
10 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2021 1556-603X/21©2021IEEE

Abstract—While deep neural networks (DNNs) deliver state-of-
the-art accuracy on various applications from face recognition to
language translation, it comes at the cost of high computational
and space complexity, hindering their deployment on edge
devices. To enable efficient processing of DNNs in inference, a
novel approach, called Evolutionary Multi-Objective Model

Compression (EMOMC), is proposed to optimize energy effi-
ciency (or model size) and accuracy simultaneously. Specifically,
the network pruning and quantization space are explored and
exploited by using architecture population evolution. Further-
more, by taking advantage of the orthogonality between pruning
and quantization, a two-stage pruning and quantization co-opti-
mization strategy is developed, which considerably reduces time
cost of the architecture search. Lastly, different dataflow designs
and parameter coding schemes are considered in the optimiza-
tion process since they have a significant impact on energy con-
sumption and the model size. Owing to the cooperation of the
evolution between different architectures in the population, a set
of compact DNNs that offer trade-offs on different objectives
(e.g., accuracy, energy efficiency and model size) can be obtained
in a single run. Unlike most existing approaches designed to
reduce the size of weight parameters with no significant loss of
accuracy, the proposed method aims to achieve a trade-off
between desirable objectives, for meeting different requirements
of various edge devices. Experimental results demonstrate that the
proposed approach can obtain a diverse population of compact

Digital Object Identifier 10.1109/MCI.2021.3084393
 Date of current version: 15 July 2021 Corresponding author: Liangli Zhen (e-mail: zhenll@ihpc.a-star.edu.sg).

©
S

H
U

T
T

E
R

S
TO

C
K

.C
O

M
/D

M
IT

R
IY

 P
R

AY
Z

E
L

©
S

H
U

T
T

E
R

S
TO

C
K

.C
O

M
/D

M
IT

R
IY

 P
R

AY
Z

E
L

Evolutionary Multi-Objective
Model Compression
for Deep Neural Networks

Zhehui Wang and Tao Luo
Agency for Science, Technology and Research (A*STAR),
SINGAPORE

Miqing Li,
University of Birmingham, UK

Joey Tianyi Zhou, Rick Siow Mong Goh,
and Liangli Zhen
Agency for Science, Technology and Research (A*STAR),
SINGAPORE

Authorized licensed use limited to: ASTAR. Downloaded on July 22,2021 at 17:59:32 UTC from IEEE Xplore. Restrictions apply.

AUGUST 2021 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 11

DNNs that are suitable for a broad range of different memory
usage and energy consumption requirements. Under negligible
accuracy loss, EMOMC improves the energy efficiency and
model compression rate of VGG-16 on CIFAR-10 by a factor of
more than .8 9# and .42 #, respectively.

I. Introduction

Deep neural networks (DNNs) are artificial neural net-
works with more than three layers (i.e., more than one
hidden layer), which progressively extract higher-level
features from the raw input in the learning process.

They have delivered the state-of-the-art accuracy on various
real-world problems, such as image classification, face recogni-
tion, and language translation [1]. The superior accuracy of
DNNs, however, comes at the cost of high computational and
space complexity. For example, the VGG-16 model [2] has about
138 million parameters, which requires over 500 MB memory
for storage and 15.5G multiply-and-accumulates (MACs) to
process an input image with 224 × 224 pixels. In myriad applica-
tion scenarios, it is desirable to make the inference on edge
devices rather than on cloud, for reducing the latency and
dependency on connectivity and improving privacy and security.
Many of the edge devices that draw the DNNs inference have
stringent limitations on energy consumption, memory capacity,
etc. The large-scale DNNs [3], [4] are usually difficult to be
deployed on edge devices, thus hindering their wide application.

Efficient processing of DNNs for inference has become increas-
ingly important for the deployment on edge devices. For generat-
ing efficient DNNs, many neural architecture search (NAS)
approaches have been developed in recent years [5]–[7]. One way
of carrying out NAS is to search from scratch [8], [9]. In contrast,
model compression1 [10] searches for the optimal networks starting
from a well-trained network. For instance, to reduce the storage
requirement of DNNs, Han et al. proposed a three-stage pipeline
(i.e., pruning, trained quantization, and Huffman coding) to com-
press redundant weights [10]. Wang et al. suggested removing
redundant convolution filters to reduce the model size [11]. Rather
than reducing the model size, a few attempts [12], [13] are conduct-
ed to compress DNNs directly by taking the energy consumption
as the feedback signals. They have achieved promising results in
reducing the size of weight parameters (or energy consumption).
However, these approaches require the model to achieve approxi-
mately no loss of accuracy, rendering the solution less flexible.

In practice, different users often have distinct preferences on
desirable objectives, e.g., accuracy, model size, energy efficiency, and
latency, when they select the optimal DNN model for their appli-
cations. In this paper, a novel approach, called Evolutionary Multi-
Objective Model Compression (EMOMC), is proposed to
optimize energy efficiency/model size and accuracy simultaneous-
ly. By considering network pruning and quantization, the model
compression is formulated as a multi-objective problem under dif-
ferent dataflow designs and parameter coding schemes. Each can-
didate architecture can be regarded as an individual in the

evolutionary population. Owing to the cooperation and interplay
of the evolution between different architectures in the population,
a set of compact DNNs that offer trade-offs on different objectives
(e.g., accuracy, energy efficiency, and model size) can be obtained in
a single run. Unlike most existing approaches which aim to reduce
the size of weight parameters or the energy consumption with no
significant loss of accuracy, the proposed approach attempts to
achieve a good balance between desired objectives, for meeting the
requirements of different edge devices. Experimental results dem-
onstrate that the proposed approach can obtain a diverse popula-
tion of compact DNNs for customized requirements of accuracy,
memory capacity, and energy consumption.

The novelty and main contributions of this work can be
summarized as follows:

 ❏ The model compression problem is formulated as a multi-
objective problem. The optimal solutions are searched in the
network pruning and quantization space using a popula-
tion-based algorithm.

 ❏ To speed up the population evolution, a two-stage pruning/
quantization co-optimization strategy is developed based on
the orthogonality between pruning and quantization.

 ❏ The trade-offs between accuracy, energy efficiency, and
model size in model compression are explored by consider-
ing different dataflow designs and parameter coding schemes.
The experimental results demonstrate that the proposed
method can obtain a set of diverse Pareto optimal solutions in
a single run. Also, it achieves a considerably higher energy
efficiency than current state-of-the-art methods.

II. Preliminaries
Network pruning and quantization are two commonly used
model compression techniques to improve the energy efficiency
in model inference and/or to shrink the size of the model.
Moreover, the dataflow design employed by edge devices and the
coding scheme applied to store the weight matrix both have a
significant impact on the performance of model compression.

A. Network Pruning and Quantization
For making the training easy, the networks are usually over-
parameterized [14]. Pruning is a widely-used model compression
technique that can effectively reduce the energy consumption of
edge devices and shrink the model size [10]. Network pruning
removes some of the redundant parameters in the network by
setting their values as zeros. A well-trained neural network usually
contains a large number of weights whose values are relatively
small compared to other parameters. In most cases, these parame-
ters are not particularly important when performing model infer-
ence. Hence, one can sort all the parameters in the model and
replace those parameters with the least absolute values by zeros,
while the accuracy of the model can still be maintained. For
instance, the pruning amount to be 33%, then one-third of the
parameters in the model will be replaced by zeros. In the infer-
ence process, if the processing elements (PEs)2 whose input

1The technique aims to shrink the size of the neural network model without a signifi-
cant drop of accuracy. 2The PE is a basic unit to conduct computation in processors.

