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Abstract

r apid development of evolution-
ary algor ithms in handling 
many-objective optimization 

problems requires viable methods of 
visualizing a high-dimensional solution 
set. The parallel coordinates plot which 
scales well to high-dimensional 
data is such a method, and has 
been  frequently used in evolution-
ary many-objective optimization. 
However, the parallel coordinates 
plot is not as straightforward as the 
classic scatter plot to present the 
infor mation contained in a solu-
tion set. In this paper, we make 
some  observations of the parallel 
coordinates plot, in terms of compar-
ing the quality of solution sets, under-
standing the shape and distribution of 
a solution set, and reflecting the 
relation between objectives. We 
hope that these observations could 
provide some guidelines as to the 
proper use of the parallel coordi-
nates plot in evolutionary many-
objective optimization.

I. Introduction
The classic scatter plot is a basic tool in 
viewing solution vectors in multi-
objective optimization. It allows us to 
observe/perceive the quality of a solu-
tion set, the shape and distribution of 
a solution set, the relation between 

objectives (e.g., the extent of their con-
flict), etc. Unfortunately, the scatter 
plot may only be drawn readily in a 
2D or 3D Cartesian coordinate space. 
It could be difficult for people to com-
prehend the scatter plot in a higher-
dimensional space.

An alternative to view data with four 
or more dimensions is using parallel coor-
dinates [1]–[3] (aka value paths [4]). Paral-
lel coordinates display multi-dimensional 
data (a set of vectors) in a two-dimensional 
graph, with each dimension of the original 
data being translated onto a vertical axis in 
the graph. A vector is represented as a 

polyline with vertices on the axes. As a 
visualization tool, parallel coordinates have 
received modest attention in the early 
stage of evolutionary multiobjective opti-
mization (EMO) [5], [6]. As many-objec-
tive optimization (i.e., an optimization 
problem with more than three objectives 

[7], [8]) becomes a new research 
topic in the EMO area, there has 
been increasing interest in presenting 
solution vectors in the high-dimen-
sional space. Parallel coordinates 
which are scalable to objective 
dimensionality naturally become a 
good alternative to do so [9]. Now 
the parallel coordinates plot has been 
dominantly used in many-objective 
optimization despite the emergence 
of various visualization techniques 
[4], [10]–[12]. This includes it being 
used to investigate the search 
behavior of algorithms [13]–[15], to 
examine preference-based search 
[16]–[18], to compare different solu-
tion sets [19]–[21], to verify perfor-
mance metr ics [22]–[24], and 
furthermore to help design new 
many-objective optimizers [25], [26].

Despite the popularity, the parallel 
coordinates plot is not as straightforward 
as the scatter plot in presenting the 
information contained in a solution set. 
Due to mapping multi-dimensional data 
onto a lower 2D space, the loss of infor-
mation is inevitable. This could naturally 
lead to several questions; specifically, in 
the context of multi-objective optimiza-
tion, one may ask

How to Read Many-Objective Solution Sets in Parallel Coordinates
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 ❏ Can the parallel coordinates plot 
indicate the quality of a solution set, 
e.g., its convergence, uniformity and 
coverage?

 ❏ Can the parallel coordinates plot give 
insights into the shape and distribu-
tion of a solution set? In other words, 
what can we see from the pattern of 
solution lines in parallel coordinates?

 ❏ How much information can the paral-
lel coordinates plot tell in terms of the 
relation among objectives? To be spe-
cific, does the order of objectives dis-
played in parallel coordinates  matter?
In this paper, we make some obser-

vations on the above questions, attempt-
ing to provide some guidelines as to the 
use of parallel coordinates in evolution-
ary multi-objective optimization. The 
rest of the paper is organized as follows. 
Section II briefly introduces parallel 
coordinates. Sections III–V are devoted 
to answering those three questions, 
respectively. Section VI describes how 
to draw a parallel coordinates plot. Sec-
tion VII concludes the paper and pres-
ents some possible future research lines.

