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Abstract—Generative adversarial networks (GANs) are a pow-
erful generative technique but frequently face challenges with
training stability. Network architecture plays a significant role in
determining the final output of GANs, but designing a fine archi-
tecture demands extensive domain expertise. This paper aims to
address this issue by searching for high-performance generator’s
architectures through neural architecture search (NAS). The
proposed approach, called evolutionary weight sharing generative
adversarial networks (EWSGAN), is based on weight sharing and
comprises two steps. First, a supernet of the generator is trained
using weight sharing. Second, a multi-objective evolutionary
algorithm (MOEA) is employed to identify optimal subnets
from the supernet. These subnets inherit weights directly from
the supernet for fitness assessment. Two strategies are used to
stabilise the training of the generator supernet: a fair single-path
sampling strategy and a discarding strategy. Experimental results
indicate that the architecture searched by our method achieved
a new state-of-the-art among NAS-GAN methods with a Fréchet
inception distance (FID) of 9.09 and an inception score (IS) of
8.99 on the CIFAR-10 dataset. It also demonstrates competitive
performance on the STL-10 dataset, achieving FID of 21.89 and
IS of 10.51.

Index Terms—Neural architecture search, generative adversar-
ial networks, evolutionary computation, generative model.

I. INTRODUCTION

GENERATIVE adversarial networks (GANs) [1] are a
powerful technology in the field of generative models,

achieving impressive results in areas such as image super
resolution [2], [3], image generation [4] and object detec-
tion [5], [6]. In essence, GANs are composed of two neural
networks: a generator and a discriminator, which achieve their
predefined goals through an adversarial learning strategy. As
the discriminator network attempts to distinguish real samples
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from synthesised samples, the generator network learns to
mimic the distribution of real samples. Despite the successes
of GANs, they are prone to two common issues during
training: gradient vanishing and mode collapse. To address
these issues and enhance the training stability, researchers
have explored various approaches, including different loss
functions, e.g., least squares [7], Wasserstein distance [8],
hinge loss [9] and gradient regularisation techniques (including
gradient penalty [10], spectral normalisation [11] and gradient
normalisation [12]), as well as modified network architectures,
such as deep convolutional neural networks [13] and deep
residual networks [11]. While these manual adjustments have
been proven useful for stabilizing training and improving
performance, they demand a substantial amount of expertise
and computational resources for experimentation.

Transitioning from manual fine-tuning, neural architecture
search (NAS) emerges as a promising innovation designed to
automate the process of optimising network architecture. NAS
has been applied successfully in supervised tasks, particularly
in the field of image classification [14], [15], [16]. This could
be attributed to the loss function’s ability to effectively reflect
the training status of networks in these tasks, whereby the
loss value in the validation set may act as a reliable proxy
for network performance [17]. Nevertheless, the development
of NAS for unsupervised tasks, such as GANs, has been
limited due to the non-convex and non-concave characteristics
of its complex min-max optimisation function, which makes it
difficult to determine the Nash equilibrium. Additionally, the
loss function in GANs does not provide an adequate reflection
of the training state, and the calculation of commonly used
assessment indicators, such as the inception score (IS) [18]
and Fréchet inception distance (FID) [19], are computationally
expensive and non-differentiable. The research presented in
[20] employed reinforcement learning to search for GAN
architectures, training a recurrent neural network (RNN) as
a controller to generate network architectures and adopting
the IS metric as the reward function. However, this approach
requires the evaluation of multiple structures over more than
1,000 graphics processing unit (GPU) days, making it far too
time-consuming. AutoGAN [21] improved upon this method
by using parameter sharing and dynamic-reset strategies to
accelerate structure training and stepwise search strategies and
thus enhance RNN controller efficiency, but this can result
in suboptimal structure searching. Gradient-based architecture
search methods, such as AdversarialNAS [22] and Alpha-
GAN [23], relax the discrete search space to make it con-
tinuous and alternately optimise the weights and architectural
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parameters of the generator and discriminator using gradient
optimisation. While this method can rapidly improve upon an
initial design, the joint optimisation of the weights and archi-
tecture further complicates their interrelationship. Moreover,
due to their greedy nature, gradient-based methods result in
operations wherein the supernet is void of learning parameters,
such as skip connections, which can easily gain larger weights,
leading to bias. Ultimately, the searched network structure is
prone to a significant number of skip connections [24].

In this paper, we present a novel method of searching
for GAN architectures using a weight-sharing strategy, called
evolutionary weight-sharing generative adversarial networks
(EWSGAN). The motivation behind this study is to efficiently
and automatically search for GAN architectures that can
achieve stable training and generate high-quality samples. The
primary objective is to address the complexity and time-
consuming nature of manual GAN architecture design. To
attain this goal, we propose a two-stage approach, including
the following: (1) training a supernet of the generator with a
fixed discriminator and (2) conducting an architecture search
phase using the trained supernet as a performance evaluator.
In the second stage, we sample subnets from the supernet
and inherit the weights of the supernet for evaluation. The
effectiveness of the architecture search depends on the quality
of the trained supernet. Therefore, it is crucial to invest
sufficient effort in this stage. For the supernet, we only activate
one path at a time when conducting adversarial training
with the discriminator. This enables the subnets to function
independently while reducing the memory and computational
requirements.

This paper investigates the application of a weight-sharing
strategy in the training of a supernet. While this strategy
speeds up the training, it can also lead to instability in the
generator and even the collapse of the model. To remedy
this problem, we employ a fair choice strategy whereby each
operation in the supernet’s choice blocks is trained an equal
number of times in each static discriminator environment. This
helps to ensure consistency in the training progress of each
operation, preventing insufficiently trained operations from
exerting a negative influence on the overarching supernet and
affecting the training of the discriminator. This paper high-
lights a potential issue in the training of the supernet model,
which is the presence of ‘bad’ operations. Due to the large
search space, the supernet’s choice block may contain certain
operations that are either poor or inappropriate for the network
structure. Such poorly performing operations can negatively
impact the overall stability of the supernet. To resolve this
problem, we employ a ‘discard’ strategy, which removes these
operations from the supernet, helping to stabilise its training
and improve its efficiency by limiting the search space to
more promising network structures. It must be noted that
our commonality-based discard strategy is not to be confused
with the dropout method [25], as our objective is to discard
alternative operations in the search space.

