid 3D-2D-CNN to classify 3D
OCT images [36]. It contains two 3D-CNNs that are designed
to extract representations from 3D OCTA and OCT structural
inputs. Then, the 3D representations from the two 3D-CNNs
are concatenated with the 2D-CNN representations extracted
from 2D B-scan images to detect AMD disease. George et
al. proposed an attention-guided 3D-CNN framework that
combines with Grad-CAM to locate the possible lesions to
classify Glaucoma from 3D OCT volumes [37]. Zhang et
al. proposed LamNet, a lesion attention maps-guided model,
to predict the Choroidal Neovascularization from SD-OCT
images by leveraging a multi-scale 3D CNN [38]. Unlike 2D-
CNNs, the third dimension of 3D-CNN is used to learn the
correlation information between several adjacent slices [18].
It aims to discover the potential features among slices, but it
will contain more trainable parameters, which may be more
challenging to train [39].

All methods mentioned above are single-modal-based meth-
ods. In contrast, our method is a multimodal-based method that
utilizes complementary information and correlated information
from both CFP and OCT images simultaneously.

B. Multimodal Learning Approach for Ophthalmic Image
Analysis

CFP image and OCT volume are typically 2D and 3D data.
Zhao et al. give a comprehensive review of deep learning-
based 2D and 3D fusion methods [40]. Although several ap-
plications utilize the 2D and 3D data to improve performance,
such as segmentation [41], [42] and detection [43], [44], few
methods have considered the geometric correspondence of
the two modalities among these applications. For ophthalmic
image registration, the key step is to find the strict correlation
between CFP image and OCT volume. Miri et al. proposed a
feature-based method that used the histograms of the oriented
gradients to improve the registration performance without
additional blood vessel segmentation [45]. Mokhtari et al.
studied the symmetry between two eyes based on the fusion
feature of CFP images and OCT volumes. They used the vessel
information of both modalities to register the CFP images and
OCT volumes [46].

For utilizing the information from multiple modalities in the
ophthalmic image classification task, the most straightforward
idea is concatenating the representations from both modalities.
Based on this idea, Yoo et al. first attempted to combine the
CFP and OCT representations from both modalities as the
final representations. Then they used the final representations
to detect AMD by training a random forest classifier [25].
This method needs to concatenate the pair of CFP and OCT
representations from each sample. Jin et al. proposed a feature-
level fusion (FLF) method to fuse the features to diagnose
typical neovascular AMD [47]. Differently, FLF used OCT
and OCTA images as the input data. Different from this
method, Wang et al. proposed a two-stream CNN, which
uses a loose pairing strategy to classify AMD [20], [48].
This strategy concatenates the CFP representations with OCT
representations from the samples with the same label instead of
strictly from one sample. To learn more discriminative features



4 IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024

2

2

…

𝑠!

CNN

CNN

𝑠"

𝑠#

Classification loss 

Concatenate 

𝑥!

𝑋"

CFP branch

OCT branch

…

Forward compute Backward update

GeCoA module
𝐶!

MIFS
module

𝑊

…

𝐶"#

𝐶$#

𝐶%#

…

…

…

…

Down-
sampling

Down-
sampling

𝐶&
!

𝐶&#

Slice 
feature maps

Fundus 
feature maps

Selected 
feature maps

Slice responses

Attentioned 
feature maps

Fig. 2. The architecture of GeCoM-Net. The upper branch is the CFP branch, which extracts the feature vector from the i-th input CFP image, and
the bottom branch is the OCT branch, which extracts the feature vector from the i-th input OCT volume. There is a multi-instance feature selection
(MIFS) module in the OCT branch to compute the response of each slice and select feature maps. The geometric correspondence-based attention
(GeCoA) module is designed to model the geometric information between the CFP image and OCT slices.

of each modality, He et al. proposed a modality-specific
attention network (MSAN) to classify multiple diseases [49].
The main components of MSAN are two attention subnets,
i.e., a multi-scale attention subnet for extracting multi-scale
features from CFP images and a region-guided attention subnet
for extracting features from OCT images using OCT regions-
of-interest (ROIs).

As the experimental results show, the above methods have
achieved better performance than those using a single modal-
ity. However, it is important to note that these methods only
utilized one well-labeled OCT slice for each sample, whereas
each OCT scan is a 3D volume scan that contains many more
slices, and much more information. Selecting and labeling
one slice from each OCT volume is exceptionally laborious,
but more importantly is prone to sampling error, with the
classification results being highly dependent on the OCT slice
selection strategy [19]. To address this issue, Li et al. proposed
a multimodal multi-instance learning (MM-MIL) model to
detect retinal diseases [19]. The main idea of MM-MIL is
selectively fusing CFP and OCT modalities. It divides the CFP
image into a certain number of patches to match the number of
OCT slices. It fuses the representations of multiple patches and
slices using a multimodal multi-instance subnet and a mean
pooling layer. Finally, the fused representations are used to
detect the seven diseases.

As mentioned above, most of the existing multimodal-based
methods, including our method, are based on the early fusion
strategy. The key difference between the existing multimodal
methods and our method is we introduce a new geometric
correspondence-based multimodal learning strategy to utilize
the geometric relationship information of the two modalities
to enhance representation learning, which can improve classi-
fication accuracy significantly. Besides, a new multi-instance
feature selection module is designed to extract discriminative
features for 3D OCT images.

