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Abstract

Cross-modal retrieval aims to enable flexible retrieval
across different modalities. The core of cross-modal re-
trieval is how to measure the content similarity between dif-
ferent types of data. In this paper, we present a novel cross-
modal retrieval method, called Deep Supervised Cross-
modal Retrieval (DSCMR). It aims to find a common repre-
sentation space, in which the samples from different modal-
ities can be compared directly. Specifically, DSCMR min-
imises the discrimination loss in both the label space and
the common representation space to supervise the model
learning discriminative features. Furthermore, it simulta-
neously minimises the modality invariance loss and uses a
weight sharing strategy to eliminate the cross-modal dis-
crepancy of multimedia data in the common representation
space to learn modality-invariant features. Comprehen-
sive experimental results on four widely-used benchmark
datasets demonstrate that the proposed method is effective
in cross-modal learning and significantly outperforms the
state-of-the-art cross-modal retrieval methods.

1. Introduction

Cross-modal retrieval aims to enable flexible retrieval
across different modalities (e.g., texts vs. images) [30]. It
takes one type of data as the query to retrieve relevant data
of another type. The provided search results across vari-
ous modalities can be helpful to the users to obtain com-
prehensive information about the target events or topics.
With the rapid growth of different types of media data such
as texts, images, and videos on the Internet, cross-modal
retrieval becomes increasingly important in real-world ap-
plications [32]. Recently, cross-modal retrieval has at-
tracted the considerable attention of the researchers from
both academia and industry. The challenge of cross-modal
retrieval is how to measure the content similarity between
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different types of data since they lie on different spaces 
and obey dissimilar distributions, which is referred to 
as the heterogeneity gap [32].

A common approach to bridge the heterogeneity gap is 
representation learning. It tries to find a  f  unction t  o trans-
form the data samples from different modalities into a com-
mon representation space in which the similarity between 
them can be measured directly. A variety of cross-modal 
retrieval methods [20] have been developed, which propose 
different learning ways for finding the common s p ace. The 
traditional ones use the statistical correlation analysis to 
learn linear projections by optimising target statistical val-
ues. For example, Canonical Correlation Analysis (CCA)
[8] is one of the most representative works, which learns 
the common space by maximising the pairwise correlations 
between two sets of heterogeneous data. However, the cor-
relation of multimedia data in the real world is too complex 
to be fully modelled only by applying linear projections. 
Then, some kernel-based methods [1, 34] have been devel-
oped to address this issue, but how to select a suitable ker-
nel function for particular cross-modal learning application 
is still an unsolved problem.

Inspired by the great success of deep neural networks 
in representation learning [14], a large number of deep 
learning-based approaches [2, 33, 19, 36, 21, 25, 7] have 
been proposed to learn a common presentation space for 
multimedia data. For instance, Ngiam et al. [18] propose 
a bimodal deep auto-encoder to learn the cross-modal cor-
relation as well as preserve the reconstruction information 
and apply a Restricted Boltzmann Machine (RBM) to learn 
the common space for cross-modal retrieval. Different from 
[18], which learns common representations in an unsuper-
vised way, some supervised deep cross-modal learning ap-
proaches have been proposed to learn more discriminative 
representations. They are potentially able to provide a much 
better separation between classes in the common represen-
tation space. In this class of methods, Jiang et al. [9] pro-
pose to use the label information to learn the discriminative 
information between samples from inter-modalities. In ad-
dition, the cross-modal similarity is preserved by enforcing 
the representations of each image-text pair to be close to
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each other in a common Hamming space. In [35], Wang et
al. propose a Multi-modal Deep Neural Network (MDNN)
based on a deep Convolutional Neural Network (CNN) and
a Neural Language Model (NLM) to learn mapping func-
tions for the image modality and the text modality, respec-
tively. The (labels of the samples) classification informa-
tion is used to learn intra-modal semantics for image and
text. The Euclidean distance is used to measure the differ-
ence between the representations for an image-text pair to
guide the cross-modal learning. In [30], the classification
information is also used to learn intra-modal discrimination
in data during the feature projection. It is notable that even
though the classification information has been used in these
approaches, the classification information is only used to
learn discriminative features within each modality or be-
tween inter-modalities. The semantic information is not
fully exploited in these cross-modal learning approaches.