II. Parallel Coordinates
To show a set of points in an m-dimen-
sional space, parallel coordinates map 
them onto a 2D graph, with m  parallel 
axes being plotted, typically vertical 
and equally spaced. A point in an 
m-dimensional space is represented as a 
polyline with vertices on these parallel 
axes, and the position of the vertex on 
the i-th axis corresponds to the value of 
the point on the i-th dimension. Parallel 

coordinates are simple to construct and 
scale well with the dimensionality of 
data. Adding more dimensions only 
involves adding more axes. Figure 1 
presents an example of the parallel coor-
dinates plot, where three 4D points are 
mapped to three polylines, respectively.

Parallel coordinates have been fre-
quently used in visualizing many-objec-
tive solution sets. However, there have 
been some misinterpretations when par-
allel coordinates were used to claim the 
quality of solution sets. For example, a 
solution set has been claimed to have 
good convergence when it was seen 
within the range of the Pareto front in 
the parallel coordinates plot [27]–[29]. A 
solution set has been claimed to have 
good distribution when it was seen 
spreading over the whole range of the 
parallel coordinates plot [19], [28]–[30]. 
A solution set has been claimed to have 
poor diversity when it was seen concen-
trating in several polylines in the parallel 
coordinates plot [31]. A solution set has 
been claimed to have “noisy” distribution 
when it was seen cluttered in the parallel 
coordinates plot [20]. In next section, we 
will present what kind of quality aspects 
parallel coordinates can tell and what it 
cannot, along with examples to show the 
above claims misinterpreted (Figures 3, 
9, 13(a) and 15(b), respectively).

III. Quality Measurement
Given dimensionality reduction in the 
mapping of parallel coordinates, some loss 
of information is expected. In this section, 
we will see what and how much informa-

tion parallel coordinates can preserve and 
reflect in terms of the quality of a solution 
set in multi-objective optimization.

Often, the quality of a solution set in 
multi-objective optimization can be 
reflected via four measures: convergence, 
coverage, uniformity, and extensity. Con-
vergence of a solution set measures the 
closeness of the set to the Pareto front; 
coverage considers the region of the set 
covering in comparison with the whole 
Pareto front; uniformity quantifies the 
distance between neighboring points in 
the set in the objective space; and exten-
sity refers to the range of the set in the 
objective space. In general, there is no 
clear conceptual difference of these 
quality measures between many-objec-
tive optimization and multi-objective 
optimization with two or three objec-
tives. However, many-objective optimi-
zation typically poses bigger challenge 
for evolutionary algorithms to achieve a 
good balance among these aspects.

A straightforward feature that parallel 
coordinates can tell is the range of a 
solution set. This feature can make it 
easy to interpret the extensity of a solu-
tion set, in comparison with the extensi-
ty metrics, e.g., maximum spread [32]. In 
the following, we will discuss if parallel 
coordinates can reflect other aspects of a 
solution set’s quality, i.e., convergence, 
coverage and uniformity.

A. Convergence
In multi-objective optimization, Pareto 
dominance is a fundamental criterion to 
compare solutions in terms of convergence. 
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figure 1 The parallel coordinates plot of 
three four-dimensional points ( , , ,a 15 31 20 

), ( , , , )b50 10 18 2 30  and ( , , , ) .c 20 5 32 20 
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figure 2 The solution sets obtained by nSgA-ii and grEA on the 10-objective dTlZ2, and 
their evaluation results on the convergence measure GD+ (the smaller the better). (a) nSgA-ii 
(GD . E )2 26 1= -+  and (b) grEA (GD . E )1 20 2= -+ .



90    Ieee ComputatIonal IntellIgenCe magazIne | november 2017

Parallel coordinates can clearly reflect the 
Pareto dominance relation between two 
solutions (such as polyline a being domi-
nated by polyline b in Figure 1, assum-
ing a minimization problem scenario) if 

the solution polylines are not overcrowd-
ed. It is worth mentioning that one can 
remove dominated solutions in parallel 
coordinates if they are only interested in 
non-dominated ones. This may make the 

plot clearer when comparing the quality 
of solution sets.