Authorized licensed use limited to: ASTAR. Downloaded on July 22,2021 at 17:59:32 UTC from IEEE Xplore. Restrictions apply.

12 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2021

weight parameters are zeros, the computation process can be
skipped in those PEs, thus reducing energy consumption.

Quantization is another critical model compression tech-
nique that is used to accelerate DNNs and reduce model size
[10]. It involves mapping data to a small set of quantization lev-
els and aims at minimizing the error between the reconstructed
data from the quantization levels and the original data. The
quantization level reflects the precision and ultimately the
number of bits representing a parameter. After the quantization,
the low precision parameters may still store enough informa-
tion for model inference, and the accuracy of the model can be
maintained. In practical implementations, if the weights are
quantized, one can use multipliers with simpler structures, thus
reducing energy consumption. For instance, a high precision
parameter with 32-bit float point (32FP) data type requires
23 bit × 23 bit multipliers. Such type of multiplier contains
506 adders in total. If quantizing the activation from 32FP to
16-bit float point (16FP) and quantizing the weights from
32FP to 8-bit integer (8INT), only 10 bit × 8 bit multipliers
are required, each of which contains only 72 adders in total.
The fewer adders in multipliers, the lower energy consumption
for computation.

Pruning and quantization can reduce not only the energy
consumption on the computation process but also the energy
consumption on the data movement, which is roughly propor-
tional to the total amount of data transmitted from the memo-
ry module in terms of bits [15]. For instance, if pruning 80% of
the parameters in the model and quantizing all the parameters
from 16 bits to 8 bits, then about 90% of the energy consump-
tion on data movement can be reduced.

B. Dataflow Design in Hardware Accelerators
The dataflow design decides how data is reused among differ-
ent PEs. Since a large portion of the energy consumption of
hardware accelerators is on the data movement, the dataflow
design needs to be considered when optimizing the energy
efficiency. Algorithm 1 shows the computation procedure of a

typical convolutional layer. It contains six
loops, each of which corresponds to one
dimension either in the weight filter or in the
feature map. More specifically, CO and CI are
the numbers of output and input channels, X
and Y are the width and height of the feature

map, and FX and FY are the width and height of the weight
filter. In each iteration of the innermost loop, a basic arithmetic
operation called multiply-accumulate (MAC) is performed. In
one convolutional layer, there are · · · · ·C C X Y F FO I X Y MAC
operations in total.

In typical hardware accelerators,3 there are a set of process-
ing elements. Each PE can execute one MAC operation inde-
pendently. How to map the MAC operation into each PE and
how the data flow among those PEs become key consider-
ations in the design of hardware accelerators. Theoretically,
there are many mapping methods, resulting in different data-
flow designs. For example, suppose that the device has an array
of PEs, one can unroll any one of the loops in Algorithm 1
and map each iteration in the unrolled loop into each PE of
the array. Similarly, if the device has a matrix of PEs, one can
unroll any two loops in Algorithm 1 and map the MAC oper-
ations into each PE in the matrix. Thus, with six loops as
shown in Algorithm 1, there are C 156

2 = possible dataflow
designs in total. To simplify the problem, in this work, only four
popular dataflow designs are evaluated, as shown in Table I.
These dataflow designs are named as : ,A B where A and B
stand for the names of the two unrolled loops.

Figure 1 shows the schematic diagram of those four popu-
lar dataflow designs, where only four PEs are involved in each
example. Each PE contains one multiplier and one adder,
which can execute one MAC operation each time. The PE also
contains register files, which can temporarily store input or
output data. In X:Y, the MAC operation results are stored in
registers at output ports of PEs. At each iteration, the last MAC
operation result is read from registers. In : ,C CI O at each itera-
tion, the input feature map is reused CO times, and CI MAC
operation results are summed up. In : ,F FX Y ·F FX Y weights are
stored in registers at input ports of PEs. At each iteration,

·F FX Y MAC operation results are summed up. In : ,X F FX X
weights are stored in registers at input ports of PEs. At each
iteration, the weights are reused X times, and FX MAC opera-
tion results are summed up.

Algorithm 1 Computation of a typical convolutional layer.

 for co in range(CO) do
 for ci in range(CI) do
 for x in range(X) do
 for y in range(Y) do
 for fx from -(FX -1)/2 to (FX -1)/2 do
 for fy from -(FY -1)/2 to (FY -1)/2 do
 O[co][x][y]
 + = I[ci][x + fx][y + fy] W# [co][ci][fx][fy]

TABLE I Popular dataflow designs
that are applied in literature.

DATAFLOW APPLIED BY DATAFLOW APPLIED BY

:X Y [16] [17] :C CI O [18] [19]

:F FX Y [20] :X FX [21] [22]

3The devices that are specialized to execute a certain task, such as the graphics pro-
cessing unit (GPU), field-programmable gate array(FPGA), and application-specific
integrated circuit (ASIC).

Dataflow design is one of the most important features
in hardware accelerators, which allows the system to
reuse the data among different processing elements.

Authorized licensed use limited to: ASTAR. Downloaded on July 22,2021 at 17:59:32 UTC from IEEE Xplore. Restrictions apply.

AUGUST 2021 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 13

C. Coding Scheme for the
Parameters
After pruning, the filter in the model
becomes a sparse matrix, which means
that it contains plenty of zero elements.
To store the sparse matrix into the
memory, many coding schemes are
developed, and the choice of the cod-
ing scheme mainly depends on the
characteristics of the matrix. In this
work, three coding schemes are consid-
ered. The first one is the normal coding
scheme, where it stores those zero ele-
ments in the same way as those non-
zero elements. In other words, it keeps
the space for all the zero elements in
the matrix. Therefore, the storage size of
the normal coding scheme is ,N qi$
where N is the total number of weight
elements in the matrix and qi is the
quantization depth of the weight.

In some cases, it is a waste of the
memory capacity to store all these zero
weights. For saving the memory space,
various new coding schemes are pro-
posed to shrink the size of the sparse
matrix. One common coding scheme is
called the Coordinate (COO) coding.
In the COO coding scheme, the non-zero elements are stored,
along with the row index and the column index, and zero ele-
ments are ignored. Another popular coding scheme is called the
compressed sparse row (CSR) coding. In the CSR coding
scheme, only the values of the non-zero elements are stored
along with the column index and the row offset. To further
save the memory space, one version of the CSR coding
scheme only stores the relative distance between two non-zero
elements, which is shown in Figure 2. For this example, the
weight matrix has eight elements, and three of them are non-
zero elements. Only the values of these three elements and
their relative positions in the array are stored. The second non-
zero element is three slots away from the first non-zero ele-
ment, and the integer 2 is recorded as a relative row index for
the second element. It is assumed that each non-zero element
requires three bits to store the relative row index. If one non-
zero element is far away from the previous element, zero-pad-
ding elements are inserted into the array to avoid overflow.
Therefore, the storage size of the CSR coding scheme with
relative positions is · ()n p 3i + , where n is the number of non-
zero elements and qi is the quantization depth of the weight.