In this paper, we present a novel cross-modal retrieval
method, called Deep Supervised Cross-modal Retrieval
(DSCMR). It aims to preserve the discrimination among the
samples from different semantic categories and eliminate
the cross-modal discrepancy as well. To achieve this goal,
it minimises the discrimination loss of the samples both in
the label space and the common representation space to su-
pervise our model learning discriminative features. Further-
more, it simultaneously minimises the modality invariance
loss and uses a weight sharing strategy to learn modality-
invariant features in the common representation space. Fol-
lowing this learning strategy, both the pairwise label infor-
mation and the classification information are as fully ex-
ploited as possible to ensure the learned representation to
be both discriminative in semantic structure and invariant
across modalities.

The main contributions of this work can be summarised
as follows:

• A deep supervised cross-modal learning architecture is
proposed to bridge the heterogeneity gap between dif-
ferent modalities. It can effectively learn the common
representations for the heterogeneous data by preserv-
ing the semantic discrimination and modality invari-
ance simultaneously in an end-to-end manner.

• Two sub-networks with weight sharing constraint at
the last layers are developed to learn the cross-modal
correlation between image and text modalities. Fur-
thermore, the modality-invariance loss is directly for-
mulated into the objective function to eliminate the
cross-modal discrepancy.

• A linear classifier is applied to classify the samples
in the common representation space. In this way,
DSCMR minimises the discrimination loss in both
the label space and the common representation space,

which makes the learned common representations be
significantly discriminative.

• Extensive experiments on widely-used benchmark
datasets have been conducted. The results demonstrate
that our method outperforms current state-of-the-art
methods for cross-modal retrieval, which indicates the
effectiveness of the proposed method.

The remainder of this paper is organised as follows. Sec-
tion 2 reviews the related work in cross-modal learning.
Section 3 presents the proposed method, includes the prob-
lem formulation, the DSCMR model, the objective function
and the implementation details. Section 4 provides the ex-
perimental results and analysis. Section 5 concludes this
paper.

2. Related Work

The cross-modal learning methods aim to learn a com-
mon representation space, where the similarity between the
samples from different modalities can be measured directly.
A variety of approaches have been proposed to learn such
a common representation space, which can be roughly di-
vided into two categories: 1) binary-valued representation
learning [9, 3, 41], also called as cross-modal hashing, and
2) real-valued representation leaning [30, 19, 21]. The
binary-valued approaches are more geared towards com-
putational efficiency and map the heterogeneous data into
a common Hamming space, in which the cross-modal re-
trieval would be fast. Since the representations are encoded
to binary codes, the retrieval accuracy generally decreases
slightly due to the loss of information [20].

The proposed method in this paper is the one in the
category of real-valued representation learning approaches.
This category includes unsupervised approaches [2, 5,
33], pairwise approaches [38, 39, 31] and supervised ap-
proaches [32, 28]. The unsupervised methods only use
co-occurrence information (co-exist in a multimedia doc-
ument) to learn common representations for different types
of data. The methods of CCA, Deep CCA (DCCA) [2], Cor-
respondence Auto-encoder (Corr-AE) [5] and Deep Canon-
ically Correlated Auto-encoder (DCCAE) [33] are repre-
sentative ones of this subclass. The pairwise-based meth-
ods utilise more similar pairs to learn a meaning met-
ric for comparing samples from different modalities. The
representative methods of this subclass include the Multi-
view Metric Learning with Global consistency and Local
smoothness (MVML-GL) method [38], the Joint Graph
Regularised Heterogeneous Metric Learning (JGRHML)
method [39] and the Modality-Specific Deep Structure
(MSDS) method[31].

To learn more discriminative common representations,
supervised methods exploit label information to distinguish
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Figure 1. The general framework of the proposed DSCMR method. The images and the text are inputed into an image CNN [13] and a text
CNN [37], respectively, to obtain original high-level semantic representations. Then, a number of fully-connected layers are separately
added on the top of them to map the samples from different modalities into a common representation space. Finally, a linear classifier (with
parameters in P) is used to predict the category of each sample to supervise the network to learn cross-modal transformation functions f(·)
and g(·).

the samples from different semantic categories. The su-
pervised methods enforce different-category samples to be
transformed far apart while the same-category samples lie
as close as possible. To obtain such a common space,
Sharama et al. [28] proposed a supervised extension of
CCA, named as Generalised Multi-view Analysis (GMA),
by using the semantic category labels to guide the learning
of common representations. The recently proposed meth-
ods in [9], [22] and [30] also exploited semantic category
labels to learn discriminative features for cross-modal re-
trieval. In [22] and [30], the adversarial learning [6] has
been employed to improve the performance of cross-modal
learning as well. They both have achieved promising per-
formance on cross-modal retrieval tasks.