In addition to reflecting the Pareto 
dominance relation, parallel coordinates 
can largely imply the convergence of 
solution sets by their range. Figure 2 is 
such an example, where the parallel 
coordinates representation of two 
solution sets obtained by one run1 of 
two EMO algorithms, NSGA-II [33] 
and GrEA [34], on the 10-objec-
tive DTLZ2 problem [35] is shown. As 
can be seen, NSGA-II has an inferior 
convergence, with its solution set rang-
ing from 0 to around 3.5 in contrast to 
the problem’s Pareto front ranging from 
0 to 1. GrEA has a good convergence 
on this problem and its solution set has 
the same range as the Pareto front. 
These observations can be confirmed 
by the results of the convergence metric 
GD+ [36] shown in the figure. GD+ is 
a modified version of the original GD 
[37], which makes it compatible with 
Pareto dominance.

However, we may not be able to 
accurately know the convergence of 
solution sets by their range shown in 
parallel coordinates. That is, even if two 
solution sets are located in the same 
range, they can perform considerably 
differently in terms of convergence. 
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figure 3 The solution sets obtained by nSgA-ii and grEA on the 10-objective wfg7, and 
their evaluation results on the convergence metric GD+ (the smaller the better). (a) nSgA-ii 
(GD . E )3 163= -+  and (b) grEA (GD . E )6 32 2= -+ .
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figure 4 The solution sets obtained by AR and ibEA on the 10-objective dTlZ2. (a) AR and 
(b) ibEA.
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figure 5 The solution sets obtained by ibEA, SmS-EmoA and moEA/d on the 3-objective dTlZ2, shown in Cartesian coordinates. (a) ibEA, (b) 
SmS-EmoA and (c) moEA/d.

1The setting of the population size and maximum 
evaluations was 100 and 30,000, respectively. This set-
ting was used in all conducted experiments in this 
paper, unless explicitly mentioned otherwise. In addi-
tion, the grid division in GrEA was set to 8.
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Figure 3 gives such an example, where 
solution sets obtained by one run of 
NSGA-II and GrEA on the 10-objec-
tive WFG7 problem [38] are shown. As 
seen, both algorithms virtually reach the 
range of the Pareto front (from 0 to 2i 
where i  is the objective index of the 
problem), but they have different GD+ 
results. NSGA-II is returned a signifi-
cantly higher (worse) GD+ value than 
GrEA. This occurence can be from two 
possibilities. One is that the solution 
set of NSGA-II is not actually close to 
the Pareto front. The other is that 
most of solutions in the set converge 
already while a small portion of the 
set is far away (but still in the range of 
the Pareto front).

In addition, it is worth mentioning 
that even if the “height” of two solution 
sets in the parallel coordinate plot is dif-
ferent, we may also not be able to tell 
the convergence difference between 
them if the range of a problem’s Pareto 
front is unknown. This is because differ-
ent solution sets may converge into dif-
ferent parts of the Pareto front, especially 
in the situation where the Pareto front is 
highly convex.

B. Coverage
In parallel coordinates, it is straightfor-
ward to see which region a solution set 
does not reach on any objective2. For 
example, in Figure 4 the solution set 
obtained by the AR method [39] con-
centrates in one tiny area and the set by 

IBEA [40] fails to cover the first six 
objectives on the 10-objective DTLZ2. 
Moreover, we can conjecture some dis-
tribution features of solution sets from 
their parallel coordinates representation. 
Take the solution sets in Figure 5 as an 

example; their parallel coordinates repre-
sentation is shown in Figure 6. From 
Figure 6, we can know that the solution 
sets of IBEA and SMS-EMOA [41] fail 
to cover the region between 0.0 and 0.2 
on all three objectives. Also, most of the 
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figure 6 The corresponding parallel coordinates of the solution sets in figure 5. (a) ibEA, (b) SmS-EmoA and (c) moEA/d.

figure 7 An artificial example of two solution sets (A and b) having the same parallel coordi-
nates plots shown in figure 8. (a) Solution set A and (b) Solution set b.
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figure 8 The parallel coordinates plots of the solution sets in figure 7. (a) Solution set A and 
(b) Solution set b.
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2Note that for real-world problems whose Pareto front 
is unknown, we cannot tell if a solution set reaches the 
optimal region of objectives or not.
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solutions obtained by IBEA are located 
in the boundary of the Pareto front as 
there are very few lines distr ibuted 
around the middle section on all three 
objectives in the figure.