III. THE PROPOSED METHOD

This section introduces the details of our proposed method
- GeCoM-Net. The inputs of GeCoM-Net are the CFP im-
age and corresponding OCT slices, and its output is the
probability of a particular disease being present. Let D =
{(xfi , XO

i , yi)}Ni=1 be the set of samples in the multimodal
dataset, where xfi denotes a CFP image, XO

i = {si1, . . . , siM}
denotes a bag of OCT slices that include M slices in total, yi
is the corresponding label of the i-th sample, and N is the total
number of samples in the dataset. The goal of our proposed
method is to train a neural network model as a mapping
function p = ξ

(
xf , XO,θ

)
to map the input sample from the

multimodal image space to its label space, where θ represents
the trainable parameters of the neural network model and p
is the output probability of suffering a certain disease for
the input sample. The overall architecture of our method is
shown in Fig. 2, from which we can see that our proposed
method contains two branches, one for CFP image feature
extraction and another for OCT image feature extraction. The
feature extraction procedures of both modalities are based on
2D CNNs. The CFP image will be forwarded to a CNN in the
CFP branch to obtain the feature maps. In the OCT branch,
since the input is a bag of OCT slices, we will get M sets
of feature maps of one OCT volume input after using a 2D
CNN for feature extraction. Then, the M sets feature maps
will be input into our MIFS component for feature selection
and computing the response of the slice. After calculating the
responses of OCT slices, a geometric correspondence-based
attention module is employed to transform the slice responses
into the row-spatial importance of CFP feature maps based
on the geometric correspondence. An attention mechanism
computes the enhanced CFP feature maps according to the
row-spatial importance. Then, the selected OCT feature maps
and enhanced CFP feature maps will go through a pooling
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α of OCT volume. The
multiplication mark stands for the feature channel selection according
to the channel index η.

layer to transform the feature maps into feature vectors. The
feature vectors of the two modalities will be concatenated as
the final feature vector. Finally, a classifier is connected to
classify concatenated feature vectors. Generally, our method
contains four main components: 1) multimodal input feature
extraction, 2) multi-instance feature selection for the OCT
branch, 3) geometric correspondence-based attention module,
and 4) feature fusion and classification.

A. Multimodal Feature Extraction
Since the CFP image and OCT slices have distinctly dif-

ferent characteristics, for example, the CFP image is a color
RGB image, but OCT slices are grey-scale images. Thus, we
utilize two independent 2D CNN backbones but the same
architecture, i.e., ϕ and ψ, to extract features for CFP images
and OCT slices, respectively. For each input CFP image xf

and OCT slice sj , the feature extraction procedure can be
computed as:

Cf = ϕ(xf ),

CO
j = ψ(sj),

(1)

where j denotes the j-th slice of the input OCT volume. In
our method, the CFP image and OCT slice are in different
resolutions, so the sizes of the feature map for them are
different sizes.

B. Multi-Instance Feature Selection
Multi-instance feature selection is designed to discover more

critical ones from a bag of input OCT slices for each channel.
The detailed architecture of the MIFS component is shown
in Fig. 3. The input of MIFS is a set of OCT feature maps
CO = {CO

1 , . . . , C
O
M}, which are extracted by the OCT CNN

backbone ψ. Firstly, the feature maps of each slice should go
through a down-sampling module to convert the feature maps
into a feature vector using a pooling operation as:

vOj = Pooling(CO
j ), (2)

where j = 1, . . . ,M is the slice index. Each feature map is
transformed into an element in the feature vector vOj . Here, we
utilize a pooling layer to compute the feature vectors. Then, we
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use the feature vectors to select the feature maps from the OCT
volume. We regard each element vOj,k of the feature vector vOj
as the degree of activation of a certain pattern. For all M slices,
we select the maximum value from the feature vectors on the
k-th element of the feature vectors as the selected feature map
index for the k-th channel. Equation (3) shows the detailed
computation of the index.

ηk = argmaxj(
[
vO1,k, v

O
2,k, . . . , v

O
j,k, . . . , v

O
M,k

]
). (3)

After obtaining the indexes, we select the feature maps from
all slices to obtain the final selected feature maps as:

CO
α,k = CO

ηk,k
. (4)

Finally, we use a down-sampling module, i.e., a global
average pooling layer, to calculate the feature vector of the
input OCT volume:

vOα = GAP(CO
α ), (5)

where GAP(·) denotes the global average pooling operation.
To ensure that the feature selection process can extract

sufficient information, we incorporate both global average
pooling and global max pooling in the pooling layer, as
described in Eq. (2). Afterward, we concatenate the feature
vectors, which are calculated using Eqs. (3)−(5) under two
different pooling operations, to form the final feature vector
for the OCT branch.

