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Abstract—In this paper, we propose a method, Generative
Image Reconstruction from Gradients (GIRG), for recovering
training images from gradients in a federated learning setting,
where privacy is preserved by sharing model weights and gradi-
ents rather than raw training data. Previous studies have shown
the potential for revealing clients’ private information or even
pixel-level recovery of training images from shared gradients.
However, existing methods are limited to low-resolution images
and small batch sizes or require prior knowledge about the
client data. GIRG utilizes a conditional generative model to
reconstruct training images and their corresponding labels from
the shared gradients. Unlike previous generative model-based
methods, GIRG does not require prior knowledge of the training
data. Furthermore, GIRG optimizes the weights of the conditional
generative model to generate highly accurate “dummy” images
instead of optimizing the input vectors of the generative model.
Comprehensive empirical results show that GIRG is able to
recover high-resolution images with large batch sizes and can even
recover images from the aggregation of gradients from multiple
participants. These results reveal the vulnerability of current
federated learning practices and call for immediate efforts to
prevent inversion attacks in gradient-sharing-based collaborative
training.

Keywords—Inversion attack, deep leakage, data privacy, federated
learning

I. INTRODUCTION

Federated learning (FL) [1] is a novel paradigm in dis-
tributed learning that offers the potential for both privacy and
efficiency in training models across multiple organizations. In
a centralized FL setting, a central server sends a joint model,
also referred to as the collaborative model, to local participants.
Upon receipt of the joint model, each participant computes
local gradients using their own local dataset. These local
gradients are then transferred back to the central server, where
they are aggregated to update the joint model. This process is
repeated multiple times, allowing for the training of an accurate
model without the need for the exchange of private training
data. FL enables cooperation among competitive organizations
by eliminating the requirement for sharing raw data with other
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participants, as it is believed that gradients and models can be
safely shared while preserving data privacy.

However, recent studies have demonstrated that the shared
gradients from each participant and weight parameters of
the joint model, represented by M , may contain sensitive
information about the training data of each participant. A
variety of attacks have been identified that can potentially
reveal this sensitive information, including membership in-
ference attack [2, 3], properties inference attack [4], class
representative attack [5], and model inversion attack [6–8].
In this study, we focus on the model inversion attack, also
known as the reconstruction attack, which aims to reconstruct
the training images from the gradients shared by participants.
The pioneer reconstruction attacks [6–8] adjust values of
pixels of a randomly initialized image or dummy image in a
direction that minimizes a specific loss function, as illustrated
in Figure 1 (a). It is the difference between the shared gradients
from one local participant and the dummy gradients, which
are calculated by computing the gradients over the global
model using the dummy image as input. If the attacker is
able to minimize this distance to zero, the dummy image
is transformed from the randomized image to the training
image of the local participant. The limitation of these attacks
is the lack of capability in reconstructing a large batch of
images. The potential reasons are two fold: 1) the increasing
number of parameters to be optimized along with the increase
of reconstruct images and 2) the ignorance of considering
relationships among neighbour pixels. For example, when the
attacker reconstructs N images (32× 32) on the single shared
gradients, the training parameters are directly proportional to
the number of reconstructed images (N×32×32 parameters).
These attack methods updated the pixel value without regard
to the neighbour pixels. In addition, the pixel relationships are
not used crucially by these attacks due to the fact that pixels
are updated without regard to the neighbour pixels.

More recently, Jeon et al. [9] explored the use of genera-
tive models to generate dummy images, which has achieved
promising performance. Specifically, they proposed the Gra-
dient Inversion in Alternative Spaces (GIAS) method, which
relies on prior knowledge of the generative model to search
the optimal parameter values in the latent space deduced by
the generative model instead of the ambient input space, as
illustrated in Figure 1 (b). In such a way, it aims to speed up the
search process and leverage the prior knowledge learned in the
pre-trained generator to improve the reconstruction attack. To
further improve the performance, GIAS optimizes each trained
generator for each latent vector to reconstruct training images
after the optimization process of the latent vectors. However,
the reliance on prior knowledge of the user data distribution as
a requirement for pre-training the generative model in GIAS
makes it impractical when this information is unavailable.
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Additionally, the adaptation of the generative model to each
individual input in GIAS to improve reconstruction attack
performance is extremely resource-consuming for a large batch
of images.

In this paper, we propose a novel method, named Generative
Image Reconstruction from Gradients (GIRG), to reconstruct
the training images from the shared gradients using a condi-
tional generative model without requiring prior knowledge of
the user’s data distribution. By randomly initializing the input
latent vectors of the generative model, GIRG optimizes the
weight parameters of the generative model to transform the
random latent vectors into the reconstructed images that can
produce the gradients to align with the shared gradients. It is
noteworthy that only a single generative model is employed to
reconstruct a batch of images in the inversion attack scenario.

The novelty and main contributions of this work can be
summarized as follows:
• A conditional generative model-based approach (GIRG)

is proposed for an efficient reconstruction attack that
leverages shared gradients from participants. GIRG does
not require prior knowledge of the user’s data distribu-
tion.

• Unlike existing generative model-based methods, such
as GIAS, which search for optimal latent vectors, GIRG
only needs to train a single generator and optimizes its
weight parameters to reconstruct both training images
and labels in a unified framework.