This paper is dedicated to fully exploit the classification
information to guide the model learning more discrimina-
tive and modal-invariant representations for the data of dif-
ferent types and bridge the heterogeneity gap, and thus im-
proving the cross-modal retrieval accuracy.

3. The Proposed Method
In this section, we first introduce the formulation of the

cross-modal retrieval problem. Then, we present the pro-
posed method to learn the common presentations of data
from different modalities. At last, we provide more imple-
mentation details of the proposed method.

3.1. Problem Formulation

Without losing generality, we focus on cross-modal re-
trieval for bimodal data, i.e., for images and text. We as-

sume that there is a collection of n instances of image-text
pairs, denoted as Ψ = {(xαi ,x

β
i )}ni=1, where xαi is the in-

put image sample and xβi is the input text sample of the ith
instance. Each pair of instances (xαi ,x

β
i ) has been assigned

a semantic label vector yi = [y1i, y2i, . . . , yci] ∈ Rc, where
c is the number of the categories. If the ith instance belongs
to the jth category, yji = 1, otherwise yji = 0.

Since the image feature vectors and text feature vec-
tors typically have different statistical properties and lie
in different representation spaces, they cannot be directly
compared against each other for cross-modal retrieval [30].
Cross-modal learning is to learn two functions for two
modalities: ui = f(xαi ; Υα) ∈ Rd for the image modal-
ity and vj = g(xβj ; Υβ) ∈ Rd for the text modality, where
d is the dimensionality of the representation in the common
representation space, and Υα and Υβ are the trainable pa-
rameters of the two functions. It makes the samples can
be compared directly even though they come from different
modalities, and in the common space, the similarity of the
samples from the same category is larger than the similarity
of the samples from the different categories. Therefore, the
relevant samples of different data types in the data set can
be returned for one query of any data type. In the follow-
ing, the image representation matrix, the text representation
matrix and the label matrix for all instances in Ψ are de-
noted as U = [u1,u2, . . . ,un], V = [v1,v2, . . . ,vn] and
Y = [y1,y2, . . . ,yn] with ui be the learned image rep-
resentation for the ith instance and vj be the learned text
representation for the jth instance in the common represen-
tation space.



3.2. Framework of DSCMR

The general framework of the proposed method is shown
in Figure 1, from which we can see that it includes two
sub-networks, one for image modality and another for text
modality, and they are trained in an end-to-end manner.
The convolutional layers of the deep neural network for
image modality are the same as those in 19-layer VG-
GNet [29], which is pre-trained on the ImageNet. We
generate 4, 096-dimensional feature vector from fc7 layer
as the original high-level semantic representation for im-
age, denoted as hαi . Then, several fully-connected layers
conduct the common representation learning to obtain the
common representation for each image, denoted as ui. To
perform common representation learning for text, we em-
ploy the Word2Vec model [16], which is pre-trained on
billions of words in Google News, to represent each net-
work as a k-dimensional feature vector first. Thus, each
text can be represented as a matrix with each column as a
k-dimensional feature vector. Then, the text matrix is feed
to the convolutional layers as same the configuration as sen-
tence CNN [37] to generate the original high-level seman-
tic representation for text, denoted as hβi . In a similar way,
a number of fully-connected layers are followed to learn
the common representation for text, denoted as vi. To en-
sure the two sub-networks to learn a common representa-
tion space for image and text modalities, we enforce these
two sub-networks to share the weights of their last layers.
This is intuitively to generate as similar as possible repre-
sentations for the image and text samples from the same
category.

Finally, based on the assumption that the common repre-
sentations in the common space are ideal for classification,
a linear classifier with the parameter matrix P is connected
to these two sub-networks to learn discriminative features
by exploiting the label information. Therefore, the cross-
modal correlation could be well learned and the discrimina-
tive features can be simultaneously exacted.

3.3. Objective Function

The goal of DSCMR is to learn the semantic structure of
the data, i.e., to learn a common space where the samples
from the same semantic category should be similar, even
though these data may come from different modalities, and
the samples from different semantic categories should be
dissimilar. To learn discriminative features of the multime-
dia data, we propose to minimise the discrimination loss in
both the label space and the common representation space.
Simultaneously, we minimise the distance between the rep-
resentations of each image-text pair to reduce the cross-
modal discrepancy as well. In the following, we present
more details about the objective function of our DSCMR.