At the same time, we compute the response of each slice
based on the obtained feature vectors vOj , where j = 1, . . . ,M .
Since there may be more than one slice containing lesion
information, we need to compute the probability of each slice
independently. In this work, we leverage a 1D convolutional
layer to calculate it for each feature vector. Lastly, the response
of each OCT slice is computed as:

wj = σ(Conv1D(vOj ))), (6)

where σ(·) is a sigmoid activate function and Conv1D(·)
denotes the 1D convolutional layer with the padding size be
0 and the kernel size is the length of the input feature vector.
The output of the sigmoid function indicates the probability of
the slice having a potential lesion area. These weight values of
the slices will be used to guide the correlated feature learning
illustrated in the following.
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C. Geometric Correspondence-Based Attention

This module aims to learn the correlated features between
the two modalities. Specifically, we leverage the slice re-
sponses from OCT slices to guide the model’s attention
to some rows of CFP feature maps and calculate the final
CFP feature maps using the attention mechanism. The end-
to-end learning process will enable the model to learn the
correlated features for the final disease diagnosis. The specific
architecture of this component is shown in Fig. 4. The outputs
of MIFS are the response values W = [w1, . . . , wM ] for the
input slices. This component first leverages a 1D convolutional
layer to transform the weights into the size of the row number
of the CFP feature map. Using the 1D convolutional layer
considers the several adjacent slices that may contribute to
one row of the CFP image feature maps. The computational
equation is:

r = σ(Conv1D(W )), (7)

where Conv1D(·) is a 1D convolutional layer whose padding
size is 2, kernel size is 6, and stride is 4, and r ∈ Rh×1

indicates the row weights of the rows for each CFP feature
map.

Then, the enhanced CFP feature maps are obtained by
applying the row weights to the CFP feature maps, which are
calculated as:

Cf
α = Cf + r ⊗ Cf , (8)

where ⊗ denotes the multiplication between each row of
feature maps and the weights.

Finally, a global average pooling layer is utilized to convert
the enhanced feature maps into a feature vector as:

vfα = GAP(Cf
α). (9)

D. Feature Fusion and Classification

After obtaining the feature vectors vOα and vfα for input
OCT volumes XO and CFP images xf , GeCoM-Net utilizes
a simple but effective way [50], i.e., concatenating the feature
vectors from two modalities, to fuse the multimodal feature
vectors. Then, it is followed by a dropout layer with a dropout
rate is 0.6. Finally, a softmax classifier is employed to classify
the feature vector into specific categories, and we denote the
output possibility as a positive case for each input multimodal
sample (xf , XO) as p. We use focal loss [51] as the loss
function. The focal loss can be calculated by:

L = −
N∑
i=1

(1− pti)
γ log(pti), (10)

where

pti =

{
pi if yi = 1,

1− pi otherwise.
(11)

and i denotes the i-th sample, γ is the focusing parameter that
controls the easily classified category’s weight. When γ = 0,
Equation (10) equals the normal cross-entropy loss function.

IV. EXPERIMENTAL STUDY

A. Dataset

In this study, we employ two multimodal ocular imaging
datasets, focused on different ocular diseases. We used a
DME dataset derived from the DRCR Retina Network clinical
trials [52], as well as the Glaucoma grAding from Multi-
Modality imAges (GAMMA) dataset from the GAMMA chal-
lenge [53] to evaluate the models’ performance. Both datasets
contain two imaging modalities, i.e., CFP images and OCT
volumes.

The DME dataset is a large multicenter dataset including
diabetic patients with and without DME, derived from 8
different clinical trial protocols of the DRCR Retina Network.
These subjects had paired CFP and OCT images from the
same time points, as well as accompanying clinical data such
as demographic data and best-corrected visual acuity (VA)
from subjective manifest refraction. CFP images are captured
by Canon, Kowa, Optos, Topcon and Zeiss cameras. OCT
volumes are captured by Heidelberg and Zeiss machines.
After removing incorrect, corrupted, incorrectly formatted,
duplicate, and incomplete data from the original dataset, we
obtained 1007 samples (eye-level) from 820 patients. Each eye
has one CFP image and one B-scan OCT volume containing
49 slices. The size of each CFP image is between 863× 1100
and 4000 × 6000 pixels, and the size of each OCT slice is
496 × 512 pixels. Each instance from this dataset is anno-
tated for the presence of center-involved-DME (referred to as
“DME” in this paper), and impaired visual acuity (VA) based
on previously published clinical trial protocol guidelines [52],
[54]. The label for DME is a binary label to indicate the
presence or absence of center-involved-DME, which is based
on established sex- and machine-specific thresholds for retinal
thickening, used throughout the DRCR Retina Network clini-
cal trials [54], [55]. The label for impaired VA is based on a
VA score that is determined by how many letters a patient is
able to correctly read on a standard ETDRS vision chart. This
VA score is an integer that ranges from 0 to 100. Most clinical
guidelines only recommend treatment for DME, where there
is center-involved-DME, together with impaired VA, which
corresponds to a VA score of less than or equal to 78 letters (a
“positive” case); otherwise, we label it as a negative case [55],
[56]. Then, we split the entire dataset into three sub-sets: the
training, validation, and testing subsets at the patient level to
ensure that one patient’s images only exist in one subset. In our
experiment, we select the model with the highest validation
AUROC score on the validation set for testing and report
the results on the testing set. The detailed data statistics of
the three subsets are 490, 164 and 166 patients in training,
validation and testing sets, respectively. At the eye level, there
are 601, 201 and 205 samples in training, validation and testing
sets, respectively. The positive and negative sample ratios are
around 1 : 1 and 1 : 3 for DME and impaired VA in the three
subsets, respectively.