After training the supernet, we define the NAS as a multi-
objective optimisation problem, the objectives of which in-
volve the minimisation of the FID and maximisation of the IS,
and we accordingly utilise the non-dominated sorting genetic

algorithm II (NSGA-II) [26] to solve it.
The novelty and contributions of this study are summarised

as follows:
• We propose a novel approach to automatically designing

GAN architectures. The supernet training method based
on single-path sampling and the multi-objective evolu-
tionary algorithm (MOEA) search method have low GPU
requirements and high search efficiency.

• We investigate the single-path sampling GAN training
method and present two strategies to ensure the stability
of the supernet generator: the fair single-path sampling
strategy and the commonality-based discarding strategy.

• We investigate the correlation between the number of
GAN evaluation samples and evaluation indicators and
propose a low-fidelity evaluation strategy to effectively
assess subnets’ performance. In conjunction with our
weight-sharing strategy and low-fidelity evaluation, our
method can assess hundreds of network architectures in
just a few GPU hours.

• The experimental results confirm the performance and
stability of our method, which, under consistent normal-
ization conditions, yields the best-performing model on
the CIFAR-10 and STL-10 datasets.

II. RELATED WORKS

A. Generative Adversarial Networks

As noted, GANs [1] consist of two parts – a generator
and a discriminator. Both are implemented using artificial
neural networks, and the parameterisation of GANs mainly
involves defining the network structure of these components
and initialising their weights and biases. By continuously
adjusting and optimising these weights and biases through
the backpropagation of adversarial training, high-performance
generator and discriminator are ultimately obtained. The GAN
network parameters have a significant impact on the quality
and diversity of generated samples. During adversarial train-
ing, the generator produces realistic samples to deceive the
discriminator, while the discriminator learns to distinguish
between generated and real samples. The principal objective of
the generator is to output samples with distributions consistent
with those of the real samples. The success of GANs depends
on maintaining a balance between these two networks, and
parameterisation of the networks and the training process are
crucial for generating high-quality samples. Typically, GANs
optimise a min-max function that can be expressed as follows:

min
G

max
D

VGAN (D,G) =Ex∼preal [logD(x)]

+ Ez∼pz [log(1−D(G(z)))],
(1)

where x denotes the real samples subject to true distribution
preal, z represents the noise that follows normal distribution,
G(z) is the generated samples and D(x) is the discriminator’s
prediction for x.

Although obtaining good network parameters via adversarial
training is difficult and leads to high instability in GANs,
researchers have made significant progress in recent years.
Following extensive efforts, GANs can now produce images
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that are indistinguishable from their real-life counterparts.
Furthermore, various methods have been proposed for im-
proving GANs, including the application of different objective
functions according to the actual requirements of the training
process [7], [8], evolutionary algorithms [27], [28] and self-
attention mechanisms [29]. Simultaneously, gradient regulari-
sation technology can be used to stabilise GAN training [11],
[12]. The architecture of GANs is also a critical factor in
achieving stable training, with studies revealing that effective
architectures can significantly enhance their performance [30],
[31]. Thus, this paper focuses on the automated design of GAN
architectures.
B. Neural Architecture Search

The emergence of high-performance neural network archi-
tectures has promoted the use of deep learning in various
fields; ResNet [32] and Transformer [33] are typical examples
of such architectures. However, designing high-performance,
user-friendly (i.e., explainable [34], scalable and robust) neural
networks remains a challenge because it requires extensive
domain knowledge and a complex trial-and-error process. This
limitation hinders the practical application of deep learning in
many problems. NAS is a powerful technology that automates
the design of network architectures and is aimed at reducing
the time-consuming manual design process [35]. For instance,
Sun et al. [36] employed NAS technology to automatically
design network architectures and succeeded in creating an
effective method for detecting COVID-19 in CT images. In
brief, NAS involves defining a search space, using a predefined
search strategy to discover promising network architectures
within that space then evaluating their performances. The
search strategy is used to update the architectures until the
target performance is achieved.

Popular NAS methods can generally be classified into three
distinct groups: 1) reinforcement learning-based approaches,
such as the strategy proposed by Zoph et al. [37], [38], which
trains an RNN controller to produce network architectures;
2) gradient-based methods, such as that put forth by Liu
et al. [39], which uses the softmax function to convert the
discrete search space into a continuous space and uses gradient
guidance to update network architectural parameters (Xue
et al. [40] further improved search efficiency and reduced
memory overhead by applying channel attention mechanisms)
and 3) evolutionary algorithm-based approaches, such as the
MOEA method, proposed by Lu et al. [41], which generates
high-performance networks on the Pareto frontier. Sun et
al. [15] adopted evolutionary algorithms to generate network
architectures and proposed a connection weight initialisation
method and variable-length gene encoding strategy. Moreover,
with respect to unsupervised classification, Sun et al. [42]
proposed using variable-length gene encoding mechanisms to
search for the optimal network architecture for variational
autoencoders based on different block designs and the concept
of asymmetry.

C. Neural Architecture Search for Generative Adversarial
Networks

Due to their unique training challenges, GAN architecture
search techniques are an active area of research. The non-

differentiability and time-consuming nature of popular GAN
evaluation metrics (e.g., IS and FID) has led to the use
of reinforcement learning, with IS as a reward, to train an
RNN controller to output generator networks. However, this
approach can be extremely time consuming, as demonstrated
by AGAN [20], which searched a space of 20,000 architectures
for 1,200 GPU days. To reduce the search time, AutoGAN
[21] uses a layer-by-layer search strategy, parameter sharing
and a dynamic resetting technique to speed up the network
structure training. Although this approach improves the search
efficiency, it disregards the coupling nature of deep and shal-
low networks, which limits the exploration of GAN structures
and leads to a higher probability of generating local optimal
structures. To counter this issue, E2GAN [43] transformed
the GAN structure search into a Markov decision-making
process, which enhanced the efficiency of the controller.
AdversarialNAS [22] uses a differentiable approach to search
for GAN architectures, relaxing the discrete search space
into a continuous one and optimising both the weights and
architectural parameters using min-max functions. AlphaGAN
[23] further modifies the optimisation of the architectural
parameters by using a game-theoretic ‘duality gap’ as the
goal, which can make GANs more liable to reach the Nash
equilibrium. However, the gradient-based architecture search
method has an unfair issue [44], where the network favours
skip connections.