To preserve the discrimination of samples from different
categories after the feature projection, we assume that the

common representations are ideal for classification and use
a linear classifier to predict the semantic labels of the sam-
ples projected in the common representation space. Specif-
ically, a linear layer is connected on the top of the image
modal network and the text modal network. This classifier
takes the representations of the training data in the com-
mon space and generates a predicted label of c-dimensional
vector for each sample. We propose the following objec-
tive function to measure the discrimination loss in the label
space:

J1 =
1

n
‖PTU−Y‖F +

1

n
‖PTV −Y‖F , (1)

where ‖·‖F denotes the Frobenius norm, P is the projection
matrix of the linear classifier.

Furthermore, we also measure the discrimination loss of
all samples from both modalities in the common represen-
tation space directly:

J2 =
1

n2

n∑
i,j=1

(log(1 + eΓij )− Sαβij Γij)︸ ︷︷ ︸
inter-modalities

+
1

n2

n∑
i,j=1

(log(1 + eΦij )− Sααij Φij)︸ ︷︷ ︸
image modality

+
1

n2

n∑
i,j=1

log(1 + eΘij )− Sββij Θij)︸ ︷︷ ︸
text modality

,

(2)

where Γij = 1
2 cos(ui,vj), Φij = 1

2 cos(ui,uj), Θij =
1
2 cos(vi,vj), Sαβij = 1{ui,vj}, Sααij = 1{ui,uj}, Sββij =
1{vi,vj}, cos(·) is the cosine function used to compute the
similarity between two input vectors, and 1{·} is an indi-
cator function, whose value is 1 if the two elements are the
representations of intra-class samples, otherwise 0. The first
term of Equation (2) is the negative log likelihood of the
inter-modal sample similarities with the likelihood function
defined as follows:

p(Sαβij |ui,vj) =

{
δ(Γij), if Sαβij = 1;

1− δ(Γij), otherwise,
(3)

where δ(Γij) = 1

1+e−Γij
is the sigmoid function. It is easy

to find that minimising this negative log likelihood function
is equivalent to maximising the likelihood. We can also see
that, the larger the similarity (cosine similarity cos(ui,vj))
is, the larger p(1|ui,vj) will be, which implies that should
be classified as similar, and vice versa. Likely, the sec-
ond and the third terms measure the similarities of the im-
age samples and the text samples, respectively. Therefore,



Equation (2) is a reasonable similarity measure for common
representations and is a well criterion for learning discrimi-
native features.

To eliminate the cross-modal discrepancy, we propose
to minimise the distance between the representations of all
image-text pairs. Technically, we formulate the modality
invariance loss as follows:

J3 =
1

n
‖U−V‖F . (4)

Combining Equations (1), (2) and (4), we obtain the ob-
jective function of the proposed method DSCMR as:

J = J1 + λJ2 + ηJ3, (5)

where the hyper-parameters λ and η control the contribu-
tions of the last two components, and n is the number of the
input instances. The objective function of DSCMR in Equa-
tion (5) can be optimised using a stochastic gradient descent
optimisation algorithm [12]. The details of the optimisation
procedure are summarised in Algorithm 1.

Algorithm 1 Optimisation procedure of the proposed
DSCMR
Input: The training data set Ψ = {(xαi ,x

β
i )}ni=1, the label

matrix Y, the dimensionality of the common represen-
tation space d, the batch size nb, the learning rate τ , the
maximal number of epochs ℵ, and the hyper parameters
λ and η.

Output: The optimised parameters in the two sub-
networks Υα, Υβ .

1: Randomly initialise the parameters of the two sub-
networks Υα, Υβ and the parameters of the linear clas-
sifier P.

2: for t = 1, 2, . . . ,ℵ do
3: for ` = 1, 2, . . . , b nnb c do
4: Randomly sample nb image-text pair samples

from Ψ to construct a mini-batch.
5: Compute the representations ui and vj for

the samples in the mini-batch by forward-
propagation.

6: Calculate the result of the objective function in
Equation (5).

7: Update the parameters of the linear classifier P by
minimising J in Equation (5) with:
P = (UUT )−1UTY + (VVT )−1VTY.

8: Update the parameters of the sub-networks, Υα

and Υβ , by minimising J in Equation (5) with de-
scending their stochastic gradient:
Υα = Υα − τ ∂J

∂Υα
; Υβ = Υβ − τ ∂J

∂Υβ
.