• For the first time, GIRG demonstrates the ability to
reconstruct a batch of 128 private training images from
gradients with sharp and realistic images through the
training of a single conditional generative model. Fur-
thermore, GIRG exhibits high performance even when
duplicated labels are present in a batch.

• This work is the first study to successfully demonstrate
reconstruction attacks on averaged gradients from all
participants. The private training images of all par-
ticipants can be reconstructed without knowledge of
the ownership of the reconstructed images, highlighting
the threat posed by reconstruction attacks in privacy-
preserving FL using homomorphic encryption or multi-
party computation.

II. RELATED WORK

In this section, the investigation into the various forms
of information leakage from local participants in centralized
federated learning and the methods utilized by attackers to
obtain sensitive information from shared gradients is presented.
The focus is on the relevant literature that addresses different
attack scenarios and those capable of reconstructing training
data. The overview of information leakage in centralized
federated learning is discussed, followed by a review of the
methodology of reconstruction attacks and an evaluation of
their strengths and weaknesses. Lastly, the unique aspects of
the current study are highlighted in comparison to existing
studies on reconstruction attacks.

In the centralized federated learning setting, the sharing of
weights or gradients among participants has been shown to

lead to information leakage. To protect the privacy of partici-
pants, some may choose to encrypt their updated parameters.
However, this still leaves them vulnerable to data poisoning
attacks [10–13] and model poisoning attacks [14–17], as
the central server cannot differentiate between legitimate and
malicious updates. On the other hand, if the parameters are not
encrypted, malicious actors can exploit them to obtain sensi-
tive information. For the first types of leakage information,
the membership inference attacks [2, 3, 18, 19] are able to
distinguish whether the selected data is or is not trained in
the centralized federated learning. This leakage is vulnerable
due to the fact that the competitive company can use this
information to impose on other organizations. Additionally,
some studies [4, 20, 21] have shown that observing the updated
gradients from participants can result in leakage of sensitive
features of the training data, such as eye wear, identity, mem-
bership, gender, region, and race. On the other hand, studies
using generative adversarial networks (GANs) [5, 22] have
demonstrated the ability to generate images representative of
the class images from all participants. However, it is important
to note that while these attacks can obtain limited information
about the training data, the most vulnerable form of attack
is the gradient inversion attack, as it allows the attacker to
reconstruct the entire training data.

The gradient inversion attack in FL aims to reconstruct
the training data from participants by exploiting the shared
gradients uploaded to the central server or a malicious agent.
The existing gradient inversion attacks [6–9, 23] have already
presented the effectiveness of each attack and the information
that can be obtained from shared gradients. Pioneer studies of
DLG [6] and iDLG [7] demonstrate the possibility of recon-
structing training images from the shared gradients. Geiping
et al. [8] proposed the inverting gradients to reconstruct the
private images from shared gradients by using the angles as
a loss function and the Adam as an optimizer and added
the regularization term as total variation in the loss function.
Nevertheless, the quality of inverting gradients is not efficient
when the batch size is large or the image resolution is high. As
a following-up, Yin et al.[23] improved the gradient inversion
by adding fidelity and group consistency regularization to
the loss function. Moreover, they presented the batch label
restoration technique when the labels are not repeated in a
single batch. Even though, the existing attacks proposed the
new methodologies to improve a gradient inversion attack in
FL, all of them [6–8, 23] reconstruct the training images by
optimizing the pixel values of the dummy images directly.
The limitation of these attacks is the lack of capability in
reconstructing a large batch of images.

Recently, Jeon et al. [9] introduced the Gradient Inversion
in Alternative Spaces (GIAS) method, similar to our proposed
approach, which utilizes generative models to generate dummy
images. The fundamental concept of GIAS is to explore
solutions within the latent space as opposed to the high-
dimensional ambient input space of generative models. Ad-
ditionally, they implement multiple trained generative models
to enhance the performance of reconstruction attacks. The
experimental results in [9] demonstrate that the generative
model surpasses previous gradient inversion attacks based on
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(a) (b)

Fig. 1. The comparison of two types of inversion attack approaches: (a) Pixel-wise optimization-based attack approach and (b) Generative model-based attack
approach. In (a), it optimizes pixel-values of dummy images directly; In (b), GIAS optimizes the latent vectors and weight parameters of B latent vector-specific
generators, while our method (GIRG) optimizes the weight parameters of a single generator only.

pixel-wise techniques. Nevertheless, the accuracy of image
reconstruction is compromised when the batch size surpasses
32. Moreover, reconstructing N training images in a single
batch requires high memory and computational time as N
generative models need to be trained using shared gradients.
GIAS also necessitates a trained generator, trained on the ap-
proximate data distribution of participants or shared gradients
from participants, which may not be feasible in real-world
scenarios. Furthermore, the number of training parameters
in GIAS increases significantly with the number of training
images, hindering its scalability. Despite advancements in
existing gradient inversion attacks, there is still a lack of
a single attack that can accurately reconstruct all training
images in large batch sizes, such as 128 images, without prior
knowledge of the training data.