GAN compression [45] uses architecture search to identify
the optimal network channel configuration for achieving model
compression. The most critical difference is that GAN com-
pression aims to reduce the model’s computational complexity
and storage space while compromising the performance as
little as possible. The main purpose of our search is to find the
optimal GAN network architecture for a given task to improve
the model’s performance. Due to the significant impact of the
model’s network structure on its performance and efficiency,
we focus on identifying better network structures. In addition,
GAN compression typically targets pre-trained models whose
search spaces are fixed, while our search technology can
potentially discover new architectures by searching in a wider
space.

Two evolutionary architecture search methods COEGAN
[46] and EAGAN [47] – are most relevant to our approach.
The COEGAN method uses an evolutionary algorithm based
on neuro-evolution of augmented topologies to divide the
generator and discriminator into two independent populations
for structural evolution. Nevertheless, this method has low
search efficiency and the maximum depth of the offspring
is only four layers, meaning it has difficulty coping with
more complex practical requirements. This method was only
tested on two small datasets: MNIST and Fashion-MNIST.
The EAGAN approach adopts a continuous evolution method
to generate network architectures by alternately optimising
the evolutionary architecture individuals and gradient update
weight parameters. However, this method highly couples the
architectural and weight parameters, which may exacerbate the
training instability of GANs. As such, we decouple weight
parameter optimisation from architecture parameter optimi-
sation; that is, we initially optimise the weight parameters

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3338371

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on December 06,2023 at 02:47:11 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES 4

noise

Layer 1

Layer 2

Layer N

fake 

…

Adversarial

Training

 !  "  #  $  %  &

…

Discriminator

Adversarial

Training

 !  "  #  $

…

Discriminator

Training the Supernet

Discard

…

NSGA-II

Search Phase

Crossover

Mutation

Low-Fidelity Evaluation

Inherit Weight

Pareto Front

Fig. 1. The framework of our proposed EWSGAN. The content in the box with the blue background depicts the supernet training process: the upper portion
portrays the use of strict fair training networks, while the lower portion portrays the potential good-path stage of fair training and the blue circles represent
the operations in the choice blocks. The content in the box with the yellow background depicts the search phase of the multi-objective network architecture.

of the supernet then maintain them and gather excellent
subnets through evolutionary algorithms. In addition, EAGAN
inherently has a potential issue with small-model traps [48]
caused by its continuous evolutionary process. Since some
operations with small parameter quantities are easier to train,
they are more likely to survive during evolution and progress to
the next round of training. This permits operations with small
parameters to undergo more training, leading to the algorithm’s
preference for small models. In contrast to existing methods,
our fair training method can provide consistent training oppor-
tunities for supernet operations, which, in turn, provides ample
training opportunities for the operations that are difficult to
train but have stronger feature processing capabilities.

III. EVOLUTIONARY WEIGHT SHARING
GENERATIVE ADVERSARIAL NETWORKS

In this section, we introduce the framework of EWSGAN.
First, we outline its overall process before we describe the
search space and coding strategy of the generator followed by
the training method and discard strategy for the supernet of
the generator. Finally, we discuss the evolutionary computation
technique employed during the search phase.

A. Overall Framework

The EWSGAN algorithm can be summarised as follows.
First, a supernet generator is defined and trained using a single-
path sampling strategy against a fixed discriminator, which
has an architecture consistent with that used in AutoGAN
[21]. To ensure fairness and reduce deviation, a strategy of
sampling without replacement is adopted, which ensures that
different supernet operations are trained for identical durations
in identical discriminator environments. Following a certain
number of training epochs, a commonality-based strategy
is employed to identify potentially good operations or to
withdraw poorly performing ones, which improves the training

efficiency and reduces the negative impact of poor paths on
good paths. Due to the fact that the supernet training method
uses single-path sampling strategy, subnets can directly inherit
weights from the supernet without retraining to achieve a good
performance. Consequently, we use the trained supernet as an
auxiliary performance evaluator, wherein the subnet evaluation
process requires no retraining but directly inherits the weight
of the supernet to evaluate and search for potentially powerful
architectures. To improve the search efficiency and satisfy
multiple objectives, we employ the NSGA-II algorithm. The
overall framework of the method is depicted in Fig. 1. The
ultimate objective can be formulated as follows:

α∗ =argmin
α

F (α | ω∗
G)

s.t. ω∗
G =argmin

ωG

Ez∼pz
[log(1−D(G(z, α))]]

ω∗
D =argmax

ωD

Ex∼pdata [logD(x)]

+ Ez∼pz [log(1−D(G(z, α))]],

(2)

where F (α | ω∗
G) = (f1 (α | ω∗

G) , f2 (α | ω∗
G) , . . . , fn (α | ω∗

G))

and is a multi-objective optimisation function, ω∗
G is the weight

of the supernet generator, ω∗
D is the weight of the discriminator

and α represents the architectural parameters.

B. Search Space and Coding Strategy

The generator’s search space is consistent with previous
studies [22], [23], [47]. Specifically, for stacking in the su-
pernet generator, we use three cells, each consisting of five
nodes and seven choice blocks. The five nodes are connected
by the seven choice blocks, which can be subdivided into
two upsampling and five normal choice blocks. We use A
to denote the entire search space, α to represent a subnet
within the search space and α ∈ A. α denotes a 3 × 7
matrix, where the element in the i-th row and j-th column, aij ,
represents the operation of the j-th choice block for the i-th
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Fig. 2. Schematic of the search space and an example of a cell. The supernet consists of three cells, each comprising five nodes connected by seven edges.
Each edge contains different alternative operations, which are activated one at a time. The solid line represents the activation of a certain operation, as shown
in the bottom-right image. Solid line 3 × 3 convolutions are activated and participate in network forward and backward propagation. The matrix (upper right)
shows an example of encoding where each entry aij indicates the operation (identified by a number) occurring between two nodes of a cell. In the cell
diagram (lower left), the operation number is identified by a colour. For example O0 is Cell 1 is the operation between the node 0 and the node 1. The type
of this operation is represented as a 2 in the matrix and as a dark blue arrow in the cell diagram.

cell. The operations in the upsampling choice blocks include
‘nearest neighbour sampling’, ‘bilinear interpolation sampling’
and ‘3 × 3 transposed convolution’. The operations in the
normal choice blocks include seven alternatives, i.e., ‘none’,
‘skip connect’ and then five convolution operations. Selecting
a single operation from among all the choice blocks in the
supernet to form a subnet can also be considered as activating
this path. In a subnet, α, the first two numbers of each line (in
the range of 0–2) denote the corresponding upsampling choice
blocks, and the last five numbers (in the range of 0–6) denote
the normal choice blocks. Fig. 2 shows the composition of the
supernet and an example of a cell.