However, there do exist some cases 
that different solution sets have the same 
parallel coordinates plots. We can easily 
construct such an example. In Figure 7, 
solution set B has a better coverage than 

set A (the four solutions in set A being 
duplicate), but the two sets have the 
same pattern in parallel coordinates 
(Figure 8). Note that if we change 
the  order of some objectives (e.g., f1  
and f2 ), the parallel coordinates plots of 
the two solution sets in this example 
would be different.

One important fact that we would 
like to note is that as parallel coordinates 
map an m-dimensional graph onto a 2D 
graph they cannot fully reflect the 
 coverage of solution sets. A set of solu-
tions (represented by polylines) may have 
a good coverage over the range of the 
Pareto front in the 2D graph, but they 
may only cover part of the Pareto front 
in the original m-dimensional space. An 
interesting example is shown in Figure 9. 
In that figure, NSGA-II appears to have 
a better coverage than GrEA according 
to the parallel coordinates plots, but 
GrEA has a better coverage evaluation 
result, measured by the coverage metric 
Diversity Comparison Indicator (DCI) [42].

C. Uniformity
In parallel coordinates, it is not easy to 
see how evenly a set of solutions are dis-
tributed. However, a set of uniformly-
distributed polylines in parallel coordinates 
often imply a uniformly-distributed solu-
tion set. As shown in Figures 10 and 11, 
MOEA/D [43] has a perfectly-distribut-
ed solution set and its corresponding 
polylines in parallel coordinates are dis-
tributed uniformly and regularly. This is 
in contrast to the solution set of NSGA-
II which is distributed rather irregularly 
in both Cartesian and parallel coordinates 
plots. Note that a set of irregularly-dis-
tributed polylines may not represent a 
badly-distributed solution set, as uni-
formly-distributed solutions can have 
distinct values on different objectives. 
To show this, we select two EMO 
algorithms, MOEA/D [43] and BCE-
MOEA/D [44], both of which are able 
to obtain a uniformly-distributed solu-
tion set on DTLZ2 (see Figure 12). In 
MOEA/D, the population distribution is 
maintained by a set of systematically-
generated, uniformly-distributed weight 
vectors (within a simplex), and thus ide-
ally its solutions only take several equivalent 
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figure 9 The solution sets obtained by nSgA-ii and grEA on the 10-objective wfg7, and 
their evaluation results on the coverage metric dCi (the bigger the better). (a) nSgA-ii 
(dCi = 7.17E–1) and (b) grEA (dCi = 7.75E–1).
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figure 10 The solution sets obtained by nSgA-ii and moEA/d on the 3-objective dTlZ1, 
shown in Cartesian coordinates. (a) nSgA-ii and (b) moEA/d.
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figure 11 The corresponding parallel coordinates plots of the solution sets in figure 10. (a) 
nSgA-ii and (b) moEA/d.
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3Here the number of DTLZ2’s decision variables is set 
to m–1 (m is the number of objectives) to ensure that 
all solutions produced by algorithms are Pareto opti-
mal; thus the uniformity measure cannot be affected by 
the difference of solution sets’ convergence.
4In this paper, the SP metric has been slightly modified 
to make it compatible with Pareto dominance. That is, 
if two solution sets are comparable in terms of Pareto 
dominance, then the SP value of the dominating set is 
0 and the SP value of the dominated set is 1.

values on all the objectives. In contrast, in 
BCE-MOEA/D the population distri-
bution is maintained by a niching-based 
criterion, and thus its solutions can 
spread over the whole range for each 
objective. Figure 13 gives the solution 
sets obtained by MOEA/D and BCE-
MOEA/D on the 10-objective .DTLZ23  
As seen, on the uniformity metric Spacing 
SP 4^ h  [45], BCE-MOEA/D even per-

forms better than MOEA/D, but we 
cannot see this from their parallel coordi-
nates representation in the figure. This 
phenomenon may happen frequently 
when comparing decomposition-based 
algorithms having a set of systematically-
generated weight vectors (such as 
MOEA/D and NSGA-III [46]) with 
algorithms that do not use such decom-
position techniques (such as SPEA2 [47] 
and Two_arch2 [48]). So care needs to be 
taken when making a conclusion about 
the distribution uniformity of solution 
sets from parallel coordinates.