Our proposed method, GIRG, requires only a single gen-
erative model for the reconstruction of both the training
images and their respective labels within a unified framework.
Unlike GIAS, which searches for optimal latent vectors, GIRG
optimizes the weight parameters of the generative model
solely. This methodology leads to improved reconstruction
performance, particularly in scenarios involving a large batch
size or high-resolution training images.

III. THE PROPOSED METHOD

Federated learning is a widely adopted approach in the
field of distributed machine learning, which enables collabora-
tion between K participants (P1, P2, . . . , PK) in the training
of a joint model M without exchanging their private data
(X1, X2, . . . , XK). Although private data is not being trans-
ferred, the previous reconstruction attacks have demonstrated
the potential to reconstruct participants’ private data by ob-
serving the trained gradients g. However, these reconstruction
efforts may face potential failures when the batch size B
increases, leading to challenges in accurately reconstructing
private data. Additionally, some reconstruction attacks require
knowledge of the ground truth labels y or assume no duplicated

labels exist. Lastly, some attacks require the pre-trained model,
which has been trained on a similar data distribution as prior
knowledge to the participants, to reconstruct training data.

This study aims to develop a novel reconstruction attack
that operates without the participant’s prior knowledge and
can accurately reconstruct images using aggregating gradients
from multiple participants instead of trained gradients from one
participant. To achieve this objective, we need to overcome
several key challenges. It should utilize sufficient computa-
tional resources to accurately reconstruct data on large batch
sizes (e.g., B = 128) without relying on prior knowledge, such
as pre-trained models or ground truth labels. Furthermore, it
must be able to precisely reconstruct labels when duplicated
labels are in the training batch. If these challenges can be
overcome, the methodology can be applied in real-world
scenarios, raising concerns about the vulnerability of current
federated learning practices.

A. Generative Image Reconstruction from Gradients
We present a novel method, called Generative Image Recon-

struction from Gradients (GIRG), for reconstructing training
images X from shared gradients g. An overview of our method
is shown in Figure 2, from which we can see that GIRG trains
a class-conditional generative model (e.g., a conditional gen-
erator G from a Large Scale Generative Adversarial Network
(BigGAN) [24]) to generate a dummy image X̂ to match the
true gradients g iteratively. After many iterations, the generated
dummy image X̂ can produce the gradients aligned with the
shared gradients g, and we can obtain the image X̂ that looks
as same as the training image X .

To initiate the reconstruction process, which is illustrated in
Algorithm 1, we first initialized a conditional generator G with
weight parameters θ and a latent vector (Z ∈ Rdz randomly,
where dz denotes the dimensionality of the latent vector). After
the initial setup, G transforms the latent vector Z and the class
label y into a dummy image X̂ = G(θ;Z, y), with dimensions
dC × dW × dH and class label y ∈ RN . Subsequently,
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Fig. 2. The framework of our proposed GIRG. It iteratively generates dummy images that can produce the gradients aligned with the shared gradients from
the collaborative participant.

forward propagation is performed on the joint model M with
weight parameters W by passing the dummy image X̂ to M ,
resulting in the predicted output ŷ = M(W ; X̂). After that,
the predicted output ŷ and the class label y are utilized to
calculate the dummy gradients, represented by ĝ as:

ĝ =
∂L(M(W ; X̂), y)

∂W
, (1)

L is the loss function for the classification task, and we set it
as a cross-entropy function in this work.

Then, agent A computes the difference between the dummy
gradients ĝ and the shared gradients g according to the
following equation:

D(ĝ, g) = 1− ĝT g

||ĝ|| · ||g||,
(2)

where we reshape the shared gradients g and ĝ into column
vectors for calculation.

Next, the agent A updates the generator by minimizing the
loss function D as:

θ ← argmin
θ
D(ĝ, g), (3)

where L is the loss function for the classification task, and we
set it as a cross-entropy function in this work.

In such a way, after a large number of N training iterations,
the conditional generator G can retain the training images’
characteristics and generate a dummy image X̂ that closely
resembles the training image X from the participant P .

Algorithm 1 Reconstructing Single Image from Shared Gra-
dients
Input: M: joint model from the participant or the aggregation
server; W: the weight parameters of the joint model; g: the
public shared gradients calculated based on the training image
X; G: the image generator; θ: the weight parameters of G; y
the ground truth label for X;
Output: X̂: the reconstructed image.

1: Z ← N (0, 1); θ ← N (0, 1) ▷ Initialize Z and θ
randomly

2: for j ← 1 to N do
3: X̂ ← G(θ;Z, y)
4: ĝ ← ∂L(M(W ; X̂), y)/∂W
5: θ ← argmin

θ
D(ĝ, g)

6: end for
7: return X̂

B. Reconstruct Multiple Images on Shared Gradients With
GIRG

To extend the capabilities of single-image reconstruction,
a generator incorporating multiple latent vectors is utilized
to reconstruct multiple images. The number of initialized
latent vectors is adjusted from one to a batch of B vectors,
without affecting the number of training parameters in GIRG.
Subsequently, the B latent vectors are input to the generator
G to generate B images, which are used to calculate the
dummy gradients ĝ. The generator G is trained to minimize
the difference L between the dummy ĝ and shared gradients
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g. Therefore, a modification is made at Line 1 in Algorithm 1
to the following line, represented by