The GAMMA dataset is the first publicly available multi-
modal eye image dataset, containing 200 samples, 100 samples
in training and 100 samples in testing sets. Each sample has
one CFP image and one OCT volume of 256 slices. For the
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CFP images, there are sizes of 2000× 2992 and 1934× 1956
pixels. The size of each OCT slice is 992 × 512 pixels.
This dataset provides the label for grading three categories
of glaucoma: no glaucoma, early glaucoma, and moderate or
advanced glaucoma [53]. Since we can only access the label of
the training set, we split the training data into the training and
validation sets for model training with a ratio of 4 : 1. Then,
we upload prediction results on the test set into the official
platform to obtain the final accuracy results.

B. Experimental Settings
Since the raw data of CFP images are saved in very high

resolutions, we resize the CFP images into 410 × 410 pixels
and the OCT slices are resized into 224×224 for both datasets.
We use all 49 slices of each sample for the DME dataset and
64 slices of each sample with sampling every 4 slices for
the GAMMA dataset to extract the feature of OCT volume
by considering the GPU memory consumption. We also use
several commonly used data augmentation ways to augment
the input images as mentioned in reference [11], except for
CFP images in which the random rotation angle is in the
range of ϕ ∈ [−15°, 15°]. We implement our method using
the PyTorch framework. All the experiments are conducted
on a DGX workstation using one NVIDIA A100 GPU card
with 40 GB memory. During the training process, we use the
Adam optimizer [58] with the learning rate lr = 1e − 4,
the batch size B = 5 and the maximum iteration epoch
E = 400. We also adopt a multi-step learning rate scheduler
to adjust the learning rate with milestone [60, 160, 260], and
the multiplicative factor of learning rate decay is 0.4. When
training the DME classification model, the setting of γ in
the focal loss is 0 since DME is a balance distribution. For
VA classification, we set γ as 2. The hyperparameters are
chosen through an iterative trial-and-error process, aiming to
identify the configuration that yields optimal performance on
the validation set. This selected configuration is then employed
to assess the methods on the test data. By conducting a
backbone selection experiment, we choose DenseNet-121 [10]
as the backbones for both modalities. The results are shown
in Table I.

For the DME dataset, to evaluate the performance of our
model, we employ accuracy (ACC), the area under the ROC
(receiver operating characteristic) curve (AUROC), precision,
recall, specificity, and F1 score as the evaluation metrics. The
larger the model’s value for the five metrics indicates higher
performance. Among these metrics, the primary metric is the
AUROC score since it is not sensitive to data distribution. On
the contrary, the scores of other metrics may be affected by the
threshold. In this section, all reported results are based on the
optimal threshold, which is selected using the precision-recall
curve on the validation set. For the GAMMA dataset, we use
the official metric, Cohen’s Kappa coefficient, to evaluate the
model’s performance. These metrics are defined as follows:

ACC =
TP + TN

TP + FP + TN + FN
, Pre. =

TP

TP + FP
,

Rec. =
TP

TP + FN
, Spe. =

TN

TN + FP
,

F1 = 2× Pre.×Rec.

Pre.+Rec.
, Kappa =

po − pe
1− pe

,

(12)

where TP, FP, TN , and FN are the true positive, false posi-
tive, true negative, and false negative numbers, respectively. po
and pe denote the accuracy and the probability of predicting
the correct categories by chance, respectively. Moreover, we
utilize GPU memory requirements (Memo) and execution time
(Time) to demonstrate the resource and time demands of
various methods [59].

C. Comparison with state-of-the-art methods on the
DME dataset

To demonstrate the effectiveness of GeCoM-Net, we first
compare it with seven peer methods on the DME dataset,
including five single-modal-based and four multimodal-based
methods. For single modal-based methods, the baselines are
1) three different backbones, i.e., DenseNet-121 [10], ResNet-
50 [9] and VGG-16 [57], for classifying CFP images by
considering it is widely used for medical image analysis and
has achieved promising performance; 2) 3D-CNN for classi-
fying OCT volume images as mentioned in reference [19]; 3)
MIMS-CNN [17], which is the current state-of-the-art (SOTA)
for DME detection using OCT images. The four multimodal-
based methods are 1) high-level feature concatenation (FCon)
refers to the process of concatenating the feature vectors from
different modalities as the final feature vector of one sample
for the classification task. This is the most commonly used
multimodal feature fusion strategy [50]; 2) Late fusion of
predictions from multiple classifiers (LateFusion), which is
also a commonly used strategy to fuse multimodal results at
the decision level, using the procedure in reference [20] – av-
eraging the output of their softmax layers; 3) MM-CNN [20],
which is proposed to train a two-stream CNN (ResNet-18
as the backbone) that can extract features from both CFP
and OCT images at the same time.; and 4) MM-MIL [19],
which is a recently published multimodal method for retinal
disease recognition based on ResNet-50. We reimplement
these baselines according to the original papers but fine-tuned
the hyper-parameters on the DME dataset.