Finally, it is worth mentioning that 
parallel coordinates plots can be easily 
cluttered with multiple lines overlaid. 
This may completely prevent solution 
sets’ distribution from being observed. 
Figures 14 and 15 show such an exam-
ple, with two solution sets obtained by 
NSGA-II and SPEA2 on the 10-objec-
tive ML-DMP problem [49], [50]. The 
m-objective ML-DMP minimizes the 
distance of two-dimensional points to a 
set of m straight lines, each of which 
passes through one edge of a given reg-
ular polygon with m vertices. One inter-
esting characteristic of ML-DMP is that 
the points in the regular polygon and 
their objective images are similar in the 
sense of Euclidean geometry. In other 
words, the ratio of the distance between 
any two points in the polygon to the 
distance between their corresponding 
objective vectors is a constant. This 
allows a straightforward understanding 

of the distribution of the objective vec-
tor set via observing the solution set in 
the 2D decision space. As can be seen in 
Figure 14, SPEA2 has a far better distri-

bution uniformity than NSGA-II, but 
we cannot see the difference between 
their parallel coordinates representation 
in Figure 15.
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figure 12 The solution sets obtained by moEA/d and bCE-moEA/d on the 3-objective 
dTlZ2, shown in Cartesian coordinates. (a) moEA/d and (b) bCE-moEA/d.

figure 13 The solution sets obtained by moEA/d and bCE-moEA/d on the 10-objective 
dTlZ2, and their evaluation results on the uniformity metric SP (the smaller the better). (a) 
moEA/d (SP = 1.05E–1) and (b) bCE-moEA/d (SP = 7.74E–2).
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10-objective ml-dmP where the search space is precisely the optimal polygon. (a) nSgA-ii 
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IV Solution Set Distributions
In parallel coordinates, it is straightfor-
ward to know the conflict between 
objectives. The number of intersection 
lines between adjacent objectives reflects 
their conflicting degree. If there is no 
intersection of any pair of lines between 
adjacent objectives, then these two 
objectives are completely non-conflicting 
(i.e., harmonious [51]), such as objectives 
f1  versus f2  and objectives f2  versus f3  

in Figure 16. If there are many lines 
intersecting, then the two objectives are 
heavily conflicting, such as objectives f3  
versus f4  and objectives f4  versus f5  in 
Figure 16. If any pair of lines intersects, 
then the two objectives are completely 
conflicting to each other.

An interesting phenomenon in the 
parallel coordinates plot is that if all lines 
between two adjacent objectives inter-
sect at one point, then these two objec-
tives are negatively linearly dependent. 
Figure 17 is such an example. The four-
objective ML-DMP problem minimizes 

the distance of points to four lines 
 passing through the four edges of the 
given rectangle. From this definition, 
we can see that the two pair s of 
objectives, f1  versus f3  and f2  versus 
f4 , are negatively linearly dependent 

for the solutions in the rectangle 
,f f f21 3 2+ = +^ .f 24 = h  Therefore, 

each of the objective pairs intersects at 
one point, as shown in Figure 17(b).

This property is the known duality 
between the parallel coordinates repre-
sentation and the Cartesian coordinate 
representation of data [1], [2]: points in 
Cartesian coordinates map into lines in 
parallel coordinates, while lines in Car-
tesian coordinates map into points in 
parallel coordinates. Take an example in 
[1], where a line : f kf b2 1, = +  in the 
Cartesian coordinate plane and two 
points lying on this line, say ,x kx b+^ h 
and ,y ky b+^ h, were considered (shown 
in Figure 18(a)). Figure 18(b) shows the 
corresponding parallel coordinates 
 representation of the two points. For 

simplicity, let the distance between 
the vertical axes f1  and f2  be 1; then it 
is easy to know that the two lines inter-
sect at a point given by : (( ) ,k1 1

t - -

( ) )b k1 1- -  in parallel coordinates. This 
point depends only on k  and b , the 
parameters of the original line in the 
Cartesian plane. This indicates that the 
parallel coordinates representation of any 
point on , passes through the point t .