Z ← [N (0, 1) for i in range(B)]. (4)

C. Reconstruct Multiple Images on the Aggregation of Gradi-
ents – Averaged Gradients Over All Participants

Traditionally, it has been argued that if the aggregating
server A in FL is able to calculate the averaged gradients from
all local participants (ḡ =

∑k
l=1 gl/k) without having access

to the shared gradients from all participants [g1, g2, . . . , gk],
server A has the knowledge about the gradients ḡ only and does
not know about the actual value of each shared gradients from
participants. Nevertheless, there is increasing concern that the
ḡ can be used to refer to the training data in distributed partic-
ipants {X1, X2, . . . , Xk}. This concern may be explained by
the fact that the ḡ is equal to the gradients that are computed
by data from all participants (X̃ = X1 ∪X2 · · · ∪Xk) when
model M does not have the batch normalization as

ḡ =

k∑
h=1

g

k
=

B×k∑
l∈X̃

gl
B × k

(5)

and

g =

B∑
l=1

gl
B
. (6)

We demonstrate that GIRG is able to reconstruct the training
images from all participants, even without knowing their
ownership, by using averaged gradients aggregated from each
participant. Although we do not know the ownership, this
data leakage provides an exciting finding to reconstruct the
training images on the averaged gradients instead of the shared
gradients from each participant. Prior to the attack, we assume
that the label information and number of training images (R
= B×K) from all participants are known to the attacker. For
inversion attack, we initialize a batch of R latent vectors and
input them to generator G. Then, we train the generator G
using a slightly modified training objective that minimizes the
difference between the dummy gradients ĝ and the averaged
gradients ḡ, instead of the shared gradients from each partici-
pant gl. After a large number of N training iterations, the batch
of reconstructed images X̂ looks like the training images from
all participants X̄ , indicating the possibility of using either
the shared gradients gk from each participant or the averaged
gradients from every participant ḡ is able to reconstruct the
training images X .

D. Label Recovery When Duplicated Labels Exist
Previous studies have demonstrated that prior knowledge of

the labels of the images before reconstructing training images
simplifies the optimization problem (Equation (3)). It should
be noted that existing techniques, such as those described in [7,
23], have limitations in accurately reconstructing batch labels
with duplicates.

In this study, we propose a novel method for reconstructing
the batch labels based on the reconstruction of training images

presented in a previous subsection. The key difference between
the two methods lies in the utilization of gradients at different
layers of the joint model. Instead of minimizing the distance
between the dummy gradients and trained gradients at every
hidden layer, our method minimizes the distance between the
dummy gradients and trained gradients at the last β hidden
layers only. The finding from our studies suggests that these
layers, which are close to the output layers, contain crucial
information regarding the ground truth labels (y). Let W be
the weight parameters of the joint model M , β the number of
layers utilized for label reconstruction, gβ the gradients at the
last β hidden layers from participant P , and B the batch size.
Our methodology is initiated with the random generation of
latent vectors Z, an untrained generator G, and randomized or
dummy labels ŷ. After the initialized phase, the dummy images
X̂ are then generated by passing Z and ŷ through the generator
G. These images are input into the joint model M to obtain
the predicted outputs, which are then used in backpropagation
to obtain the dummy gradients ĝ. As previously mentioned,
the loss term for label reconstruction is calculated only on the
dummy and trained gradients at the last β layers. Subsequently,
G and ŷ are optimized to minimize the following equation to
reconstruct the ground truth labels from the participants:

θ, ŷ = argmin
θ,ŷ

D(ĝβ , gβ). (7)

Following multiple iterations of optimization, our proposed
method is capable of reconstructing the batch labels from the
last β hidden layers. While it is not possible to guarantee
100% accuracy, as demonstrated by previous studies such
as [7, 23], our method outperforms prior attacks in terms
of accuracy when duplicated labels are present in the batch.
This represents a significant improvement over prior methods
and enables the reconstruction of training images from local
participants without prior knowledge of the labels. Our method
thereby enables the reconstruction of training images from
local participants without any prior knowledge of the actual
labels.

IV. EXPERIMENTAL STUDY

In this section, we compare the performance of GIRG
in reconstructing training images with other state-of-the-art
algorithms, including DLG [6], iDLG [7], inverting gradients
(IG) [8], and GIAS [9]. The experiments are conducted on
two popular datasets: CIFAR-10 (32× 32 px) [25], ImageNet
(224 × 224 px) [26] and the ChestX-ray dataset from the
National Institutes of Health [27] using ResNet architectures.
In the experiments, by following the setting in [6], we replace
the ReLU activation function with Sigmoid function in ResNet
architectures. The Adam optimization algorithm [28]is used for
all experiments. Moreover, in GIAS, a pre-trained generator,
which is trained on a similar distribution as participants, is
used for the inversion attack.

The performance of the reconstruction attacks is evaluated
in terms of convergence speed and image quality by using
the structural similarity index measure (SSIM) [29] and a
feature similarity index for image quality (FSIM) [30]. The
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TABLE I. THE MEAN AND STANDARD DEVIATION OF SSIM AND FSIM ON THE CIFAR-10 DATASET OVER RESNET-18 NETWORKS WITH DIFFERENT
BATCH SIZE (BS).