9: end for
10: end for

3.4. Implementation Details

In this work, there are two sub-networks, one for im-
age modality and the other for text modality. The convo-
lutional layers have the same configuration with 19-layer
VGGNet [29] for image sub-network and the sentence
CNN [37] for text sub-network as mentioned in Section
3.2. Then two fully-connected layers with Rectified Lin-
ear Unit (ReLU) [17] active function are followed in each
sub-network. The numbers of the hidden units for the two
layers are 2, 048 and 1, 024, respectively. The weights of
the second fully-layers of the two sub-networks are shared
to learn the correlation of two different modalities.

The entire network is trained on a Nvidia GTX 1080 Ti
GPU in PyTorch. For training, we employ the ADAM [12]
optimiser with a learning rate of 10−4 and set the maximal
number of epochs as 500.

4. Experiments
To verify the effectiveness of the proposed method,

we conduct experiments on four widely-used benchmark
datasets: the Wikipedia dataset [24], the Pascal Sentence
dataset [26], the NUS-WIDE-10k dataset [4] and the XMe-
diaNet dataset [20, 23]. In the experiments, we firstly com-
pare the proposed DSCMR method with the state-of-the-art
methods to evaluate its performance. Then, we provide fur-
ther analysis of the DSCMR method. It includes the con-
vergency investigation, the visualisation of the learned rep-
resentation in the common representation space and the im-
pact of different components in Equation (5).

4.1. Datasets and Features

In our experiments, we follow the dataset partition and
feature exaction strategies from [22, 25]. We adopt a 19-
layer VGGNet [29] to learn the representations of the sam-
ples and obtain a 4, 096-dimensional representation vector
outputted by the fc7 layer of the VGGNet for each im-
age. For representing text samples, we use the sentence
CNN [37] to learn a 300-dimensional representation vec-
tor for each text. The statistical results of the three datasets
are summarised in Table 1. It is notable that all the com-
pared methods adopt the same CNN features as for both
image and text obtained by the CNN architectures used in
our method.

4.2. Evaluation Metric

We evaluate the compared methods by using the mean
Average Precision (mAP) score for all returned results with
cosine similarity on all the four datasets. The mAP met-
ric jointly considers the ranking information and precision,
which is a widely-used performance evaluation criterion in
the research on cross-modal retrieval [32, 19, 30]. In our
experiments, we report the mAP scores of the compared



Table 1. Statistical results of the four benchmark datasets used in
our experiments, where ntrain and ntest stand for the numbers of
training and test image-text pairs, respectively. The symbol c is
the number of categories, di and dt are the dimensionalities of the
image and text features obtained by VGGNet [29] and sentence
CNN [37], respectively.

Dataset ntrain ntest c di dt
Wikipedia 2,173 462 10 4,096 300
Pascal Sentence 800 100 20 4,096 300
NUS-WIDE-10k 8,000 1,000 10 4,096 300
XMediaNet 32,000 4,000 200 4,096 300

methods for two different cross-modal retrieval tasks: 1) re-
trieving text samples using image queries (Image2Text) and
2) retrieving images using text queries (Text2Image).

4.3. Comparison with State-of-the-art Methods

To verify the effectiveness of our proposed methods,
we compare the proposed method with ten state-of-the-art
methods in the experiments, including five traditional meth-
ods, namely CCA [8], MCCA [27], MvDA [10], MvDA-
VC [11] and JRL [40], as well as five deep learning-based
methods, namely CMDN [19], CCL [21], DCCA [2], DC-
CAE [33] and ACMR [30].

Table 2. Performance comparison in terms of mAP scores on the
Wikipedia dataset. The highest score is shown in boldface.

Method Image2Text Text2Image Average
CCA [8] 0.134 0.133 0.134
MCCA [27] 0.341 0.307 0.324
MvDA [10] 0.337 0.308 0.323
MvDA-VC [11] 0.388 0.358 0.373
JRL [40] 0.449 0.418 0.434
CMDN [19] 0.487 0.427 0.457
CCL [21] 0.504 0.457 0.481
DCCA [2] 0.444 0.396 0.420
DCCAE [33] 0.435 0.385 0.410
ACMR [30] 0.477 0.434 0.456
Ours 0.521 0.478 0.499

Tables 2-5 report the mAP scores of the proposed
DSCMR and the compared methods on the four bench-
mark datasets (the mAP score results of CCL [21] and
CMDN [19] are provided by their authors), from which we
have the following observations:

• DSCMR significantly outperforms both the traditional
peer methods and the deep learning-based methods on
all of the four datasets. Specifically, DSCMR outper-
forms the second-best methods with an improvement
of 0.018, 0.038, 0.020 and 0.050 in terms of average

Table 3. Performance comparison in terms of mAP scores on the
Pascal Sentence dataset. The highest score is shown in boldface.