C. Supernet Generator Training

To ensure stability during the architecture search stage,
the supernet generator training is critical and is performed
in two stages. In the first stage, all the supernet paths are
fairly trained, while in the second stage, only the potentially
good paths are fairly trained. For stable and effective supernet
training, it is essential to ensure that each path undergoes
an equal number of training times in the same discriminator
environment. Therefore, we sample the supernet paths in
each minibatch without replacement and update all the paths
through gradient accumulation every time the supernet is
updated. The uniform sampling strategy does not guarantee an
equal number of training times for each operation in the choice
blocks, which can lead to uneven training, whereby poorly
trained paths can mislead well-trained ones [49]. This creates a
‘bucket effect’ in the generator subnet, where the weak path is
unbalanced with the discriminator’s ability, leading to unstable
GAN training and, ultimately, fluctuations in the training of
various operations in the supernet, causing the training to fail.

Since the weights of the paths in the supernet are heavily
shared, it is easy for poorly trained paths to mislead well-
trained ones, which can fatally impact the GAN supernet and
cause the training to fail. To solve this issue, we discard
any poorly performing paths in the supernet timely, and then
once all the paths have undergone fair training for a specified
duration, we further enhance the training speed and minimise
the effect of bad paths on good ones by pruning the supernet.
This approach allocates limited computing resources to well-
performing paths, thereby improving the training efficiency.
To identify potentially bad and good paths, we employ a
commonality-based discard strategy, whereby we evaluate and
sort a certain number of subnets and calculate the proportion
of each operation in the top 50% subnets. We then select
operations to be discarded according to their proportions in
the subnets. For instance, if we sample 100 subnets and sort
them to obtain a choice block containing the top 50, the
nearest neighbour sampling operation occurs 10 times, and the
remaining two operations occur 15 and 25 times, respectively.
Following this, we discard the nearest neighbour sampling
operation. In our experiments, we discard one alternative
operation in the upsampling operation and three alternative
operations in the normal operation. When discarding, we
randomly sample 42 subnets for evaluation. The supernet
training process is outlined in Algorithm 1.

D. Search Strategy

Once the supernet generator training is complete, the su-
pernet will serve as a performance evaluator. We sample the
subnets in a manner that directly inherits the weights of the
supernet. Benefiting from both the weight sharing and single-
path sampling strategies, we can obtain a high-performance
generator by sampling subnets. However, evaluating hundreds
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Algorithm 1 Supernet Training
Input: training iterations N , the discriminator’s updating

steps per iteration nD, the supernet generator batch size
MG, the discriminator batch size MD, Adam optimiser
parameters αlr, β1andβ2, warm-up iterations Nw and the
initial discriminator and generator parameters wD, wG

Output: Supernet
Create modelm = {α1, α2, ..., αm} by fair sampling
for i = 1→ N do

for k = 1→ nD do
Sample a batch of noise z and real data x, model αk

gwD
← ∇wD

[
1
m

∑m
i=1 logD

(
x(i)

)
+ 1

m

∑m
i=1 log

(
1−D

(
G
(
z(i), αk

)))]
wD ← Adam (gwD

, wD, αlr, β1, β2)
end for
for j = 1→ m do

Sample a batch of noise z
Calculate gradients for model αj and accumulate gra-
dients
gwG
← 1

m

∑m
i=1 logD

(
G
(
z(i), αj

))
end for
wG ← Adam (gwG

, wG, αlr, β1, β2)
Recreate modelm = {α1, α2, ..., αm} by fair sampling
while i = Nw do

Fair sample k subnets and calculate their IS values
Sort the k subnets and retain the top 50%
Calculate the proportion of each operation in the choice
blocks
Discard poor operations based on the proportion of
each

end while
end for

of subnets in the search stage using the standard evaluation
indicators (IS and FID) is time consuming, as it requires the
generation of 50,000 images. To improve the efficiency of
the search process, we use a low-fidelity evaluation strategy,
whereby we assess only 5,000 images. This strategy not only
saves a great deal of time but also guarantees high evaluation
accuracy. Since the search space is large and we consider
multiple objectives, that is the FID and IS metrics, we employ
an MOEA, i.e., NSGA-II, to ensure the correct performance
ranking.

Regarding crossover and mutation, we apply uniform
crossover where the offspring’s gene has a 50% chance of
being inherited from each parent. Furthermore, to enhance the
global search and avoid local optima, we set the probability of
individual mutation in offspring to a value of 1. Specifically,
we randomly select between 1 and 4 genes in the offspring for
mutation. Fig. 3 provides a crossover and mutation example.
The search process is further illustrated in Algorithm 2.

IV. EXPERIMENTS
We evaluate the performance of EWSGAN on unsupervised

generation tasks using the CIFAR-10 and STL-10 datasets,
which are commonly used in the NAS–GAN field. To validate
the effectiveness and stability of EWSGAN, we conducted

1 0 3 2 4 3 4 2 3 5 5 3

0 2 1 3 6 1 5 1 4 2 4 1…

…

1 2 1 2 6 3 4 1 4 5 4 3
…

1 2 4 2 6 3 4 1 3 5 2 3…

Mutation

Uniform Crossover

Fig. 3. Schematic of crossover and mutation. Randomly select two individuals
from the population (represented by green and yellow). Generate individuals
using a uniform crossover method and mutate the genes of the new individuals
(red indicates variation).

Algorithm 2 Search Strategy
Input: the number of generations T , the trained supernet S,

the population number N and initial population P1

Output: K individuals on the Pareto front.
for i = 1→ T do

Qi = uniform crossover and mutation(Pi)
Ri = Pi ∪Qi

for all p ∈ Ri do
Calculate the fitness values of architecture p with
inherited weights from the supernet S.

end for
F = non dominated sorting(Ri)
Choose N individuals as Pi+1 by rank and crowding
distance.

end for
Pick K architectures from PT+1 on the Pareto front to train.

extensive comparative and ablation experiments. The code
is available at https://github.com/weinnaTT/EWSGAN. This
experimental study is carried out in accordance with the
checklist published in [50].