BS = 8 BS = 64 BS = 128
SSIM FSIM SSIM FSIM SSIM FSIM

GIRG 0.983 ± 0.016 0.987 ± 0.006 0.980 ± 0.006 0.979 ± 0.007 0.979 ± 0.009 0.979 ± 0.010
GIAS [9] 0.999 ± 0.000 0.999 ± 0.000 0.958 ± 0.012 0.975 ± 0.009 0.906 ± 0.044 0.929 ± 0.027

IG [8], 0.403 ± 0.027 0.623 ± 0.006 0.129 ± 0.007 0.588 ± 0.007 0.088 ± 0.002 0.608 ± 0.004
iDLG [7] 0.423 ± 0.022 0.639 ± 0.009 0.138 ± 0.010 0.588 ± 0.007 0.071 ± 0.001 0.619 ± 0.007
DLG [6] 0.322 ± 0.020 0.610 ± 0.013 0.150 ± 0.009 0.584 ± 0.005 0.085 ± 0.007 0.610 ± 0.004

TABLE II. THE MEAN AND STANDARD DEVIATION OF SSIM AND FSIM ON THE CIFAR-10 DATASET OVER RESNET-20 NETWORKS WITH BS = 16.

GIRG GIAS [9] IG [8] iDLG [7] DLG [6]
SSIM 0.945 ± 0.038 0.657 ± 0.060 0.055 ± 0.004 0.074 ± 0.005 0.069 ± 0.006
FSIM 0.949 ± 0.025 0.8 ± 0.03 0.572 ± 0.011 0.573 ± 0.012 0.574 ± 0.014

(a) (b)

Fig. 3. Plotting the mean of SSIM and FSIM from GIRG, GIAS, IG, iDLG, and DLG on the CIFAR-10 dataset over ResNet-18 networks with BS = 128.

experimental results are divided into four parts, focusing on the
reconstruction attack on a single image, multiple images, high-
resolution images, and the reconstruction attacks on averaged
gradients.

A. Reconstruct Multiple Image Reconstruction on Shared Gra-
dients.

To illustrate the efficiency of our method, firstly, we perform
five experiments on the CIFAR-10 validation dataset over
the ResNet-18 architecture. We evaluate the image quality
of the reconstructed images by calculating the mean and
standard deviation of SSIM and FSIM between the ground-
truth images and the reconstructed images. A mean score close
to 1 for SSIM and FSIM indicates high similarity between
the reconstructed images and ground-truth images. Table I
reports the experimental results on ResNet-18 with different
batch sizes. We find that traditional methods such as DLG,
iDLG, and IG perform poorly when the batch size is 64 and
128, as evidenced by mean scores of SSIM less than 0.2.
These results demonstrate that those attacks cannot reconstruct
images successfully when the participant trained a joint model
with large batch size. On the other hand, GIAS and GIRG,

which incorporate generators in their reconstruction process,
can perform well. For instance, their mean score of SSIM and
FSIM is greater than 0.9. From the results, we can see that
GIRG outperforms previous attacks when the batch size is 64
and 128. However, our method’s performance is slightly less
optimal than that of GIAS when the batch size is 8. This may
be due to the fact that GIAS employs pre-trained generators,
which can leverage prior knowledge of the data distribution
to improve reconstruction accuracy, especially when the batch
size is small.

In contrast, the training process for GIAS becomes com-
plicated when the batch size is large due to the increase in
parameters to be optimized. However, increasing batch size in
GIRG does not increase the optimization parameters, thus no
significant impact on the image quality of the reconstructed
images using GIRG. These results highlight the effectiveness
of our proposed method, GIRG.

1) Convergence of Different Attack Methods: Previous at-
tack methodologies have demonstrated that the reconstruction
attack on the large batch size required more attack iterations
to successfully reconstruct private images. The possible expla-
nation is that the training parameters in their methodologies
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Fig. 4. A batch of 128 reconstructed images obtained by GIRG, GIAS, IG, iDLG, and DLG on the CIFAR-10 dataset over the ResNet-18 network (The order
of reconstructed images is realigned for observing the quality of reconstructed images).

increased linearly with batch size. For example, the pixels
of dummy images in DLG, iDLG, and inverting gradients
are training parameters. Although GIAS performs better than
DLG, iDLG, and inverting gradients, the training parameters
of GIAS, which are the parameters of generators times the
number of images, are still increased significantly with batch
size.

To evaluate the convergence speed, we perform attacks on
the CIFAR-10 dataset with ResNet-18 and measure SSIM
and FSIM on every attack iteration when the batch size is
128. The mean and standard deviation of SSIM and FSIM of
multiple attacks are calculated and plotted in Figure 3, from
which we can see that GIRG outperforms previous attacks
and is able to converge in 20,000 iterations. In contrast,
GIAS, which performs better than DLG, iDLG, and inverting
gradients, still needs to train multiple generators with more
attack iterations to improve the image quality. Furthermore, we
observe a significant decrease in GIRG around the 15,000th

iteration. One potential explanation for this phenomenon is
the existence of an alternative set of weights for the generator
that produces generated images distinct from the ground-truth
images, despite the dummy gradients closely resembling the
ground-truth gradients. To illustrate, the generated images may
share similarities in semantics with the ground-truth images,
yet exhibit variations in their stylistic attributes and result in
lower SSIM and FSIM scores.