III. Related Work

A. Model Compression
Model compression aims to compress and accelerate DNN
models. Different approaches target different objectives, such as

model size, number of floating-point operations per second
(FLOPs), latency, and energy efficiency. The initial intention of
model compression is to alleviate the on-chip storage limit for
complicated CNN models [10]. Since then, many approaches
have been proposed to shrink the model size of CNNs [23],
[24]. There are two major branches in this area. The first branch
focuses on the computation cost, and they target the number of
FLOPs [25]. For example, Li et al. [26] proposed to prune
whole filters from CNNs, avoiding sparse connectivity patterns
and reducing the computational cost significantly. Lemaire et al.
proposed a budgeted regularized pruning framework for deep
CNNs [25], which makes the compressed model less computa-
tion-intensive. The second branch targets the inference speed
[27], [28]. For instance, He et al. leveraged reinforcement

I0 I0

W0

W1 W11

W10

I2

W0

W2

I1

I3

W1

W3

O0

O0 O1

O2

O1

O3

O

Dataflow - X :Y Dataflow - Cl :Co

I0 I0

I1

I1

I2

W0

W1

I2

W0

W2

I1

I3

W1

W3
O0 O1

Dataflow - Fx:FY Dataflow - X:Fx

Processing Element Register File Data Direction

FIGURE 1 Examples of the four popular dataflow designs [15]. For simplicity, only four PEs are
shown in each example. / ,W Wk kk Ik, and Ok are the elements in the weight, the input feature
map, and the output feature map, respectively.

Distance = 2 Distance = 3

NA 2

0 0 0 0 0

3

XXX XXX XXX

W0 W1 W2 W3 W4 W5 W6 W7

FIGURE 2 The CSR coding scheme with relative positions, which
stores the values of non-zero elements and their relative positions in
the array.

Authorized licensed use limited to: ASTAR. Downloaded on July 22,2021 at 17:59:32 UTC from IEEE Xplore. Restrictions apply.

14 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2021

learning to provide the model compression policy, which can
accelerate the inference on mobiles considerably.

Recently, edge devices have become increasingly popular
for AI applications. However, considering the large amount of
energy consumed for the model inference, the deployment of
CNN on edge devices becomes challenging. To solve this
problem, some scholars proposed model compression
approaches to reduce the energy consumption directly, using
quantization [13] and/or pruning [12] techniques. In [12], an
energy-aware network pruning approach is proposed to reduce
the overall energy across all layers by .3 7# for AlexNet [29]
and .1 6# for GoogLeNet [30].

From the above, it can be seen that model compression is
essentially a multi-objective optimization problem, with several
objectives to be considered, including accuracy, energy con-
sumption, model size, etc. Previous studies rarely deal with
multiple objectives at the same time. A common way adopted
in literature is to optimize only one of the objectives while set-
ting the remaining ones to be hard constraints. In this work, the
evolutionary multi-objective optimization technique is applied
to tackle these objectives simultaneously.

B. Evolutionary Multi-Objective Optimization
In the real-world systems, there exist plenty of problems having
two or more (often conflicting) objectives which one needs to
consider simultaneously. Such problems are called the multi-
objective optimization problems (MOPs). Without loss of gen-
erality, a multi-objective optimization problem (MOP) can be
formulated as the following minimization problem:

() ((), (), , ())
() , { , , , },
() , { , , , },

,

min F f f f
g j J
h k K

0 1 2
0 1 2

s.t.
x x x x
x
x

x

M
T

j

k

1 2
x

f

f

f

!

!

! X

=

=

(1)

where J denotes the number of inequality constraints, K is the
number of equality constraints, Rn3X is the decision space,

(, , ,)x x xx n
T

1 2 f= is a candidate solution, and :F RM"X
consists of M (conflicting) objective functions.

Let a and b be two feasible solutions for an MOP defined in
Equat ion (1), one can say that a dominates b if

() () () (),u f f v f fanda b a bu u v v6 7 1# where , { , , , }.u v M1 2 f!
A solution is Pareto optimal if it is not dominated by any other
solutions. Due to the conflict of the objectives in MOPs, there
are a set of Pareto optimal solutions, which represent the best
possible trade-offs among different objectives. The optimal solu-
tion set in the decision space is called the Pareto set (PS), and its
mapping in the objective space is called the Pareto front (PF).

In the literature, many approaches have
been developed to solve MOPs since the
1950s [31]. Among them, evolutionary algo-
rithms (EAs) stand out thanks to the nature of
population-based search that aims to approxi-
mate the whole Pareto front in a single execu-
tion. Also, EAs are typically exempt from the

characteristics of the PF than conventional math-
ematical programming techniques [31]. They can handle the
MOPs with discontinuous and non-convex PFs well.

Since the seminal work, called Vector Evaluated Genetic
Algorithm (VEGA) [32], was proposed by Schaffer in 1985, a
large number of multi-objective evolutionary algorithms
(MOEAs) have been developed and adopted in various appli-
cations. In MOEAs, the selection strategy of individuals in the
population plays a key role in the evolutionary process. Since
the optimal solutions are those non-dominated to each other
in the whole search space, Pareto dominance naturally becomes
a viable criterion for selecting promising solutions during the
evolutionary process. The Pareto dominance criterion, however,
may fail to provide sufficient selection pressure, making the
algorithm hard to converge. This situation can be usually
encountered when the objective space is enormous, e.g., in
many-objective optimization problems [33]–[35]. To push the
population towards the PF, Goldberg proposed a mechanism
called Pareto ranking [36] for the selection in MOEAs. A niche
method is then used in the Nondominated Sorting Genetic
Algorithm (NSGA) [37] to maintain stable sub-populations.
Later on, in its new version Nondominated Sorting Genetic
Algorithm-II (NSGA-II) [38], a crowding degree comparison
operator is adopted to make the ranking scheme more effective
and efficient. NSGA-II is widely used to solve MOPs, despite
its limitations in handling the MOPs with more than three
objectives [39]. Recently, many MOEAs tend to consider other
selection strategies since they may converge fast towards the PF,
such as indicator-based MOEAs, decomposition-based
MOEAs, and bi-goal criterion MOEAs [33].

Recently, there have been a few attempts to exploit
MOEAs to search for efficient neural architectures. For
instance, Lu et al. proposed a method, called NSGA-Net [40],
which formulates the neural architecture search as a multi-
objective problem and uses the NSGA-II algorithm to solve it.
NSGA-Net considers two objectives: the classification error
and the computation cost (measured by the number of MACs).
It has achieved promising results compared with other neural
architecture search methods, e.g., DARTS [5] and ENAS [41],
on the CIFAR-10 dataset [42].

This work studies how the evolutionary multi-objective
(EMO) method can be used in model compression, given its
multi-objective nature.

IV. Our Proposed Method
In real-world applications, users usually have different preferenc-
es on the prediction model’s objectives, including accuracy,
energy efficiency, model size, etc. In this section, the evolutionary

Evolutionary multi-objective optimization has been
widely used to search for the optimal solutions,
in the presence of trade-offs between multiple
conflicting objectives.