A. Benchmark Datasets and Evaluation Metrics

The CIFAR-10 and STL-10 datasets are commonly used
in the NAS–GAN field [21], [22], [43], [47]. The CIFAR-10
dataset contains 50,000 training samples and 10,000 testing
samples in 10 categories with resolutions of 32 × 32, while
the STL-10 contains 105,000 samples with resolutions of 96
× 96. In our experiment, we downsized the original image
to 48 × 48 and solely employed spectrum normalisation for
the discriminator to verify the efficiency of our method and
ensure a fair comparison.

In addition to the visual results, we use two common eval-
uation metrics, i.e., the IS and FID, to evaluate the quality of
our results. To calculate these metrics, we randomly generate
50,000 samples from our models.

B. Implementation Details

The parameters used in the supernet training differ from
those used in the complete training of the searched architec-
ture. For the supernet training, the generator batch size is 80
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TABLE I
RESULTS OF DIFFERENT METHODS ON THE CIFAR-10 AND STL-10 DATASETS. WE PRESENT THE RESULTS AS REPORTED IN THE ORIGINAL PAPERS,

SELECTING THE BEST OUTCOMES WHEN MULTIPLE RUNS ARE PRESENTED.

Method GPU Days Search space Search method Size
CIFAR-10 STL-10

IS↑ FID↓ IS↑ FID↓
DCGAN [13] - - Manual - 6.64±0.14 37.70 - -

WGAN-GP [10] - - Manual - 7.86±0.07 29.30 - -
SNGAN [11] - - Manual - 8.22±0.05 21.70 9.16±0.12 40.10
GNGAN [12] - - Manual - 8.72±0.11 9.55 9.74±0.15 23.62

Progressive GAN [51] - - Manual - 8.80±0.05 18.33 - -
Improv MMD GAN [52] - - Manual - 8.29 16.21 9.34 37.63

ProbGAN [53] - - Manual - 7.75 24.60 8.87±0.09 46.74
BigGAN [9] - - Manual - 9.22 14.73 - -

AGAN [20] 1200 20000 RL 20.1 8.29±0.09 30.50 9.23±0.08 52.70
AutoGAN [21] 2 ∼ 105 RL 5.19 8.55±0.10 12.42 9.16±0.12 31.01
E2GAN [43] 0.3 ∼ 105 RL - 8.51±0.13 11.26 9.51±0.09 25.35
DGGAN [54] 580 - Heuristic - 8.64±0.06 12.10 - -
DEGAS [55] 1.2 ∼ 108 Gradient - 8.37±0.08 12.01 9.71±0.11 28.76

AdversarialNAS [22] 1 ∼ 1038 Gradient 8.8 8.74±0.07 10.87 9.63±0.19 26.98
AlphaGAN [23] 0.13 ∼ 1011 Gradient 2.95 8.98±0.09 10.35 10.12±0.13 22.43

EAGAN [47] 1.2 ∼ 1038 EA 7.1 8.81±0.10 9.91 10.44±0.08 22.18
EWSGAN (ours) 1 ∼ 1015 EA 13.4 8.99±0.11 9.09 10.51±0.13 21.89

and the discriminator batch size is 40. The supernet is trained
for 200 epochs in total. After training 50 epochs, we discard a
portion of the supernet operations. The number of operations
in the normal operation candidate pool is decreased from seven
to four, while the number in the upsampling candidate pool is
reduced from three to two and the supernet and discriminator
learning rate is 0.0001. The Adam optimiser is then used to
update the parameters, and β1 and β2 are set to 0 and 0.9. We
employ spectrum normalisation for the discriminator during
training. For the complete training stage, the parameters are
set as follows: the generator batch size is 256, the discriminator
batch size is 128, the learning rate is 0.0002 and a total
of 600 epochs are trained. The remaining parameter settings
are consistent with those in the supernet training stage. The
parameter settings in the architecture search stage are set as
follows: a population of 20 individuals is retained and the
number of evolution iterations is 20. A total of 420 subnets
need to be evaluated. We apply a uniform crossover and a
variable intensity mutation that exchanges between 1 and 4
genes. The low-fidelity evaluation method for individuals is to
generate 5,000 samples for evaluation. The goal of the NSGA-
II is to maximise the IS and minimise the FID.

C. Experimental Results and Analysis

The searched generator architecture on the CIFAR-10
dataset is shown in Fig. 4. The results of different algorithms
are shown in Table I. The results displayed for all the al-
gorithms in Table I represent the best results from multiple
runs (when multiple runs are available). Regarding upsampling
operations, our generator prefers to use the non-parametric
method in the shallow layer of the network. This is perhaps
because the generator input is random noise, which contains
limited information; thus, the shallow layer of the network

does not need a particularly strong learning ability. In the
deep layer of the network, it prefers to employ transposed
convolution with parameters and learning ability, since after
processing the shallow layer of the network, it already has
additional information to learn from the network. In terms
of normal operations, our network tends to use larger convo-
lution cores and dilated convolutions, i.e., four ‘5 × 5 cov’
operations and four ‘3 × 3 dil cov’ operations since larger
convolution cores have larger receptive fields and stronger
information processing capabilities. The network does not
use dilated convolution on two consecutive layers, which is
logical because continuous dilated convolution is highly likely
to cause information loss, which is fatal to the generation
task. Moreover, the network does not choose a 5 × 5 dilated
convolution. This may be because the dataset is relatively
small, and the large receptive field leads to complex computa-
tion. The network architecture we searched for has fewer skip
connections and none operations compared to the continuous
evolution-based method of EAGAN and the gradient-based
method of AdversarialNAS. The reason for this is that our fair
training provides fair training opportunities for each operation,
allowing certain operations with larger parameters but stronger
feature processing capabilities to receive sufficient training
time. Although this leads to a larger number of parameters in
our model, it results in a stronger image-generation capability.
The generated images we searched for are depicted in Fig.
5. Our network architecture obtained the best IS and FID
values in the NAS—GAN field under the same normalization
conditions. The final results were weaker than those of some
manually designed methods since they use more complex
procedures and are not comparable. Furthermore, to explore
the scalability of our model, we duplicated the third cell of
the searched network structure to generate a fourth cell. We
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Fig. 4. The searched architecture of the generator, where 0 and 12 are the input and output nodes, respectively.