Method Image2Text Text2Image Average
CCA [8] 0.225 0.227 0.226
MCCA [27] 0.664 0.689 0.677
MvDA [10] 0.594 0.626 0.610
MvDA-VC [11] 0.648 0.673 0.661
JRL [40] 0.527 0.534 0.531
CMDN [19] 0.544 0.526 0.535
CCL [21] 0.576 0.561 0.569
DCCA [2] 0.678 0.677 0.678
DCCAE [33] 0.680 0.671 0.675
ACMR [30] 0.671 0.676 0.673
Ours 0.710 0.722 0.716

Table 4. Performance comparison in terms of mAP scores on the
NUS-WIDE-10K dataset. The highest score is shown in boldface.

Method Image2Text Text2Image Average
CCA [8] 0.378 0.394 0.386
MCCA [27] 0.448 0.462 0.455
MvDA [10] 0.501 0.526 0.513
MvDA-VC [11] 0.526 0.557 0.542
JRL [40] 0.586 0.598 0.592
CMDN [19] 0.492 0.515 0.504
CCL [21] 0.506 0.535 0.521
DCCA [2] 0.532 0.549 0.540
DCCAE [33] 0.511 0.540 0.525
ACMR [30] 0.588 0.599 0.593
Ours 0.611 0.615 0.613

Table 5. Performance comparison in terms of mAP scores on the
XMEDIANET dataset. The highest score is shown in boldface.

Method Image2Text Text2Image Average
CCA [8] 0.598 0.595 0.597
MCCA [27] 0.620 0.616 0.618
MvDA [10] 0.651 0.639 0.645
MvDA-VC [11] 0.650 0.627 0.638
JRL [40] 0.586 0.578 0.582
CMDN [19] 0.485 0.516 0.501
CCL [21] 0.537 0.528 0.533
DCCA [2] 0.583 0.596 0.590
DCCAE [33] 0.594 0.606 0.600
ACMR [30] 0.639 0.639 0.639
Ours 0.697 0.693 0.695

mAP scores on the Wikipedia, Pascal Sentence, NUS-
WIDE-10k and XMediaNet datasets, respectively.

• The nonlinear transformations in the deep learning-



based methods can be helpful to improve the perfor-
mance of the traditional methods, e.g., DCCA outper-
forms CCA with a significant margin on the first three
datasets.

• The traditional methods with the deep features could
also potentially be able to achieve a high mAP score
on cross-modal retrieval. For example, the linear
methods CCA, MCCA, MvDA, MvDA-VC and JRL
obtained promising results (average mAP of 0.597,
0.618, 0.645, 0.638 and 0.582) on the XMediaNet
dataset. This may be contributed to that the image
CNN and the text CNN have transformed the input
image and text samples into approximately linear sub-
spaces, which significantly reduced the difficulty of the
original cross-modal learning task.

4.4. Further Analysis on DSCMR

4.4.1 Convergency

Figure 2 shows the value of the objective function of our
method versus the different number of training epochs on
the Pascal Sentence dataset. From the result, we can see
that during the entire training procedure, the value of the
objective function decreases almost monotonously and con-
verges smoothly. The value of the objective function of
DSCMR becomes stable after 500 epochs, which illustrates
that the proposed method can be efficiently trained by us-
ing the stochastic gradient descent optimisation algorithm
Adam [12].
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Figure 2. The value of the objective function of DSCMR versus
the different number of training epochs on the Pascal Sentence
dataset.

4.4.2 Visualisation of the Learned Representation

To visually investigate the effectiveness of the proposed
DSCMR, we adopt the t-SNE approach to embed the rep-
resentations of the image and text samples (in the com-
mon representation space) into a two-dimensional visuali-
sation plane. The results of the original images represented
by the 4, 096-dimensional (VGGNet [29]) features and the
text samples represented by the 300-dimensional (sentence

CNN [37]) features (after the embedding process) are dis-
played in Figure 3(d) and Figure 3(e), respectively. We can
see that the distributions of the image modality and the text
modality in the Wikipedia dataset are largely different and
the samples are hard to be classified in the original input
space.