Authorized licensed use limited to: ASTAR. Downloaded on July 22,2021 at 17:59:32 UTC from IEEE Xplore. Restrictions apply.

AUGUST 2021 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 15

multi-objective model compression method is presented. The
model compression problem is formulated as a multi-objective
problem (MOP), which has several objective functions and con-
straints [43]. Then, an evolutionary algorithm is adopted to solve
the MOP. The goal of the optimization is to find a set of Pareto
optimal solutions that represents various trade-offs on the
desired objectives, thus enabling the deployment of the AI mod-
els on edge devices with different resource constraints.

A. Problem Formulation
This work aims to compress a well-trained model to achieve
high accuracy, low energy consumption, and low model size.
By providing different pruning amount, p, and quantization
depth, q, the compressed model should result in different accu-
racy, energy consumption, and model size. The goal of the opti-
mization is to reduce the energy consumption or model size
while at the same time making the accuracy of the model as
high as possible. The relationship between the accuracy, the
pruning amount, p , and the quantizat ion depth

[, , ,]q q qq L1 2 f= is denoted as

 (,),f pAccuracy q1= (2)

where (·)f1 represents the accuracy score of the model
obtained by pruning p of the weight parameters in each layer
of the original model, then quantizing the parameters in the
i-th layer with the depth of qi bits, and L denotes the number
of layers in the original model.

The energy consumption of the inference is constrained by
the battery’s capacitance of edge devices. Exceeding the ener-
gy budget of the edge device will greatly limit the implemen-
tation of AI applications. From the perspective of users, it is
usually acceptable to trade a bit of loss of accuracy for a large
amount of reduction on energy consumption, especially for
edge devices. For a trained model, the energy consumption in
inference is also related to the exact dataflow design d applied
on the edge devices. The relationship among the pruning
amount p, the quantization depth q, and the dataflow design d
is denoted as follows:

 (, , .f p dEnergy q2=) (3)

The model size is constrained by the capacities of on-chip
memory modules in edge devices. If the model size exceeds
the limitation, the model inference procedure requires to load
and save weights/features maps through the off-chip memory.
Given the fact that off-chip memory access consumes much
larger energy consumption than the on-chip memory access
[10], the energy consumption of the inference process increas-
es tremendously. Furthermore, the app stores are sensitive to
the size of the binary files, e.g., App Store has the restriction
“apps above 100 MB will not download until you connect to
Wi-Fi” [10]. Hence, it is important to shrink the size of the
model and to make sure that the entire model can be fit into
the memory constraint of the edge devices. For a given model,
the model size highly depends on the coding scheme c applied
to store the weights. The relationship between the model size,

the pruning amount p, the quantization depth q and the coding
scheme c is defined as

 (, ,) .f p cModel Size q3= (4)

There are L + 3 variables, and L denotes the number of lay-
ers in the original model. The value of the variable p is a real
number that indicates the pruning amount in all the layers of
the model. The value of the variable q i is an integer that
reflects the quantization depth in the i-th layer of the model.
The constraints on these variables are as follows:

,
,

{ , , , },
{ , , },

p p p
q q q
d d d d d
c c c c

l u

l i u

1 2 3 4

1 2 3

#

#

!

!

(5)

where pl and pu are the upper and lower bounds of the prun-
ing amount, ql and qu are the upper and lower bounds of the
quantization depth, , ,d d d1 2 3 , and d4 correspond to the four
dataflow designs of : , : , :X Y C C F FI O X Y and :X FX , and ,c1 c2
and c3 indicate three parameter coding schemes of the normal
coding, COO and CSR, respectively. In this work, the pruning
amount is assumed to be from 0% to 100%, and the quantiza-
tion depth of each layer ranges from 1 bit to 23 bits.

Two bi-objective optimization problems are studied. In the
first problem, it explores possible combinations of pruning
amount and quantization depth, and aims to maximize the
model accuracy f1 and minimize the energy consumption ,f2
assuming the dataflow design to be d. Mathematically, the
bi-objective problem can be formulated as following:

 d
(,),
(, ,),

,
,

{ , , , } .

max
min

f p
f p

p p p
q q q
d d d d d

s.t.
q
q

l u

l i u
1

2
1 2 3 4

#

#

!

' * (6)

The second bi-objective problem considers to maximize
the accuracy f1 and minimize the model size f3 simultaneous-
ly, assuming the coding scheme to be c, namely, the following
problem:

(,),
(, ,),

,
,

{ , , } .

max
min

f p
f p c

p p p
q q q
c c c c

s.t.
q
q

l u

l i u
1

3
1 2 3

#

#

!

' * (7)

Note that this work formulates two bi-objective optimiza-
tion problems rather than a three-objective optimization prob-
lem. There are two reasons. Firstly, if one optimizes the energy
consumption and the model size simultaneously (i.e., different
dataflow designs and different coding schemes will be consid-
ered at the same time), the decision space will be increased
considerably, making the optimization much harder and con-
suming more computation resource. Secondly, as the evalua-
tion of each individual has a high computational cost, the
population size cannot be a large number. Typically, the pop-
ulation size is set to be smaller than 100. A three-objective
space will lead to the solution set to be much more sparse
than a bi-objective space.

Authorized licensed use limited to: ASTAR. Downloaded on July 22,2021 at 17:59:32 UTC from IEEE Xplore. Restrictions apply.

16 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2021

B. Multi-Objective Optimization and Speedup
Instead of pruning the model directly in one step, a more effec-
tive approach employed is to prune the model in multiple steps.
If pruning the model in one step, the accuracy will decrease
apparently, and it will be too difficult to restore the model [44].
Figure 3 demonstrates the comparison between the multi-step
pruning method and the single-step pruning method. The
model compression of a well-trained VGG-16 model is tested
on the CIFAR-10 dataset [15], [42]. For the multi-step prun-
ing, it gradually increases the pruning amount from 0 to 95%
in 32 steps. In each step, the model is pruned partially and re-
trained by one epoch. In the single-step pruning, the model is
pruned by 95% immediately, and then re-trained by 32 epochs.
As shown in Figure 3, it can be seen that the multi-step prun-
ing method outperforms the single-step pruning method in
terms of accuracy with a large margin.

A challenge in the multi-step pruning process is that it usu-
ally has high computational complexity. Specifically, each step
requires fine-tuning the model by one or several epochs. If one
attempts to find the optimal pruning amount and quantization
depth for a model, the multi-step pruning process will consid-
erably delay the optimization progress. To obtain the accuracy
of the compressed model at a given pruning amount and quan-
tization depth, the model needs to be compressed first, which
usually includes many training epochs. Due to the large search
space, it is almost impossible to pre-store all the compressed
models under any combinations of pruning amount and quan-
tization depth. For example, the parameters in each layer of the
model can be quantized from 23 bits to 1 bit. The pruning
amount in each layer can range from 0 to 100%. In general, an
L-layer model can have 100 23L# possible combinations of
pruning amount and quantization depth, assuming 1% pruning
amount granularity.