(a) CIFAR-10 (b) STL-10

Fig. 5. Randomly selected images among those generated by the generator designed by EWSGAN.

then conducted experiments on the CelebA dataset [56] and
produced various images, as shown in Fig. 6. The generated
facial images are clear and demonstrate the model’s good
scalability.

Fig. 6. The facial images created by the searched generator on CelebA.

D. Low-Fidelity Evaluation Experiment

In the search stage, our method requires the evaluation of
numerous individuals; thus, we need a more efficient approach
for evaluating individual generators. To calculate the IS and
FID values, a large number of samples must be generated. The
more samples generated, the more representative the results
will be. Nevertheless, the real performance of individuals is
unimportant; what matters is the accuracy of their ranking. As

such, we conducted experiments to generate different samples
— note: all samples are generated randomly. Based on the
results of 50,000 samples, we compare the Kendall correlation
and time consumption of different calculation samples, and
the experimental results are provided in Fig. 7. The abscissa
represents the number of samples, the principal axis represents
the Kendall correlation coefficient and the secondary axis
represents the time spent, while the line and histogram charts
depict the Kendall correlation coefficient and time consump-
tion, respectively. The calculation accuracy of 5,000 samples
to 50,000 samples shows a slight variation, whereas the time
required varies significantly. The calculation time from 1,000
samples to 5,000 samples is similar, but the accuracy rate is
significantly improved. In order to comprehensively consider
the trade-off between time and sorting performance, we gen-
erated 5,000 samples to evaluate the individual generators.

E. Time Cost and Analysis

The EWSGAN algorithm essentially comprises two steps:
supernet training and evolutionary search. We use Ttotal to
represent the total time required, Ttrain to represent the time
required to train the supernet and Tsearch to denote the time
required for the search. The total can be expressed as follows:

Ttotal = Ttrain + Tsearch

= Nw × t1 + (N −Nw)× t2

+ (Tevo + 1)× teval × P,

(3)
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Fig. 7. The time required to calculate the IS and FID with different numbers
of samples and their fidelities.

where N represents the number of epochs in the supernet
training, Nw represents the number of epochs for warm-up, t1
is the time required to train one epoch in the original supernet,
t2 is the time required to train one epoch in a pruned supernet,
P is the number of individuals in the population, Tevo is
the number of generations and teval is the time required to
evaluate an individual.

The experimental equipment used for testing is the same
as in prior research [22], [21], [43], using a single Nvidia
RTX2080Ti GPU. The training time for the supernet is approx-
imately 20 hours, and the evolutionary search time is roughly
four hours, which totals one GPU day. It takes approximately
one GPU day to retrain on the CIFAR-10 dataset and approx-
imately 3.4 GPU days on the STL-10 dataset.

F. Ablation Studies

1) The effectiveness of fair training and discard strategies:
In the search stage, network individuals are assessed based
on the weights inherited from the supernet, making it crucial
to train the supernet effectively. However, the single-path
sampling training method tends to be affected by weight
coupling, causing instability and training difficulties. To vali-
date the effectiveness of our fair single-path sampling training
method and discarding strategy, we monitored the supernet’s
performance when subjected to various training approaches,
as depicted in Fig. 8. Uniform sampling fails to balance all
supernet operations, resulting in unstable GAN training. Even
if a strategy is implemented to discard some operations, it
cannot improve training stability. This is because the uniform
sampling method cannot guarantee the fair training of each
operation, making it difficult to accurately evaluate each one
and identify potentially bad operations in the network. The
learning curve in Fig. 8 confirms the instability of both
training methods. With the fair sampling training method,
all the operations can undergo the same number of training
sessions simultaneously. In this scenario, a discard strategy
can identify potentially bad operations more effectively than
the uniform sampling method, allowing the supernet to train
more stably. It is clear from the learning curve for fair training
without discarding that the network becomes unstable and
performance decreases in the latter stages of training because
poorly performing operations in different network layers in

the vast search space adversely impact network performance
and consume computing resources. Our fair sampling and
model pruning strategies effectively enhance supernet training
stability and performance, which is crucial for applying NAS.
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Fig. 8. Supernet learning curves under various training methods. The
supernet’s performance is monitored once every five epochs, while the learning
rate and other parameters remain the same. Top: IS learning curves. Bottom:
FID learning curves.

2) The need for a multi-objective approach: To investigate
the effectiveness of a multi-objective approach in this case,
we tested five different search algorithms. The first method,
used here to provide reference results, randomly samples
20 subnets from the search space. The second method is
a single objective version of the EWSGAN model whose
objective function is the IS (to be maximised). We express
this method as EWSGAN (IS). Analogously, the third method
is a single objective version of the EWSGAN model with the
goal of minimising the FID and is indicated as EWSGAN
(FID). The fourth method is a single objective version of
the EWSGAN model with scalarised (and normalised) fitness
0.5× IS/5−0.5×FID/90 as its goal. We indicate this method
as EWSGAN (Weigh). Each method is run with a population
size of 20, and all individual networks are trained for 200
epochs. The results in the objective space of these methods
(final populations) are plotted in Fig. 9 alongside the final
EWSGAN population. To enhance its readability, the scatter
plot has been zoomed and some random samples excluded
from the image. We conducted a Wilcoxon test [57] to evaluate

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3338371

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on December 06,2023 at 02:47:11 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES 10

TABLE II
AVERAGE IS AND FID SCORES ± STANDARD DEVIATION (CALCULATED OVER THE FINAL POPULATION OF CANDIDATE NETWORKS) FOR THE EWSGAN

METHOD AGAINST ITS SINGLE-OBJECTIVE VARIANTS.

Random EWSGAN (IS) EWSGAN (FID) EWSGAN (Weigh) EWSGAN
IS 7.79± 0.77 8.27±0.10 8.21±0.09 8.28±0.11 8.36±0.10

FID 22.23±11.40 15.98±1.21 14.83±1.23 15.76±1.25 13.87±0.98
pIS 1.1E-4 4.1E-2 2.1E-4 3.9E-2 -
pFID 2.5E-6 7.1E-6 1.8E-2 3.7E-5 -

TABLE III
EXPERIMENTS ON THE STATISTICAL SIGNIFICANCE OF EWSGAN VS EAGAN AND EAGAN (G), A MODIFIED VERSION OF EAGAN THAT RUNS IN THE

SAME SEARCH SPACE AS EWSGAN. WE PRESENT THE RESULTS FOR EACH RUN, INCLUDING MEAN VALUES, STANDARD DEVIATION, AND p VALUES.