Figure 3(a) and Figure 3(b) show the two-dimensional
distributions of the image and text representations in the
common space. From the results, we can see that the for-
mulation of the discrimination loss in both the common
space and the label space is able to model the discrimi-
nation between the samples from different semantic cat-
egories, and effectively separates the representations into
several semantically discriminative clusters. We can also
find that a small number of the representations from differ-
ent semantic categories are mixed together, which makes
DSCMR returns some irrelevant results for a query. These
results are in accordance with the retrieval results shown in
Table 2. Furthermore, the distributions of image modality
and text modality in Figure 3(c) are well mixed together and
are difficult to be separated from each other. It means that
the cross-modal discrepancy is largely reduced by using the
proposed method.

4.4.3 Impact of Different Components

The objective function of the proposed DSCMR combines
three terms, which aim to minimise the discrimination loss
in the label space, the discrimination loss in the common
representation space, and the modality invariance loss in the
common representation space, respectively. To investigate
the impact of these terms on the performance of the pro-
posed method, we developed and evaluated four variations
of DSCMR: DSCMR without J1 (DSCMR1), DSCMR
without J2 (DSCMR2), DSCMR without J3 (DSCMR3)
and DSCMR only with J1 (DSCMR4). The optimisation
procedure of these four cases is similar to the proposed
DSCMR.

Table 6. Performance comparison of the proposed DSCMR and
its four variations in terms of mAP scores on the Pascal Sentence
dataset. The highest score is shown in boldface.

Method Image2Text Text2Image Average
DSCMR1 0.583 0.631 0.607
DSCMR2 0.708 0.722 0.715
DSCMR3 0.691 0.683 0.694
DSCMR4 0.690 0.680 0.685
Full DSCMR 0.710 0.722 0.716

Table 6 and Table 7 show the performance comparisons
of DSCMR and its four variations on the Pascal Sentence
dataset and the NUS-WIDE-10K dataset. From the results,
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Figure 3. The visualisation for the test data in the Wikipedia dataset by using the t-SNE method [15]. The triangles denote the samples from
image modality and the circles denote the samples from text modality. The samples come the same semantic category are marked with the
same colour. (a) the image representations in the common representation space. (b) the text representations in the common representation
space. (c) the image and text representations in the common representation space. (d) the original image samples represented by the 4, 096-
dimensional (VGGNet [29]) features. (e) the original text samples represented by the 300-dimensional (sentence CNN [37]) features.

Table 7. Performance comparison of the proposed DSCMR and its
four variations in terms of mAP scores on the NUS-WIDE-10K
dataset. The highest score is shown in boldface.

Method Image2Text Text2Image Average
DSCMR1 0.267 0.262 0.265
DSCMR2 0.610 0.612 0.611
DSCMR3 0.534 0.541 0.538
DSCMR4 0.527 0.520 0.524
Full DSCMR 0.611 0.615 0.613

we can see that the full DSCMR performs best on both
datasets, which indicates that all of the three terms in the
objective function contribute to the final retrieval accuracy.
We can also see that DSCMR outperforms DSCMR1 with
a large margin, which demonstrates the importance of the
first term (the discrimination loss in the label space). Fur-
thermore, DSCMR4 (the variation only with the first term)
obtained competitive results on both datasets. This also in-
dicates that the importance of the first term for the model
to learn modal-invariant discriminative features. However,
DSCMR4 is still inferior to the DSCMR2 and DSCMR3,
which demonstrates the significance of the second term and
the third term of the proposed method. Based on the above
analysis, we find that formulating both the discrimination
loss and the inter-modal invariance loss in the objective

function is a valuable strategy for multimodal learning.

5. Conclusion
In this paper, we proposed a new approach (DSCMR) to

learn common representations for heterogeneous data. The
learned common representations can be both discriminative
and modality-invariant for cross-modal retrieval. DSCMR
achieved this goal by minimising the discrimination loss
(in the common representation space and the label space)
and modality invariance loss simultaneously. Extensive ex-
perimental results on four widely-used benchmark datasets
and the comprehensive analysis have demonstrated the ef-
fectiveness of the proposed cross-modal learning strategy,
leading to superior cross-modal retrieval performance com-
pared to state-of-the-art methods.
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