The EMO technique is adopted to solve this problem.
However, since an evolutionary algorithm is essentially a sto-
chastic search, it may need thousands of trials (candidate solu-
tions) to find a high-quality solution. Once a new solution
(architecture) is produced, it takes a substantial amount of time
to perform the training for the evaluation. Consequently, it
may make the EMO-based search impossible.

To address this issue, by taking advantage of the orthogonal-
ity between pruning and quantization [45], a two-stage prun-
ing and quantization co-optimization method is proposed,
which can effectively reduce the computational cost. Specifical-
ly, the optimization process is divided into two stages. In the
first stage, it prunes the model by multiple independent loops.
In each loop, it starts from a well-trained model, prunes the
model with a different pruning amount, fine-tunes the model,
and saves the pruned model into a library. The set of pruning

amounts cover all the possible pruning
amounts which can be referenced by
the multi-objective solver. This is to
guarantee that no pruning process is
required in the second stage. In the sec-
ond stage, the multi-objective solver
starts to explore the design space and
tries to find the optimal combinations
of pruning amount and quantization
depth. During this process, the solver
needs to know the accuracy, energy
consumption, and model size under a
given combination of pruning amount
and quantization depth. At this step, one
just needs to load the corresponding
pruned model from the library and
quantize it.

Figure 4 shows an overview of the
proposed approach. Instead of pruning
and quantizing the models at the same
time, these two actions are taken into
two different stages. In the first stage, it

Pruning Amount p Pruning Amount p Quantizing Depth q

Prune Model
Based on p

Pre-Pruned Models
Library

Pre-Pruned Models
Library

Quantize Model
Based on q

Model InferenceEnergy Estimator

Energy
Consumption

Accuracyp = p + ρ

Load

Save

(a) (b)

FIGURE 4 The process of the proposed two-stage pruning and quantization co-optimization
method. (a) Stage-I: prune the model and save the pre-pruned models to the library; (b) Stage-
II: load the pre-pruned model from the library, quantize the parameter, and calculate the accuracy
as well as the energy consumption/the model size.

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

Multi-Step Pruning
Single-Step Pruning

N
on

-Z
er

o
W

ei
gh

ts
 (

%
)

A
cc

ur
ac

y

Time (Epoch)
0 4 8 12 16 20 24 28 32

FIGURE 3 The comparison between multi-step pruning and single-step
pruning, tested on CIFAR-10 using VGG-16 (figure adopted from [15]).

Authorized licensed use limited to: ASTAR. Downloaded on July 22,2021 at 17:59:32 UTC from IEEE Xplore. Restrictions apply.

AUGUST 2021 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 17

only prunes the model. Specifically, assuming t
as granularity, it prunes the model by /100 t
times. At the i-th time step, it starts from the
well-trained model and prunes the model
gradually using the multi-step pruning method,
until the target pruning amount reaches

.i $ t After that, it saves the compressed model into a pre-pruned
models library. In the second stage, it loads one of the pre-
pruned models from the library based on the required pruning
amount p, and then quantizes the parameters on the pre-pruned
model based on the required quantization depth q. Since prun-
ing and quantization are two orthogonal operations, the final
compressed model will be equivalent to the compressed model
that is pruned and quantized at the same time. Lastly, it obtains
the accuracy by performing the model inference and read the
energy consumption from an energy estimator.

The proposed approach can efficiently speed up the optimiza-
tion process. To obtain the accuracy and energy consumption under
a given pruning amount and quantization depth, it does not need
to fine-tune the model anymore. Before the optimization process, it
completes the procedures in stage-I and saves only 100 compressed
models into the library, assuming 1% granularity. The number of
saved models is much less than 100 23L# , i.e., the number of pos-
sible compressed models in the whole exploration space. For each
combination of pruning amount and quantization depth, the time
cost of evaluating the individual is roughly equal to the inference
time cost of the model.

V. Experimental Results and Analysis
The proposed method is evaluated on three baseline CNN
models: MobileNet [46], VGG-16 [2] and LeNet-5 [47], which
have different characteristics. MobileNet is a neural network
specially designed for mobile and embedded vision applica-
tions. VGG is a typical deep neural network, which was in the

first place on the image localization and the second place on
the image classification task in the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) in 2014. LeNet-5 is a sim-
ple network for handwritten and machine-printed character
recognition. It consists of only two sets of convolutional and
average pooling layers, followed by a flattening convolutional
layer, two fully-connected layers, and a Softmax classifier.
MobileNet and VGG-16 are tested for color image classifica-
tion on the CIFAR-10 dataset [42], and LeNet-5 is applied to
recognize handwriting digits in the MNIST dataset [47].

A. Experimental Setting
The NSGA-II algorithm in the python-based tool Pymoo [43]
is used to solve the formulated multi-objective problem. The
neural network is implemented in PyTorch4. During the net-
work training, the initial learning rate is set to be 0.01, and it
decays by half every 30 epochs. The batch size is set to be 256.
During the multi-objective optimization process, the popula-
tion size is set to be 40, and it runs 250 generations in each
execution. The multi-objective optimization and network
training are performed on an NVIDIA Titan Xp graphics
processing unit (GPU) card. Four dataflow designs are consid-
ered as they are the most commonly used dataflow designs

: , : , : ,X Y C C F FI O X Y and : .X FX The resource requirement is
calculated based on the Xilinx Virtex UltraScale FPGA and the
energy consumption from the Xilinx XPE toolkit [48]. In the

0

0.2

0.4

0.6

0.8

1

0.7 0.75 0.8 0.85 0.9

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Accuracy

0

0.5

1

1.5

2

2.5

0.75 0.8 0.85 0.9 0.95
Accuracy

1

2

3

4

5

6

0.8 0.85 0.9 0.95 1

MobileNet VGG-16 LeNet-5

X :Y (3.4) CI:CO (3.2)

FX:FY (4.6) X:FX (4.7)
X :Y (23.1) CI:CO (21.2)

FX:FY (24) X:FX (22.8)
X :Y (31.2) CI:CO (33.1)

FX:FY (31.5) X:FX (28.1)

Accuracy

FIGURE 5 The solution sets obtained from the bi-objective optimization of accuracy and energy consumption on CIFAR-10 (MobileNet and VGG-
16) and MNIST (LeNet-5). The four different dataflow designs are marked with different colors. In the legends, the quoted number after the data-
flow design indicates its energy consumption (mJ) on the original model before the model compression.

4PyTorch Open Source Toolkit at https://github.com/pytorch/pytorch.

Pruning and quantization are two popular techniques
in DNN model compression, which show substantial
improvement in energy efficiency.

Authorized licensed use limited to: ASTAR. Downloaded on July 22,2021 at 17:59:32 UTC from IEEE Xplore. Restrictions apply.

18 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2021

implementation, the multipliers and adders are implemented
on LUTs (lookup tables). An M N# multiplier requires

/ ()M N2 1# + LUTs [49]. To save the memory space, there is
no need to keep the feature map in local memory after the
computation of each layer. Hence, the size of the local memory
modules must support the weights in all layers and the tempo-
rary feature maps. The pruning and quantization approaches are
described in [10]. For pruning, the 1, -norm based unstructured
pruning method is adopted and a mask is added to filter out
the pruned weight. For quantization, the linear (uniform)
quantization method is adopted and a scaling factor is used to
lower the precision of the weights.