Method Metrics #1 #2 #3 #4 #5 #6 #7 #8 mean±std p

EAGAN (G)
IS 8.53±0.1 8.69±0.09 8.76±0.09 8.55±0.08 8.61±0.11 8.66±0.11 8.69±0.09 8.56±0.1 8.63±0.08 4.5E-3

FID 11.87 14.79 11.09 11.19 11.09 10.08 10.64 12.15 11.61±1.34 6.3E-3

EAGAN [47]
IS 8.81±0.1 8.63±0.09 8.69±0.1 8.73±0.1 8.85±0.11 8.62±0.17 8.79±0.1 8.63±0.1 8.72±0.08 2.1E-1

FID 9.91 12.84 10.53 10.73 10.32 11.68 10.45 11.18 10.96±0.87 4.6E-2

EWSGAN
IS 8.81±0.09 8.99±0.11 8.78±0.11 8.89±0.09 8.83±0.07 8.61±0.11 8.73±0.18 8.78±0.13 8.8±0.1 -

FID 9.89 9.09 10.38 9.57 10.29 10.99 9.49 10.9 10.1±0.64 -

the significance of different versions of EWSGAN, where
when p-value is less than 0.05, it represents a significant
difference between the two distributions. The corresponding
statistical results are reported in Table II and emphasise that,
although correlated, the IS and FID are different metrics and
their employment as objective functions in an optimisation
algorithm leads to different results. The scalarised method
of EWSGAN (Weigh) also produces results that are less
satisfactory than those detected by the EWSGAN. The results
provided clearly indicate that this NAS approach benefits from
multi-objective problem formulation.
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Fig. 9. Final populations in the objective space under various scenarios. The
closer the points in the graph are to the bottom-right corner, the better the
network. Some randomly sampled solutions are not depicted as they would
fall outside the represented window.

3) Statistical significance of the results: To test the statisti-
cal significance of the results, we conducted eight independent
experiments on CIFAR-10. The outcomes are displayed in
Table III, where #i denotes the i-th test. The values shown as
mean±std represent the mean value plus the standard deviation
over the eight runs available, and related p-values. Table III

presents a comparison between the proposed EWSGAN and
both the original version of EAGAN [47] and a modified
version (EAGAN (G)). EAGAN is responsible for designing
both the generators and discriminators of the GAN. On the
other hand, EWSGAN designs the generator only. To ensure
direct comparability, we implemented EAGAN (G) to use
EAGAN’s search logic for the design of the generator, thus re-
producing the same search space and experimental conditions
as EWSGAN [50].

The experimental results demonstrate the superiority of our
method over EAGAN (G). When compared to EAGAN, there
is no notable difference in IS metrics, yet EWSGAN achieves
notably improved results in FID indicators. Additionally, it
becomes evident that aligning EAGAN with the specifications
of EWSGAN has seemingly resulted in a decline in its per-
formance. Although EAGAN (G) is more directly comparable
to the proposed EWSGAN, it is also the outcome of altering
the original design, potentially accounting for its performance
degradation. The results show that EWSGAN is superior also
to the original EAGAN. However, we may observe that while
the proposed EWSGAN significantly outperforms EAGAN
(G) in terms of both IS and FID, it outperforms significantly
EAGAN only with respect to FID.

G. Correlation Analysis

To explore the relationship between the performance of
subnets that inherit weight from the supernet and the actual
performance of standalone training, we separately trained
the searched network architecture on the Pareto frontier and
calculated the Kendall correlation coefficient to test their
correlation. The Kendall correlation coefficient [58] measures
the degree that two variables correlate, with a higher coef-
ficient indicating a more positive correlation. It is evident
from Fig. 10 that there is a moderately positive correlation
between the performance of the directly inherited subnet
and its actual performance (Kendall correlation coefficient:
τ = 0.524). Although the correlation in our method is not
particularly powerful, it effectively increases the likelihood of
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discovering excellent structures, which is consistent with the
original intention of NAS.

Fig. 10. The subnet’s performance when inheriting weight vs stand-alone
training performance.

V. DISCUSSION
In this section, we discuss the limitations of our method and

propose potential areas for future research. First, we acknowl-
edge the need to evaluate the efficacy of our commonality-
based discarding strategy in identifying underperforming op-
erations. We should ensure that all operations in the supernet
receive sufficient training time and avoid premature discarding.
Finding ways to avert early dismissal due to insufficient
training is an important requirement that warrants further
investigation. Second, while our method focuses on optimising
the IS and FID as multiple objectives, we may have over-
looked the importance of network computing efficiency. Thus,
future research should seek to strike a better balance between
performance and efficiency when defining architecture search
objectives; thus, exploring additional metrics or objectives that
capture network efficiency would be valuable. Lastly, it is
worth noting that our proposed framework does not cover
the search for discriminator network structures, which signif-
icantly influence GAN performance. Extending our approach
to include the search for optimal discriminator architectures
is crucial for more comprehensive GAN improvement. Future
studies should, therefore, investigate techniques for effectively
searching discriminator network structures and determining
their impact on overall GAN performance. In summary, ad-
dressing these limitations and incorporating advancements in
our method would lead to a more robust and comprehensive
architecture search for GAN generators and discriminators.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel approach to searching

architectures for GANs, known as EWSGAN. The EWSGAN
framework consists of two steps: (a) the training of a supernet
generator and (b) an architecture search for high-performing
generator using an MOEA. The two strategies proposed by us
– fair single-path sampling and commonality-based discard-
ing, can effectively improve the training stability of supernet
generator. The experiments revealed that our method achieved
the best performance on the CIFAR-10 and STL-10 datasets

compared with peer method, and the architecture search can
complete in just one GPU day on the CIFAR-10 dataset. Our
method also demonstrates good scalability, and the searched
structure can be directly extended to the CelebA dataset,
exhibiting promising potential.

In future research, we plan to explore the possibility of ap-
plying our method to discriminator architecture search and in-
vestigating more efficient network architectures. Additionally,
we will delve into the relationship between supernet-based
architecture search methods and separately trained networks.
Furthermore, we intend to extend our method’s application
to higher-resolution datasets for generation tasks, addressing
more practical needs and enabling broader application scenar-
ios. Lastly, we will explore other evaluation metrics for GANs
and consider them as objectives for the architecture’s design
[59], [60].
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[62] K. R. Traoré, A. Camero, and X. X. Zhu, “Fitness landscape footprint:
A framework to compare neural architecture search problems,” arXiv
preprint arXiv:2111.01584, 2021.