After examining the convergence speed, we also demon-
strate 128 reconstructed images from all attacks in Figure 4.
The reconstructed images from GIAS and GIRG are reordered
to match the order with ground truth images for a detailed
explanation. From the figure, we can observe that the pre-
vious attacks without a generator are not able to accurately
reconstruct the training images from participants. The potential
reason is that the pixel-wise attacks, such as DLG and iDLG,
are iteratively adjusting individual pixels within synthetic
images. They suffer from a significant increase in the total



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

number of trainable parameters as the batch size is augmented
and result in a low performance in inversion attack. Comparing
the performance between GIAS and GIRG, we match a set
of unsuccessfully reconstructed images from GIAS with the
successfully reconstructed image from GIRG and draw the
red boxes around the images. This figure has two styles of
red boxes: 1) the red dash boxes are drawn to demonstrate
the images that are not able to reconstruct accurately, and 2)
the straight red boxes, which are the most exciting finding
in this experiment, are drawn to demonstrate the impact of
using the trained generator for reconstruction attacks in GIAS.
For example, as seen from the red car with the blue sky
reconstructed image in the first row of GIAS, the red car in
this image is from the bottom row of GIRG, and the blue
sky is from the first row of GIRG. For the following two
examples, the horse image in GAIS has two heads, and the
cat is transformed into a black and white cat. A plausible
explanation is that the trained generator tried to reconstruct
the images based on training data distribution and parallelly
minimize the difference between dummy gradients and trained
gradients. In summary, these results suggest that using GIRG
is able to reconstruct a large batch size accurately without
generating new images from a pre-trained generator like GIAS.

2) Scalability on Large Batch Size: To investigate the
scalability of reconstruction attacks on large batch size, we
conduct experiments to compare the execution time between
GIRG, GIAS, IG, iDLG, and iDLG when batch sizes varied
from 8, 64, and 128. Fig 5 presents the execution time of
attacks when varied the batch size from 8 to 128. As shown
in Fig 5, GIAS has a higher execution time for reconstructing
training images than GIRG. Moreover, the results appear to
confirm that the gap between the execution time of GIAS
and GIRG keeps increasing along with the batch size. Please
note that we do not include the time cost of training GIAS in
this figure. These results demonstrate that training multiple
generators require high execution times for reconstructing
training images from shared gradients. As seen in Fig. 5, the
execution time of the pixel-wise attack is shorter than that of
the generator attacks (GIRG and GIAS). However, we also
need to note that DLG and iDLG are unable to reconstruct the
image accurately. The experimental results in this subsection
indicate that using a single BigGAN generative model from
GIRG is promising for inversion attack in terms of the image
quality in the reconstructed images, convergence speed, and
scalability.

3) Performance on the ResNet-20 architecture: In the
following subsection, we evaluate the performance of peer
methods and GIRG on the CIFAR-10 dataset using a modified
ResNet-20 with BS = 16. This architecture is more practical
for evaluating reconstruction attacks since it is deeper and has
fewer training parameters than ResNet-18, which is used in
the previous section. Table II compares the performance of the
reconstruction attacks using the mean and standard deviation
of SSIM and FSIM, and the experiments are conducted in five
runs. The results show that attacks using the generator (GIRG
and GIAS) significantly outperform those based on optimizing
pixel values directly (i.e., DLG, iDLG, and IG). However,
no significant difference is found among the reconstruction

Fig. 5. Comparison of the execution time cost of GIRG, GIAS, IG, iDLG,
and DLG when conducting an attack on the CIFAR-10 dataset over ResNet-
18.

Fig. 6. A batch of the reconstructed images obtained by GIRG on the
ImageNet over ResNet-18.

attacks using pixel values. The results, as shown in Table II,
indicate that the GIRG is still able to accurately reconstruct
the training image by seeing the mean score of SSIM and
FSIM is greater than 0.9. In contrast, the performance of GIAS
drops significantly when the training images are trained on
ResNet-20 instead of ResNet-18. The results in this section
indicate that the proposed method (GIRG) can handle varying
batch sizes and deliver high performance even with deep model
architectures and limited training parameters.

Fig. 7. A batch of the reconstructed images obtained by GIRG on the Chest
X-ray dataset over ResNet-18.
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B. Reconstruct High-Resolution Images

In the previous section, we have already demonstrated a
reconstruction attack on low-resolution images in the CIFAR-
10 dataset. To confirm the effectiveness of GIRG on the high-
resolution images, we conduct attacks on ImageNet and the
ChestX-ray dataset, which have 256×256 pixels, over ResNet-
18 when batch size is one. The generator in this experiment
is a randomly initialized BigGAN generator, and the maximal
attack iteration is 25,000. Hence, we used GIRG to reconstruct
a single image from the ImageNet and demonstrated the
reconstructed images in Figure 6 and 7. From this figure, GIRG
is able to reconstruct the characteristic of training images from
participant servers without prior knowledge about their training
data. Interestingly, our experimental results demonstrate that
the localization of high-resolution images is not changed like
in previous study [8]. A possible explanation for this might be
that we transform the activation function in ResNet-18 from
the ReLU function to the sigmoid function. Even though GIRG
is not able to reconstruct the correct pixel value in the first and
second images, the malicious agent has already obtained the
characteristics of training images and their tones. In summary,
these results show that GIRG is able to reconstruct low or high-
resolution images from single shared gradients with a high
success attack rate.