The experimental results for all the methods are reported in
Table I, from which we have the following observations: 1)
The methods using OCT inputs outperform the methods that
use CFP images, especially for DME detection (the AUROC
score has been improved by more than 13%). The reason
for this is that in clinical practice, OCT imaging provides
more diagnostically relevant information than CFP for DME
diagnosis, and the presence or absence of DME (including
the labels in this dataset) is defined as OCT-measured retinal
thickness. Therefore, it is unsurprising that single-modality
OCT outperforms CFP imaging in this regard. 2) Multimodal
learning methods can achieve higher accuracy than single-
modal-based methods in most scenarios. It indicates that
the two modalities can provide complementary information
to each other for the detection of impaired VA and DME.
However, FCon and LateFusion obtain lower AUROC scores
for impaired VA diagnosis than single-modal-based methods
that use OCT images. One potential reason is that these two
methods have not fully captured mutually beneficial informa-
tion from both modalities. This underscores the significance
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TABLE I
COMPARISON OF THE RESULTS OBTAINED BY GECOM-NET AND ITS PEER METHODS. MEMO AND TIME STAND FOR GPU MEMORY CONSUMPTION

(IN MB) AND INFERENCE TIME (IN MILLISECONDS) OF ONE SAMPLE, RESPECTIVELY. THE BOLD NUMBER AND UNDERLINED NUMBER INDICATE THE

HIGHEST SCORE AND THE SECOND-HIGHEST SCORE IN A COLUMN, RESPECTIVELY.

Modality Methods VA DME Memo TimePre. Rec. Spe. F1 ACC AUROC Pre. Rec. Spe. F1 ACC AUROC

Fundus
Densenet-121 [10] 0.562 0.719 0.784 0.631 0.766 0.780 0.706 0.923 0.693 0.800 0.795 0.832 1150 13.9
ResNet-50 [9] 0.403 0.877 0.500 0.552 0.605 0.762 0.695 0.802 0.719 0.745 0.756 0.809 1176 5.6
VGG-16 [57] 0.387 0.719 0.561 0.503 0.605 0.700 0.533 0.890 0.377 0.667 0.605 0.692 1030 2.5

OCT
MIMS-CNN [17] 0.709 0.684 0.892 0.696 0.834 0.832 0.989 0.956 0.991 0.972 0.976 0.987 23424 158.3
3D CNN [19] 0.581 0.754 0.791 0.656 0.780 0.829 0.902 0.912 0.921 0.907 0.917 0.967 2750 12.0
Ours (MIFS) 0.655 0.667 0.865 0.661 0.810 0.832 0.966 0.923 0.974 0.944 0.951 0.992 6880 25.8

Fundus
+
OCT

FCon [50] 0.661 0.684 0.865 0.672 0.815 0.816 0.989 0.945 0.991 0.966 0.971 0.993 13870 41.0
LateFusion [20] 0.655 0.632 0.872 0.643 0.805 0.817 0.926 0.824 0.947 0.872 0.893 0.961 7480 36.3
MM-CNN [20] 0.829 0.596 0.953 0.694 0.854 0.847 0.978 0.956 0.982 0.967 0.971 0.992 2390 9.2
MM-MIL [19] 0.620 0.772 0.818 0.688 0.805 0.851 0.830 0.857 0.860 0.843 0.859 0.902 8978 20.9
Ours (GeCoM-Net) 0.732 0.719 0.899 0.726 0.849 0.870 0.989 0.967 0.991 0.978 0.980 0.997 7174 38.6

of proficient multimodal learning; otherwise, incorporating
additional input modalities might not enhance the accuracy
of final predictions. 3) Our proposed MIFS outperforms other
single-modality methods, with the exception of MIMS-CNN.
Comparing MIFS and MIMS-CNN, they yield comparable
results, yet MIMS-CNN demands six times the computational
time of MIFS. This demonstrates that our proposed feature
selection module MIFS can extract discriminative features
from input OCT volume efficiently. 4) GeCoM-Net achieves
the highest or second-highest scores in most metrics for both
impaired VA and DME diagnoses, especially the AUROC
scores on two tasks. Specifically, the probability of predicting
the correct categories by GeCoM-Net improves the AUROC
score of the SOTA for impaired VA and DME diagnoses from
85.1% to 87.0% and 99.3% to 99.7%, respectively. It verifies
the effectiveness of our proposed geometric correspondence-
based multimodal learning strategy.

During inference, the majority of methods can process a
single sample within 50 milliseconds. Our MIFS and GeCoM-
Net both cost less than 40 milliseconds. In contrast, the MIMS-
CNN necessitates over 158 milliseconds due to its requirement
to compute features at three different scales. Comparatively,
CFP-based techniques exhibit significantly lower inference
times when pitted against OCT-based or multimodal-based
methods. The latter two necessitate simultaneous computation
of multiple OCT slices, contributing to increased processing
time. Additionally, FCon, LateFusion, and GeCoM-Net are
based on our MIFS for feature extraction, which results in
them spending a similar amount of time for inference of one
sample. The latency exhibited by our proposed method proves
suitable across numerous real-world scenarios. Considering
GPU memory consumption, as depicted in Table I, our MIFS
and GeCoM-Net demonstrate comparable performance to
OCT-based and multimodal-based methods. Notably, MIMS-
CNN commands the highest GPU memory usage per sample
due to its three-scale feature extraction. In contrast, MM-CNN
exhibits modest GPU memory requirements by leveraging
ResNet-18 as its backbone architecture. Furthermore, the FCon
method consumes more GPU memory than other multimodal
approaches. This discrepancy can be attributed to an additional
fully connected layer with 128 neurons introduced before
the classifier during the feature concatenation stage. While
this layer streamlines training convergence, it concurrently

TABLE II
COMPARISON OF THE RESULTS OBTAINED BY GECOM-NET AND THE

PEER METHODS ON THE GAMMA DATASET. “ADD. INFO.” AND

“ENSEMBLE” IN THE THIRD AND FOURTH COLUMNS STAND FOR

WHETHER USING ADDITIONAL DISC REGION ANNOTATIONS AND

ENSEMBLE MULTIPLE MODELS OR NOT. %AND !DENOTE USE AND NOT

USE THE OPERATE, RESPECTIVELY.