B. Bi-Objective Optimization of
Accuracy and Energy Consumption
Due to the proposed two-stage pruning and quantization co-
optimization method, one can complete the model compres-
sion and obtain the solution set efficiently. The entire
optimization process includes two stages. The first stage is for
the pre-processing, which takes around 24 hours. The second
stage is for the multi-objective optimization. The solver can
generate optimal solutions within one hour by using a single
NVIDIA Titan Xp graphics processing unit (GPU) card.
Figure 5 shows the solution sets obtained from the bi-objec-
tive optimization of accuracy and energy consumption,
under the four different dataflow designs. Each point in the
figure corresponds to one compressed model in the solution
set obtained by the bi-objective optimization. From the
results, one can see that:

 ❏ The points marked in different colors cover a large range of
accuracy scores and energy consumption, which means that
EMOMC obtains a solution set with a high diversity for
the model compression of the three baseline CNN models,

under the four dataflow designs. For example, under the
dataflow design of : ,X Y the accuracy scores of MobileNet
range from around 75% to 90%, and the energy consump-
tion from around 0.2 mJ to 0.58 mJ. It offers the right
trade-offs between the two objectives for meeting the con-
straints of various edge devices.

 ❏ From the perspective of energy consumption, if searching
solutions from the one with the highest energy consumption
to the one with the lowest energy consumption, the loss on
accuracy is negligible at the first few points. For instance,
under the dataflow design of : ,X Y the energy consumption
of VGG-16 decreases from around 2.3 mJ to 0.5 mJ with an
accuracy drop less than 2%. However, after a certain thresh-
old, the accuracy loss becomes extremely large. By consider-
ing the model’s accuracy, if searching for solutions from the
one with the highest accuracy to the one with the lowest
accuracy, the reduction of energy consumption is remarkable
at the first few points. However, after a certain threshold, the
energy consumption becomes relatively stable.

 ❏ Different models prefer different dataflow designs. Specifi-
cally, :C CI O achieves the highest energy efficiency among
the four dataflow designs for MobileNet. However, it is
inferior to other dataflow designs for VGG-16. The reason is
that the convolution layers of different models have different
shapes. In addition to energy consumption, the latency and
cost of edge devices also depend on dataflow designs. The
selection of dataflow designs involves many factors, which
makes it very difficult in practice. This work explores the
optimization results on the four popular dataflow designs.

C. Bi-Objective Optimization of Accuracy and Model Size
Figure 6 demonstrates the solution sets obtained from the bi-
objective optimization of accuracy and model size, under three

0

1.5

3

4.5

6

7.5

0.7 0.75 0.8 0.85 0.9

M
od

el
 S

iz
e

(M
B

yt
es

)

M
od

el
 S

iz
e

(M
B

yt
es

)

M
od

el
 S

iz
e

(M
B

yt
es

)

Accuracy

0

5

10

15

20

25

0.75 0.8 0.85 0.9 0.95

Accuracy

0

25

50

75

100

125

0.8 0.85 0.9 0.95 1

MobileNet VGG-16 LeNet-5

COO CSR-Relative

Normal (12.5)

COO CSR-Relative

Normal (59.5)

COO CSR-Relative

Normal (240)

Accuracy

FIGURE 6 The solution sets obtained from the bi-objective optimization of accuracy and model size on CIFAR-10 (MobileNet and VGG-16) and
MNIST (LeNet-5). The three different coding schemes are marked with different colors. In the legends, the quoted number after normal coding
scheme indicates the size of the original model before the model compression.

Authorized licensed use limited to: ASTAR. Downloaded on July 22,2021 at 17:59:32 UTC from IEEE Xplore. Restrictions apply.

AUGUST 2021 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 19

different parameter coding schemes. Each point stands for one
compressed model in the solution set obtained by EMOMC.
The results demonstrate that in terms of diversity the solution
sets show similar patterns with the bi-objective optimization of
accuracy and energy consumption.

Furthermore, it can be observed that although COO and
CSR are developed to store a sparse matrix, sometimes they
do not save the memory space for the compressed models,
compared with the normal coding scheme. For example, if
pursuing high model accuracy, the normal coding scheme is
the best one among the three coding schemes for
MoblieNet. The reason is that although the COO and CSR
coding schemes only store non-zero elements, they still need
several extra bits to record the position of each non-zero ele-
ment. If attempting to keep the model accuracy at a high
level, the compression rate cannot be high, making the
memory space saved from the sparsity of the filter less than
the overhead of those extra bits. In this case, the normal cod-
ing scheme is a better choice. However, if allowing a certain
level of accuracy loss, then CSR is the best among the three
coding schemes.

D. Aggregation of Accuracy and Energy Efficiency
Theoretically, higher accuracy comes with higher energy con-
sumption. Most previous model compression approaches only
allow a negligible loss of accuracy. For applications on edge
devices, it will be acceptable to sacrifice a little bit of accuracy
to achieve substantial improvement in energy efficiency. For
VGG-16, as shown in Figure 5, if 2% of accuracy loss is
acceptable, the energy consumption can be reduced by around
80%. In the solution sets displayed in Figure 5, there are some
knee points if considering the balance of both the model accu-
racy and the energy consumption. To help users select the
model for deployment on edge devices, a new metric called
aggregation score is defined as:

 (())/ ,f r f f1AScore 1 1 2$ $ x= + - (8)

where f1 is the accuracy of the model, and f2 is the corre-
sponding energy consumption. When classifying an image, if
the result is correct, a reward r can be obtained; otherwise, a pen-
alty x is performed. By giving a fixed amount of energy budget,
the number of images that can be classified is inversely propor-
tional to the energy consumed per image .f2 From Equation (8),
it can be seen that one of the key parameters in this aggregation
score system is the ratio between the reward and the penalty /r x ,
which indicates the significance of accuracy. The selection of the
optimal solution highly depends on the ratio /r x .

0

2

4

6

8

10

0.7 0.75 0.8 0.85 0.9

N
or

m
al

iz
ed

 S
co

re

N
or

m
al

iz
ed

 S
co

re

N
or

m
al

iz
ed

 S
co

re

Accuracy

0

25

50

75

100

125

0.75 0.8 0.85 0.9 0.95
0

2

4

6

8

10

0.8 0.85 0.9 0.95 1

MobileNet
Accuracy
VGG-16

Accuracy
LeNet-5

r /τ = 5
r /τ = 1
r /τ = 0.2

r /τ = 5
r /τ = 1
r /τ = 0.2

r /τ = 5
r /τ = 1
r /τ = 0.2

FIGURE 7 The aggregation scores on CIFAR-10 (MobileNet and VGG-16) and MNIST (LeNet-5) under three different reward over penalty ratios.
The scores are individually normalized by the aggregation score obtained by the uncompressed models.

0.70 0.75 0.80 0.85 0.90 0.95R
at

io
 o

f E
ne

rg
y

C
on

s.

Accuracy

22

21

1

2–1

2–2

X :Y CI:CO

FX:FY X:FX

FIGURE 8 The energy consumption of VGG-16 over the energy con-
sumption of MobileNet under different accuracy scores on CIFAR-10.