C. Reconstruct Multiple Images from an Averaged Gradients
from All Participants

TABLE III. MEAN AND STANDARD DEVIATION OF SSIM AND FSIM
ON THE CIFAR-10 DATASET USING RESNET-18 NETWORKS WHEN BS =

8 WITH AVERAGED GRADIENTS AND VARYING NUMBER OF
PARTICIPANTS (#P).

#P = 8 # P = 16
SSIM FSIM SSIM FSIM

GIRG 0.858 ± 0.047 0.899 ± 0.028 0.76 ± 0.058 0.853 ± 0.027
GIAS 0.752 ± 0.105 0.843 ± 0.052 0.502 ± 0.064 0.743 ± 0.019

As mentioned in the previous section, in order to pro-
tect their training images, participants prefer to encrypt their
trained gradients before uploading to the central server. How-
ever, even if participants encrypt their individual gradients, the
central server can still reconstruct the training images from all
participants without knowing who the images belong to by
observing averaged gradients instead of individual gradients
from participants. In this study, we investigate the effectiveness
of existing reconstruction attacks and GIRG on this scenario
to observe the quality of the reconstructed image from ḡ.
Specifically, we assume that there are four participants, and
each participant has eight images randomly selected from
the CIFAR-10 dataset. After each participant uploaded their
encrypted gradients using MPC for privacy protection, the
central server averaged the encrypted gradients from four
participants without knowing the actual value of gradients
from each participant. To reconstruct all training images, the
malicious agent uses existing attacks and GIRG to acquire
the reconstructed images, as shown in Figure 8. Our findings
reveal that our method could reconstruct every ground truth

image from all participants, and GIAS is able to reconstruct
all training images except in the red box.

In addition, it is important to evaluate the effectiveness
of reconstruction attacks as the number of participants in a
collaborative training scenario increases. In order to investigate
the scalability of reconstruction attacks, the GIRG and GIAS
algorithms are selected to perform experiments only since
the pixel-wise optimization-based attack algorithms cannot
reconstruct accurately. For the experiment setting, a batch
of eight images from the CIFAR-10 dataset is trained on
ResNet-18, with the number of participants increased to 8
and 16. Table III reports the performance of GIRG and GIAS
averaged from five runs of experiments. From this table, we
can see that GIRG is able to maintain the mean of SSIM and
FSIM above 0.75 when the number of participants is increased
to 8 or 16. However, GIAS cannot perform well when the
number of participants is 16, with the mean SSIM decreasing
to almost 0.5. The potential reason is that GIAS is not able
to accurately reconstruct when the batch size increased. These
results provide further support for the hypothesis that GIAS is
not able to reconstruct well when the batch size is large.

Overall, it is apparent from this table that averaged gradients
without any encryption leak the private training data even
though individual gradients were encrypted by each partici-
pant. However, the quality of reconstructed images is lower
compared to reconstructing 16 images on single gradients.
This inconsistency may be explained by the fact that there is
a batch normalization in the ResNet-18 architecture, leading
to a slight difference between the actual gradients ḡ and
dummy gradientsg. Nevertheless, this finding raised concern
about averaged gradients from all participants because our
attack is able to steal training data from all participants
without knowledge of the trained gradients of each participant.
Therefore, participants must encrypt their trained gradients and
the averaged gradients to protect their training images from
GIRG.

In summary, the experimental results demonstrate the im-
portance of evaluating the effectiveness of reconstruction at-
tacks as the number of participants in collaborative training
increases. The findings suggest that GIRG is a more scalable
algorithm than GIAS, and that encryption is essential to protect
private training data in federated learning.

D. Reconstruct Multiple Images from Shared Gradients with-
out Prior Label Knowledge

To assess the impact of prior labels, we conduct an ex-
periment comparing reconstructed images when prior labels
were either known or unknown. As shown in Fig 9, when
when the reconstructed labels from shared gradients are not
the same as the original labels, our approach is unsuccessful
in reconstructing the images. The reason behind this is that the
labels significantly impact the direction of dummy gradients
ĝh. Therefore, this experiment demonstrated the importance of
an accurate reconstructed label approach.

We further compare our approach to existing reconstructed
label approaches after evaluating the effect of prior labels.
This experiment is conducted for five runs on the CIFAR-
10 dataset using ResNet-18 and ResNet-18 (zhu) with a batch
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Fig. 8. A batch of 32 reconstructed images obtained by using averaged gradients, from GIRG, GIAS, Inverting Gradients, iDLG, and DLG on the CIFAR-10
dataset over ResNet-18 (The order of reconstructed images is realigned for observing the quality of reconstructed images).