Modality Method Add. info. Ensemble Kappa

Fundus Single-modality [53] % % 0.673
! % 0.677

OCT Single-modality [53] % % 0.575
! % 0.732

Fundus
+

OCT

Multi-modality [53] % % 0.702
! % 0.770

SmartDSP* % ! 0.855
VoxelCloud* % ! 0.850
EyeStar* % ! 0.848
HZL* % ! 0.840
IBME* % – 0.826
MedIPBIT* % ! 0.805
WZMedTech* % ! 0.795
DIAGNOS-ETS* % ! 0.754
MedICAL* % ! 0.729
FATRI-AI* % ! 0.696
Ours (GeCoM-Net) % % 0.860
Ours (GeCoM-Net) % ! 0.884

* The results are from the official report of the GAMMA challenge [53].

escalates the parameter count of the fully connected layer.

D. Comparison with the SOTA methods on the GAMMA
dataset

Then, to further demonstrate the effectiveness of our pro-
posed method, we conduct our method on the publicly avail-
able GAMMA dataset. There are several multimodal mod-
els [53], [60], [61] and fundus-based models [62], [63] have
been developed based on the GAMMA dataset. We compare
the results of our method with the results of six official models
and the top-10 models on the final stage of the GAMMA
challenge [53]. Among six baselines, there are two models for
a single CFP modality, two models for a single OCT modality
and two models for both modalities. The difference between
the two models for different modalities is that one model uses
additional Disc region annotations to help the model learn the
Glaucoma features. For the ten methods, the results are the
ensemble results, except for IBME, which does not provide
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the ensemble information. The detailed ensemble strategies of
existing methods can be found in [53]. For a fair comparison,
we also provide the ensemble result of our method. We choose
three models that attained the highest AUROC scores during
separate training processes, each trained with a distinct random
seed. Subsequently, we create an ensemble by averaging the
predictions generated by these three models. Besides, the
best single model result of our method is also provided. The
detailed results are reported in Table II. From the results in
Table II, one can see that our ensemble result is the highest
score which improves the kappa score of the SOTA for grading
glaucoma from 85.5% to 88.4%. Besides, it is worth noting
that our model, without using additional Disc annotations
and ensemble strategy, can also achieve a higher kappa score
(86.0%) than the previous SOTA method. It further verifies the
effectiveness of our proposed geometric correspondence-based
multimodal learning strategy.

E. Ablation Study
1) Effectiveness of pooling strategy in MIFS: As mentioned

in Section III-B, both global average pooling and global max
pooling are used to select the critical feature maps from
the entire OCT volume in our method, ensuring that the
feature selection process captures sufficient information. To
demonstrate the effectiveness of the feature selection strat-
egy in our proposed MIFS, we compare MIFS with using
only these two basic pooling strategies to select features in
the MIFS module. Specifically, we compare the following
strategies: 1) using global average pooling (AVG. pooling) to
select feature maps and 2) using global max pooling (MAX.
pooling) to select feature maps. The experimental results are
shown in Table III. We can see that global max pooling
outperforms global average pooling on both the VA and DME
classification tasks. Our MIFS can further improve the results
of the approach that uses global max pooling in terms of F1
score, ACC and AUROC. These results verify the effectiveness
of our multi-instance feature selection strategy (MIFS).

2) Effectiveness of GeCoA in GeCoM-Net: To verify the
effectiveness of our proposed geometric correspondence-based
attention module, we construct another variant of GeCoM-Net
(denoted as w/o GeCoA). The method w/o GeCoA ignores the
geometric relationships between the two modalities (i.e., re-
moving the operations on Cf

i to update the weight parameters
of the CFP and OCT branches), but it adopts our proposed
MIFS strategy for learning from OCT scans. The comparison
results are reported in Table IV. From the results, we see that
GeCoM-Net can outperform its variant w/o GeCoA by a large
margin, especially for the VA diagnosis, which improves the
AUROC score from 81.6% to 87.0%. It indicates the essential
role of the geometric correspondence-based attention module
for the feature learning of GeCoM-Net.

F. Visualization and Discussion
For the classification of VA and DME on the DME dataset,

VA classification is an imbalanced classification, and DME is
a balanced classification. To demonstrate the performance of
different models mentioned in Table I, we visualize the ROC

TABLE III
COMPARISON OF THE RESULTS FROM TWO POPULAR POOLING

STRATEGIES AND MIFS. AVG. POOLING AND MAX. POOLING DENOTE

THE GLOBAL AVERAGE POOLING AND THE GLOBAL MAX POOLING FOR

ALL THE FEATURE VECTORS OF OCT SLICES, RESPECTIVELY.