0.70 0.75 0.80 0.85 0.90 0.95R
at

io
 o

f M
od

el
 S

iz
e

Accuracy

23

22

21

1
2–1

2–3
2–2

COO CSR-Relative

Normal

FIGURE 9 The model size of VGG-16 over the model size of MobileNet
under different accuracy scores on CIFAR-10.

Authorized licensed use limited to: ASTAR. Downloaded on July 22,2021 at 17:59:32 UTC from IEEE Xplore. Restrictions apply.

20 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2021

Figure 7 displays the aggregation scores of different solu-
tions under three different values of /r x . Each curve is
plotted based on the results from one execution of the
multi-objective optimization. As the multi-objective solver
generates discrete points (i.e., solutions), they are plotted in a
line using a smooth function called cspline, which connects
consecutive points by natural cubic splines after rendering
the data monotonic. The scores are individually normalized
by the aggregation score obtained by original uncompressed
models. From the results, it can be observed that most accu-
racy-energy curves have one peak point. For the complex
neural networks such as VGG-16, the highest scores will be
125 # higher than the uncompressed model due to its high
compression rate. For the simpler networks such as
MobileNet and LeNet, the highest aggregation score is
around 9# more than the original model.

E. On Selection of Neural Networks
On the same dataset, the selection of an optimal neural net-
work depends on how one compresses the model. For instance,
MobileNet is specially designed for computation efficiency;
although its accuracy is slightly lower than VGG-16, it uses
much fewer hardware resources than VGG-16, in terms of
energy efficiency and model size. However, this statement is
true only for the original uncompressed MobileNet and VGG-
16. After model compression, VGG-16 may be more efficient
than MobileNet. Figures 8 and 9 show the ratios of energy
consumption and model size between VGG-16 and MobileNet,
in four dataflow designs and three coding schemes. The results
show that apart from dataflow design :C CI O and the normal
coding scheme, VGG-16 consumes around 50% less energy and

occupies around 50% less memory
space than the MobileNet when the
accuracy is below 88%. This observa-
tion shows that although MobileNet is
designed for computation efficiency,
one should select a compressed model
from a more complex neural network
such as VGG-16. It is more efficient
than the compressed model from simpler
neural networks, in terms of energy effi-
ciency and model size. The reason is that
the number of the parameters or the

precision of the parameters in VGG-16 can be lower than those
of MobileNet after the mode compression.

F. Comparison to the State-of-the-Art
Tables II and III report the results of different model com-
pression methods, in terms of the energy consumption and
the aggregation scores, and model size, respectively. Table II
shows that under negligible accuracy loss (typically, less than
0.5% accuracy loss), EMOMC improves the energy efficiency
and model compression rate by a factor of .411 # and .5 3#,
on average. There are two reasons for such improvements.
Firstly, the evolutionary multi-objective solver optimizes the
problem generation by generation. By allowing a certain
range of accuracy loss, it can generate many intermediate
results, and these results contribute to the improvements in
energy efficiency or compression rate. Compared with previ-
ous methods which take accuracy loss as a hard constraint,
EMOMC is more likely to find better results. Secondly, the
exploration space of the model compression process is signifi-
cantly reduced by adopting both pruning and quantization
techniques. Without the proposed two-stage pruning and
quantization co-optimization strategy, previous approaches
suffer from too high computation cost to explore and exploit
such a huge search space. In addition to energy efficiency and
compression rate, the proposed method also shows an average

.84 2# improvement on aggregation scores.
In practice, one needs to select an optimal solution

(from the solution set obtained by an EMO algorithm) for
the machine learning task on a specific device. For instance,
after solving the bi-objective optimization problem of accura-
cy and energy efficiency, a set of solutions can be obtained

TABLE II Energy consumption comparison of the compressed models obtained by EMOMC
and the peer methods for VGG-16 on CIFAR-10.

METHOD

ACCURACY ENERGY CONSUMPTION (MJ) EFFICIENCY IMPROVEMENT (×) AGGREGATION SCORE

LOSS :X Y :C CI O :F FX Y :X FX :X Y :C CI O :F FX Y :X FX / 5.0r x = / 1.0r x = / 0.2r x =

EMOMC
(OURS)

0.3% 1.7 1.7 2.3 2.6 14.0 12.2 10.4 8.9 125.6 97.0 30.0

PRUNING
FILTERS [26]

0.2% 18.5 19.6 18.5 19.3 1.2 1.1 1.3 1.2 1.2 1.2 1.4

PLAY AND
PRUNE [50]

0.1% 9.5 12.6 9.5 11.2 2.4 1.7 2.5 2.0 2.2 2.2 2.5

TABLE III Model size comparison of the compressed models obtained by MOMC
and the peer methods for VGG-16 on CIFAR-10.

METHOD

ACCURACY MODEL SIZE (MB) COMPRESSION RATE (×)

LOSS NORMAL CSR COO NORMAL CSR COO

EMOMC (OURS) 0.3% 9.8 8.0 24.5 6.1 7.4 2.4

PRUNING
FILTERS [26]

0.2% 34.7 37.9 57.3 1.7 1.6 1.0

PLAY AND
PRUNE [50]

0.1% 15.1 16.5 24.6 3.9 3.6 2.4

Authorized licensed use limited to: ASTAR. Downloaded on July 22,2021 at 17:59:32 UTC from IEEE Xplore. Restrictions apply.

AUGUST 2021 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 21

which trade-off the two objectives. The constraint on the
energy can be calculated based on the energy capacity and
battery life. Then, the solution that achieves the highest accu-
racy will be selected as the optimal solution for the task.
Alternatively, one can select the knee point from the solution
set as the preferred solution.

VI. Conclusion
In this paper, an evolutionary multi-objective model compres-
sion approach is proposed to accelerate and compress DNNs by
optimizing multiple objectives (e.g., accuracy, energy efficiency,
and model size) simultaneously. As the evaluation of each archi-
tecture is extremely time-consuming during the evolution, a
two-stage pruning and optimization co-optimization strategy is
developed to speed up the architecture searching process.
Extensive experimental results demonstrate that the proposed
method can obtain a set of diverse networks in a single execu-
tion. Furthermore, the proposed method outperforms the peer
methods in terms of energy efficiency and model size for model
compression of three popular DNNs.

Acknowledgement
This work is partly supported by the Agency for Science, Tech-
nology and Research (A*STAR) under its AME Programmatic
Funding Scheme (No. A18A1b0045 and No. A1687b0033).