Yu Xue received the Ph. D. degree from
School of Computer Science and Technol-
ogy, Nanjing University of Aeronautics and
Astronautics, China, in 2013. He is a profes-
sor at the School of Software, Nanjing Uni-
versity of Information Science and Technol-
ogy. He was a visiting scholar at the Victoria
University of Wellington, New Zealand and

at the Michigan State University, USA. His research interests
include Deep Learning, Evolutionary Computation, Machine
Learning, and Computer Vision.

Weinan Tong is currently pursuing the
M.Sc. degree, with a focus on deep learn-
ing, image generation, and evolutionary neu-
ral architecture search, with the School of
Software, Nanjing University of Information
Science and Technology, Nanjing, China.

Ferrante Neri (M’03-SM’19) received the
Laurea and Ph.D. degrees in electrical en-
gineering from the Technical University of
Bari, Bari, Italy, in 2002 and 2007, respec-
tively, and the second Ph.D. degree in sci-
entific computing and optimization and the
D.Sc. degree in computational intelligence
from the University of Jyväskylä, Jyväskylä,
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APPENDIX

A. Parameter settings

Table IV and Table V respectively show the parameter
settings used in our experiments.

TABLE IV
PARAMETER SETTINGS ASSOCIATED WITH THE NETWORK TRAININGS

CONDUCTED IN THIS STUDY.

Parameters Training the Supernet
Re-Training

CIFAR-10 STL-10

Epoch 200 600 600

Batch Size G/D 80/40 256/128 128/64

Learning Rate αG 1e-4 2e-4 3e-4

Learning Rate αD 1e-4 2e-4 2e-4

β1 0.0 0.0 0.0

β2 0.9 0.9 0.9

n critic 5 5 5

Latent Dimension 120 120 120

Channels of G/D 256/128 256/128 256/128

Loss Function Hinge-Loss Hinge-Loss Hinge-Loss

ema decay - 0.999 0.999

Warm-up Epoch 50 - -

TABLE V
PARAMETER SETTING ASSOCIATED WITH THE EVOLUTIONARY

OPERATORS EMPLOYED IN THIS STUDY.

Evolutionary Parameters Value

Iteration Number 20

Population Size 20

Crossover Operation uniform crossover

Mutation Probability 1

Number of Mutation Genes 1-4

Number of Evaluation Samples 5000

Optimisation Objective 1 IS

Optimisation Objective 2 FID

B. Alternative discard strategy

The purpose of our model pruning is to identify and
remove potentially bad operations in the supernet to improve
the stability and efficiency of supernet training. Therefore,
determining how to effectively identify which operations are
good and which are bad is the key to effective model pruning.
In addition to our commonality-based discard method, the
greedy discard method can be adopted, see [61]. The first step
is to randomly sample a fixed number of subnet architectures
and then evaluate and sort them. Subsequently, according
to the sorting order, the next step is to merge the subnet
operations into an empty operation pool until the latter meets
the predefined goals. For instance, we need to reduce the
number of choice block operations from seven to four, so we
sample 42 network architectures for evaluation and sorting.
The subnets are measured by calculating the IS. Starting with

the top-ranked subnet, its operations must then be merged into
new empty choice blocks until each choice block contains four
different operations, and subsequent operations will no longer
be added.

We compared the two discard strategies, and the experimen-
tal results are shown in Fig. 11. There is a definite gap between
the two methods, with the commonality-based method proving
superior, due to the fact that these types of methods focus more
on the contribution of operations to the overall performance
of the supernet. In other words, when an operation a performs
well when combined with other operations, it contributes
significantly to the supernet’s overall performance. However,
when another operation b only performs well in a specific
combination, its contribution to the overall performance of
the subnet is relatively minimal. As such, operation a should
be more conducive to stable supernet training; therefore, we
prefer to use commonality-based discard methods.

Fig. 11. The impact of different discard strategies on supernet training.

C. Other crossover operators

Crossover operators affect search performance. Conse-
quently, we investigate the performance of different crossover
operators – uniform crossover, single-point crossover and two-
point crossover – to determine the most suitable method for
solving our evolutionary problem. We apply the same param-
eter settings, running them five times, and we use the average
value and standard deviation of fitness for the 20 individuals
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Fig. 12. The performance of different network structures under different parameter settings.

TABLE VI
THE IMPACT OF DIFFERENT CROSSOVER OPERATORS ON THE

PERFORMANCE OF THE DESIGNED GENERATIVE ADVERSARIAL
NETWORKS (GANS).

Uniform crossover Single-point crossover Two-point crossover
IS↑ 5.57±0.20 5.59±0.21 5.37±0.16

FID↓ 80.83±1.16 80.96±2.68 81.55±1.82
pIS - 9.2E-1 1.7E-1
pFID - 7.5E-1 4.6E-1

in the last generation for comparison. The experimental results
are shown in Table VI.

When considering the IS, uniform crossover is marginally
less effective than single-point crossover. However, in terms of
the FID, uniform crossover demonstrates a slight advantage;
while the difference between the two methods is insignificant,
the overall performance favours uniform crossover, which
exhibits greater stability with a smaller standard deviation.
Conversely, two-point crossover does not appear to be suitable
for our approach when compared to the other two methods.

In summary, the uniform crossover is more suited to our

evolutionary algorithm, as this crossover method endows off-
spring with more changes. The p-values confirm that the im-
pact of the crossover operators on the EWSGAN performance
is not significant.

D. Parameter sensitivity

Different parameter settings have the potential to impact
GAN performance. Therefore, we conducted experiments us-
ing various parameter configurations and compared them to
two commonly used GAN network structures: the standard
convolutional neural network proposed by DCGAN [13] and
the ResNet architecture based on residual networks [11]. To
evaluate their performances, we employed spectrum normali-
sation and analysed the effects of different parameter settings,
focusing specifically on the learning rate, loss function and
optimiser, which are frequently used in GANs. Each network
is trained for 200 epochs by broadly following the indications
in [62]. The results of our analysis, presented in Fig. 12,
indicate that our network architecture consistently achieved
stable performance across diverse parameter settings.
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