Methods VA DME
F1 ACC AUROC F1 ACC AUROC

AVG. pooling 0.586 0.766 0.810 0.924 0.937 0.989
MAX. pooling 0.605 0.771 0.828 0.939 0.946 0.990
Ours (MIFS) 0.661 0.810 0.832 0.944 0.951 0.992

TABLE IV
RESULTS OF GECOM-NET AND ITS VARIANT W/O GECOA FOR THE VA

AND DME DIAGNOSES.

Method VA DME
F1 ACC AUROC F1 ACC AUROC

GeCoM-Net w/o GeCoA 0.621 0.810 0.816 0.967 0.971 0.993
Ours (GeCoM-Net) 0.726 0.849 0.870 0.978 0.980 0.997
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Fig. 5. The ROC curves of the different models for VA and DME
classifications.

curve, as shown in Fig. 5. The ROC curve is not biased toward
the majority or minority class. From Fig. 5, we can see that our
GeCoM-Net method consistently attains the highest area under
the curve values across all three scenarios - the VA ROC curve
and DME ROC curve. Notably, both the VA and DME ROC
curves demonstrate the largest areas, underscoring GeCoM-
Net’s superior diagnostic performance for both VA and DME
cases. In conclusion, our method has demonstrated robust
performance in both imbalanced and balanced scenarios.

Furthermore, we utilize gradient-weighted class activation
maps [64] (Grad-CAM) to show the focus areas of the model
for the provided prediction in the input images. Grad-CAM
is a technique for producing visual explanations for decisions
from a large class of CNN-based models, thereby making them
more transparent. We choose several positive samples from the
test set of the DME classification task since positive samples
have lesion areas that we can see whether the model focuses
on the correct regions or not. We visualize the samples from
our multimodal model, single CFP image-based model (i.e.,
DenseNet-121) and our OCT-based model (i.e., MIFS). For the
multimodal model, We visualize both CFP and OCT images
by computing the heat map separately. The OCT volume is
normalized over all the slices to see which slices the model
focuses on. For the OCT-based model, we use a similar way
to visualize the OCT part of the multimodal model. The
visualization results (ignoring the OCT slides whose heatmap
pixel values are all less than 0.0002) are shown in Fig. 6. The
two columns of Fig. 6 (a) are the CFP images and highlighted
OCT slices. From the results, one can see that GeCoM-Net can
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Fig. 6. Demonstration of model’s focused areas on three positive
samples using Grad-CAM. We normalize the largest heatmap values
across 49 slices into 0 to 1 for each sample and only show the slices
whose largest heatmap values are larger than 0.0002. In the figure, the
bright color denotes the region on which the model makes decisions.

focus on the correct lesion areas to make the right prediction
for the correctly classified positive samples. For the second
sample, in the results of the multimodal model, the values of
highlighted pixels in the heatmaps of s22 and s25 are larger
than 0.0002 and correctly highlight the lesions. This means
that the model makes decisions based on both slices but pays
more attention to s22. Comparing the results of the multimodal
model to the visualization of single modality-based models,
we can see that the results of the OCT-based model are very
similar to the OCT part of the multimodal model. They focus
on the same OCT slices or the adjacent slices of the same
sample. The main difference between the multimodal model
and the single-modality model is shown in the CFP images.
We find that the heatmaps of CFP images of the multimodal
model are more concentrated (as shown in Fig. 6 (a)) than
those of the CFP modality (as shown in Fig. 6 (b)) and the
highlight region are related to the location of highlighted OCT
slices. The potential reason for this phenomenon is that the
feature learning of CFP images is successfully enhanced by the
multimodal model’s geometric correspondence information. It
has been revealed that the performance improvement is mainly
derived from the enhanced complementary information in CFP
images.

To demonstrate the operation of responses and weights for
both OCT slices and CFP rows, we visualize the average
values of OCT responses and CFP row weights for the
correctly classified positive DME samples. We present the
responses and weights of different indices in Fig. 7. The
top subfigure displays the OCT slice responses, the middle
subfigure illustrates the trained filter, and the bottom subfigure
shows the CFP row weights. The results indicate that the
patterns in OCT slices 17-23 and 25-31 are similar to those
of the filter, suggesting that slices within these indices are
likely to be positive and influential in decision-making. In

8
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Fig. 7. The illustration of the OCT slice responses mapping to the CFP
row weights for a DME positive example. The upper part is the slice
response of OCT volume, the middle part is the well-trained filter and
the bottom part is the CFP row weights.
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Fig. 8. The performance of different models under different levels of
Gaussian noise. “OCT volume” stands for adding noise to the OCT
volume of the single OCT-based model, “CFP image” stands for adding
noise to the CFP image of the single CFP-based model, “OCT volume
of MM” denotes only adding noise to the OCT volume of our multimodal
model, “CFP image of MM” denotes only adding noise to the CFP image
of our multimodal model, and “Both modalities of MM” denotes adding
noise to OCT volume and CFP image of our multimodal model at the
same time.