References
[1] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning, vol. 1. Cam-
bridge MA: MIT Press, 2016, no. 2.
[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” 2014. [Online]. Available: https://arxiv.org/abs/1804.09081
[3] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le, “XLNet:
Generalized autoregressive pretraining for language understanding,” in Adv. Neural Inf.
Process. Syst., 2019, pp. 5753–5763.
[4] L. Zhen, P. Hu, X. Peng, R. S. M. Goh, and J. T. Zhou, “Deep multimodal transfer
learning for cross-modal retrieval,” IEEE Trans. Neural Netw. Learn. Syst., to be published.
doi: 10.1109/TNNLS.2020.3029181.
[5] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture search,” in
Proc. Int. Conf. Learn. Representations, 2018.
[6] Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, and M. Zhang, “Surrogate-assisted evolution-
ary deep learning using an end-to-end random forest-based performance predictor,” IEEE
Trans. Evol. Comput., vol. 24, no. 2, pp. 350–364, 2020. doi: 10.1109/TEVC.2019.2924461.
[7] Y. Sun, G. G. Yen, and Z. Yi, “Evolving unsupervized deep neural networks for learn-
ing meaningful representations,” IEEE Trans. Evol. Comput., vol. 23, no. 1, pp. 89–103,
2018. doi: 10.1109/TEVC.2018.2808689.
[8] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Completely automated CNN architec-
ture design based on blocks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 4, pp.
1242–1254, 2020. doi: 10.1109/TNNLS.2019.2919608.
[9] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Evolving deep convolutional neural networks
for image classification,” IEEE Trans. Evol. Comput., vol. 24, no. 2, pp. 394–407, 2020.
[10] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural net-
works with pruning, trained quantization and Huffman coding,” 2015. [Online]. Avail-
able: https://arxiv.org/abs/1510.00149
[11] Y. Wang, C. Xu, J. Qiu, C. Xu, and D. Tao, “Towards evolutionary compression,”
in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2018, pp. 2476–2485.
[12] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-eff icient convolutional neu-
ral networks using energy-aware pruning,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognit., 2017, pp. 5687–5695.
[13] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware automated quan-
tization with mixed precision,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2019.
[14] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” Proc. IEEE, vol. 105, no. 12, pp. 2295–2329, 2017. doi:
10.1109/JPROC.2017.2761740.
[15] Z. Wang, T. Luo, J. T. Zhou, and R. S. M. Goh, “EDCompress: Energy-aware model
compression with dataf low,” 2020. [Online]. Available: https://arxiv.org/abs/2006.04588
[16] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the sensor,” in Proc.
Annu. Int. Symp. Computer Architecture, 2015, pp. 92–104.
[17] M. Song et al., “Towards efficient microarchitectural design for accelerating unsu-
pervized GAN-based deep learning,” in Proc. IEEE Int. Symp. High Performance Comput.
Architecture, 2018, pp. 66–77.

[18] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,”
in Proc. Annu. Int. Symp. Comput. Architecture, 2017, pp. 1–12.
[19] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN accelerators,”
in Proc. Annu. IEEE/ACM Int. Symp. Microarchitecture, 2016, pp. 1–12.
[20] J. Qiu et al., “Going deeper with embedded FPGA platform for convolutional neu-
ral network,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, 2016,
pp. 26–35.
[21] Y.-H. Chen et al., “Eyeriss: A spatial architecture for energy-eff icient dataf low for
convolutional neural networks,” ACM SIGARCH Comput. Architecture News, vol. 44, no.
3, pp. 367–379, 2016. doi: 10.1145/3007787.3001177.
[22] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A high performance FPGA-
based accelerator for large-scale convolutional neural networks,” in Proc. Int. Conf. Field
Programmable Logic Appl., 2016, pp. 1–9.
[23] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for eff icient DNNs,” in
Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1379–1387.
[24] F. Manessi, A. Rozza, S. Bianco, P. Napoletano, and R. Schettini, “Automated
pruning for deep neural network compression,” in Proc. Int. Conf. Pattern Recognit., 2018,
pp. 657–664.
[25] C. Lemaire, A. Achkar, and P.-M. Jodoin, “Structured pruning of neural networks
with budget-aware regularization,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.,
2019, pp. 9108–9116.
[26] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning f ilters for ef-
f icient convnets,” 2016. [Online]. Available: https://arxiv.org/abs/1608.08710
[27] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: AutoML for model
compression and acceleration on mobile devices,” in Proc. Eur. Conf. Comput. Vision, 2018,
pp. 784–800.
[28] Z. Liu, J. Xu, X. Peng, and R. Xiong, “Frequency-domain dynamic pruning for con-
volutional neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 1043–1053.
[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classif ication with deep
convolutional neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097–1105.
[30] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf. Comput.
Vision Pattern Recognit., 2015, pp. 1–9.
[31] K. Deb, “Multi-objective optimization,” in Search Methodologies. Springer-Verlag,
2014, pp. 403–449.
[32] J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic algo-
rithms,” in Proc. Int. Conf. Genetic Algorithms, 1985, pp. 93–100.
[33] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary algorithms: A sur-
vey,” ACM Comput. Surv., vol. 48, no. 1, 2015. doi: 10.1145/2792984.
[34] L. Zhen, M. Li, R. Cheng, D. Peng, and X. Yao, “Adjusting parallel coordinates for
investigating multi-objective search,” in Proc. Int. Conf. Simulated Evol. Learn., Shenzhen,
China, 2017, pp. 224–235.
[35] M. Li, L. Zhen, and X. Yao, “How to read many-objective solution sets in parallel
coordinates,” IEEE Comput. Intell. Mag., vol. 12, no. 4, pp. 88–100, 2017. doi: 10.1109/
MCI.2017.2742869.
[36] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Addi-
son-Wesley Longman Publishing, 1989.
[37] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondominated sorting
in genetic algorithms,” Evol. Comput., vol. 2, no. 3, pp. 221–248, 1994. doi: 10.1162/
evco.1994.2.3.221.
[38] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197,
2002. doi: 10.1109/4235.996017.
[39] C. A. C. Coello, S. G. Brambila, J. F. Gamboa, M. G. C. Tapia, and R. H. Gómez,
“Evolutionary multiobjective optimization: Open research areas and some challenges ly-
ing ahead,” Complex Intell. Syst., vol. 6, no. 2, pp. 221–236, 2020.
[40] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and W. Banzhaf,
“NSGA-Net: Neural architecture search using multi-objective genetic algorithm,” in
Proc. Genetic Evol. Comput. Conf., 2019, pp. 419–427.
[41] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural architecture
search via parameters sharing,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 4095–4104.
[42] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 (Canadian Institute for Advanced
Research),” Tech. Rep., 2010. [Online]. Available: http://www.cs.toronto.edu/kriz/
cifar.html
[43] J. Blank and K. Deb, “Pymoo: Multi-objective optimization in python,” IEEE Access,
vol. 8, pp. 89,497–89,509, 2020.
[44] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the eff icacy of prun-
ing for model compression,” 2017. [Online]. Available: https://arxiv.org/abs/1710.01878
[45] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model compression and
acceleration for deep neural networks,” 2017. [Online]. Available: https://arxiv.org/
abs/1710.09282
[46] A. G. Howard et al., “Mobilenets: Eff icient convolutional neural networks for mobile
vision applications,” 2017. [Online]. Available: https://arxiv.org/abs/1704.04861
[47] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning applied
to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. doi: 10.1109/
5.726791.
[48] Xilinx, “Vivado design suite user guide,” Technical Publication, 2018.
[49] E. G. Walters, “Array multipliers for high throughput in Xilinx FPGAs with 6-input
LUTs,” Computers, vol. 5, no. 4, p. 20, 2016. doi: 10.3390/computers5040020.
[50] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, “Play and Prune: Adaptive
f ilter pruning for deep model compression,” 2019. [Online]. Available: https://arxiv.org/
abs/1905.04446

Authorized licensed use limited to: ASTAR. Downloaded on July 22,2021 at 17:59:32 UTC from IEEE Xplore. Restrictions apply.