(a) 16 Training images from one participant

(b) Reconstructed images when accuracy of reconstructed labels is equal 100%

(c) Reconstructed images when accuracy of reconstructed labels is 95 %

Fig. 9. A batch of 16 reconstructed images by GIRG on CIFAR-10 over ResNet-18 without knowing the ground truth of image labels.
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size of 16. To evaluate the impact of the duplicated label,
we chose images from only 5 classes. In each experiment,
we restart DLG and our approach five runs. For GIRG, we
set the β to 2 for ResNet-18 and all layers for ResNet-18
(Zhu). We assess the quality of reconstructed labels based on
accuracy and the number of experiments that achieved 100%
accuracy in reconstructing the labels. The results are presented
in Table IV, from which we can see that our method and
DLG are both able to reconstruct the labels accurately when
the model architecture is modified as ResNet-18 (Zhu). Nev-
ertheless, our method significantly outperforms peer methods
when the model is not modified as ResNet-18 in terms of label
reconstruction accuracy. The reason is that every gradient from
the modified network is significant in improving the success
rate of label reconstruction. For iDLG, it does not perform
well because the batch size exceeds the number of labels in
the CIFAR-10 dataset.

These results suggest that the prior label information is
critical for reducing the search space and impacting the success
rates of reconstruction attacks. Our method can perform well
in reconstructing the labels from shared gradients.

TABLE IV. ACCURACY (%) AND NUMBER OF COMPLETE LABEL
RECONSTRUCTIONS WITH 100% PRECISION (# CLR) ON CIFAR-10 USING

RESNET-18 WITH A BATCH SIZE OF 32 IN 25 RUNS.

ResNet-18 ResNet-18 (Zhu)
Accuracy # CLR Accuracy # CLR

GIRG 92.25 3 100 25
iDLG [15] 66.25 0 63.75 0
DLG [14] 82.25 0 100 25

V. DISCUSSION

We propose a reconstruction attack that is capable of recon-
structing a large batch of training images (BS = 128) from the
shared gradients of local participants without prior knowledge,
as well as reconstructing all training images using averaged
gradients from all participants. The important finding is that
GIRG can reconstruct every image from local participants
without knowing ownership of images, as it uses averaged
gradients instead of shared gradients from local participants.
This finding demonstrates that while the shared gradients are
protected by MPC, averaged gradients are not, which allows
a malicious agent to reconstruct every training image from
all participants who joined the training. Furthermore, we find
that label knowledge is crucial for reconstruction attacks,
as demonstrated in our experimental study. When the label
accuracy is less than 100%, the reconstruction attack cannot
reconstruct the corresponding image accurately. Therefore, we
propose a new method for reconstructing the labels from
shared gradients, which can achieve 100% label accuracy,
when the attack is restarted multiple times in our experiments.

The vulnerability of federated learning to reconstruction
attacks has raised significant concerns for privacy and secu-
rity. While reconstruction attacks have been demonstrated on
modified ResNet models, it is feasible to conduct them in
the real world. Specifically, in the mobile application, most
users or participants do not know which model is being used

for the recommendation system, so these types of attacks
are able to reconstruct the images without the awareness of
users. As a result, central servers may claim that they use
the slightly modified novel models to do a recommendation
system and they are able to reconstruct data by using GIRG.
This highlights the fact that encryption of gradients is crucial
for protecting the training data and ensuring the success of
federated learning in real-world scenarios.

In this study, we make the assumption that local participants
are required to upload gradients after each iteration. However,
in certain real-world applications, participants may locally
update both their weights and gradients during each iteration,
only transmitting the gradients to the central server at the end
of each epoch, which spans multiple iterations. In such cases,
our proposed method may not yield the desired effectiveness.
Additionally, an examination of Table IV indicates that the
accuracy of label reconstruction using GIRG does not con-
sistently achieve 100%, potentially resulting in a significant
reduction in the success rate of the inversion attack.

In our future research, we plan to investigate the inversion
attack using diffusion models [31] and its application in scenar-
ios where participants can locally update both their weights and
gradients during each iteration, subsequently transmitting the
gradients to the central server after each epoch. Furthermore,
we will explore alternative and more effective approaches to
label reconstruction.

VI. CONCLUSION

In this paper, we proposed Generative Image Reconstruction
from Gradients (GIRG) as a novel approach for reconstructing
training images and labels from trained gradients. GIRG has
been shown to effectively reconstruct high-resolution images,
large batch sizes of images, and multiple images using a
single randomly initialized generator, without requiring prior
knowledge such as batch normalization or approximate data
distribution. Comparing GIRG with current state-of-the-art
reconstruction attacks reveals that GIRG performs comparably
with GIAS when the batch size is small, but outperforms
GIAS with larger batch sizes. Additionally, GIRG converges
faster and uses fewer training times on large batch sizes. This
study also provides evidence that the averaged gradients from
all participants can be used to recover the training images
without knowing the owner of the images, highlighting the
sensitivity of trained gradients as private information that
must be protected to safeguard training data. Overall, GIRG
represents a promising avenue for image reconstruction that
could have important implications for improving the privacy
and security of machine learning applications.
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