Fig. 6, the model focuses on slices within this range, which
are highlighted to aid in the decision-making process. This
highlights the effectiveness of the trainable filter in conjunction
with the OCT slice responses in identifying significant slices.
By applying the well-trained filter, we map the OCT slice
responses to the row weights of CFP feature maps. This
mapping results in larger weights being concentrated around
the 5th and 7th rows—around the center part of the input
CFP image. This distribution indicates a potential registration
within the feature space: the important slices of OCT volume
are mainly found in slices 17-23 and 25-31, while the CFP
feature maps’ rows with high weights are rows 5 and 7. These
slice indexes and row numbers correspond to the central parts
of the image and volume, respectively. It is also consistent
with the visualization of the heatmap of the samples as shown
in Fig. 6.
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To evaluate the robustness of our model, we add different
levels of Gaussian noise to the input CFP and OCT images of
three models and compare the AUROC scores for the DME
diagnosis on the DME dataset. The three models consist of
a single CFP-based model, a single OCT-based model, and
our multimodal model. For the single modal-based models,
we add Gaussian noise to the input image directly. In the
case of our multimodal model, we add noise under three
different scenarios: 1) only on the CFP image; 2) only on
the OCT volume; and 3) on both the CFP image and the
OCT volume. The Gaussian noise level ranges from 0 to 0.8
and is sampled at intervals of 0.1. The figure displaying the
AUROC score changes of all models on the test set under
different levels of Gaussian noise is shown in Fig. 8. We
have the following findings: 1) The multimodal model is more
robust than the single CFP-based model and similar to the
OCT-based model. When the noise level is larger than 0.7,
the multimodal method is more robust than the single OCT-
based model. 2) The OCT input is more sensitive to noise
than the CFP input when the noise level is larger than 0.5,
both under the multimodal and single-modal settings. 3) For
the multimodal model, adding noise only to the CFP image
has no obvious impact on the multimodal decision, as the
OCT input can provide complementary information to make
the right decision. However, adding noise to the OCT input
significantly impacts the decision as the noise level increases.

To assess the impact of location shifts between CFP and
OCT, we experiment with varying shift magnitudes on CFP
feature maps to simulate the location on two modalities in
both the VA and Glaucoma classification tasks. In these ex-
periments, we use the well-trained weights and focused solely
on testing different shift sizes. Since it is no longer possible
to submit test results to the challenge platform for Glaucoma
classification1, we report the Glaucoma Kappa values based on
the validation set. Our dataset primarily includes macula center
images, which suggests that shifts between different CFP
images and OCT volumes are likely minimal. We implement
the shifts of 0, 1, 2, 3, and 4 rows on the CFP feature maps,
where a ’0’ shift indicates no movement, and other values
correspond to shifts by the respective number of rows on the
fundus feature maps. Given that our input images are 410 by
410 pixels, the size of the feature maps is 11×11 after feature
extraction. A one-row shift in the feature maps corresponds to
approximately a 9% shift (38 pixels) in the CFP image and
around 15% in the corresponding OCT volume region of the
DME dataset when zoomed to match the input CFP image
size. This shift ratio should be considered a rough estimate.
This is because a single feature in the feature map of the last
layer may correspond to a significantly large perception region
in the input. This is due to the fact that the input undergoes
multiple pooling and downsampling layers before the final
feature maps are obtained. The AUROC scores under these
various shift sizes, as shown in Fig. 9, reveal that while smaller
shifts do not significantly impact the model’s performance,
larger shifts lead to a minor decrease: specifically, a 0.2%
decrease in AUROC after a 4-row shift in VA classification

1https://aistudio.baidu.com/competition/detail/119/0/submit-result
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Fig. 9. The AUROC and Kappa scores vary under different shift sizes
for VA and glaucoma classifications, respectively. the ‘shift size’ refers to
the number of rows shifted on the CFP feature maps.

and a 3% decrease in Kappa after a 3-row shift in Glaucoma
classification. This result is likely due to our method’s use of
OCT location information to enhance feature learning in CFP
images. After extensive training, the CFP backbone is able
to extract superior features compared to when it is trained
solely with CFP images. The features in the last feature map
layer are derived from a large conception region. Therefore,
during testing, the impact of fundus row weights on the CFP
features is relatively limited. Besides, our method also utilizes
the complementary information of OCT to make decisions
together, the information from OCT can maintain a high
performance.

V. CONCLUSION

In this work, we proposed a geometric correspondence-
based multimodal learning network (GeCoM-Net) to diagnose
eye diseases and conditions using CFP and OCT image
modalities. It leverages the geometric relationships among
the CFP image and its corresponding OCT slices to learn
correlated and complimentary features from the two modalities
to improve diagnosing accuracy. Moreover, we designed a new
feature selection module (MIFS) to select the activated feature
maps from OCT slices, which is essential to reduce redundant
information and simultaneously preserve discriminative infor-
mation for the feature extraction of the OCT modality. We
also designed a new geometric correspondence-based attention
(GeCoA) module to learn the geometry relationship between
CFP image and OCT slices, which is essential to learn the
correlated features between CFP image and OCT volume.
Experiments on a large dataset (DME dataset) and a popu-
lar public dataset (GAMMA) demonstrate that GeCoM-Net
outperforms the current SOTA methods for DME, impaired
VA and glaucoma diagnoses, which verifies the effectiveness
of our proposed strategy.
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