From the coordinates of the point t , 
we can see the relation between the 
position of t and the slope k of the line 
, . If k 01 , the intersection occurs 
between the two parallel coordinates 
axes. Especially, when k 1=-  the inter-
section is precisely midway, as in the 
example of Figure 17(b). If k1 1  or 

k0 11 1 , then the intersection point 
is on the left side or right side of the 
two coordinate axes, respectively. When 
k !3=  or k 0= , the intersection point 
is on the left axis or right axis, respec-
tively. Finally, when k 1= , the lines are 
parallel between the two axes in parallel 
coordinates. The above properties can 
help us understand the relation between 
objectives. For example, from the paral-
lel coordinates plot in Figure 16 we 
know that f1  = f2  and f kf b2 3= + , 
where k 1>  and b 0= .

Finally, note that since the horizontal 
position of the intersection point in paral-
lel coordinates depends only on the slope 
k, when we can see many lines between 
two objectives in the parallel coordinates 
plot intersecting at the same horizontal 
position (but at different vertical posi-
tions), this means that many lines con-
necting two points in the Cartesian 

figure 15 The parallel coordinates plots of the solution sets (in the objective space) in figure 
14. (a) nSgA-ii and (b) SPEA2.
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figure 16 The solution set obtained by 
SPEA2+SdE [52] on the 5-objective 
dTlZ5(i, M) [53], where i = 3.
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figure 17 The solution set of SPEA2+SdE on the 4-objective ml-dmP. (a) decision space 
and (b) objective space.
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coordinate space have the same slope with 
respect to these two objectives. This 
occurs often when points in Cartesian 
coordinates are absolutely uniformly-dis-
tributed on the plane of these two objec-
tives. The solution set in Figure 19 has 
such a pattern (see the midway of two 
adjacent objectives in Figure 19(b)). More 
interesting correspondence between the 
patterns of lines in parallel coordinates and 
the relation of objectives in the solution 
set can be found in [3].

V. Objective Order in Parallel 
Coordinates
In parallel coordinates, each axis has at 
most two neighboring axes (one on the 
left and one on the right). Different 
order of objective axes presents different 
information with respect to the relation 
between objectives. Take Figure 20 as an 
example. In Figure 20(a) where the 
order of objectives is , , , , ,f f f f f1 2 3 4 5  the 
conflict between any two adjacent 
objectives is rather weak. In contrast, in 
Figure 20(b) where the order of objec-
tives is , , , , ,f f f f f1 3 5 2 4  the conflict 
between any two adjacent objectives is 
quite intense.

In a solution set with m objectives, 
its parallel coordinates representation 
can only show m 1-  relationships at a 
time. This can be a very small portion 
compared to the total m

2` j relationships 
existing in m  objectives. Therefore, a 
good objective axis arrangement pro-
viding the user as much (clear) informa-
tion as possible is of importance. As 
shown in Figures 21 and 22, after swap-
ping some objectives, we can see inter-
esting patterns (linearly dependent) 
between some pairs of objectives. Simi-
lar observations have been reported by 
Freitas et al. [54]. In [54], the authors 
also proposed an objective axis-rear-
ranging method by placing the most 
harmonious objectives in a row in 
many-objective optimization. However, 
this rearrangement may not be able to 
present the information of objectives 
being severely in conflict (e.g., negative-
ly linearly dependent). In fact, deter-
mining a good order of the axes in the 
parallel coordinates plot (to reflect as 
much as useful information) is nontrivial. 

There exists some work in the data 
visualization field, e.g., methods to 
reduce clutter in the parallel coordinates 
plot [55], [56].

VI. How to Draw a Parallel 
Coordinate Plot
In this section, we give procedures of how 
to plot a solution set in parallel coordinates 

f2 f2f1

f1

(x, kx + b)

(y, ky + b)

(2, ky + b)

(2, kx + b)

(1, y )

(1, x )

O

ρ

Number of Objective
(b)(a)

figure 18 An example of a line : f kf b2 1, = +  in the Cartesian coordinate plane correspond-
ing to a point : (( ) , ( ) )k b k1 11 1t - -- -  in the parallel coordinates plane. (a) Cartesian coordi-
nates and (b) Parallel coordinates.
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figure 19 The solution set obtained by moEA/d on the 3-objective dTlZ1. (a) Cartesian 
coordinates and (b) Parallel coordinates.
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by several commonly-used graphing tools: 
MS Excel, MATLAB, LaTeX, and Origin. 
Tables 1–4 provide the steps/codes by MS 
Excel, MATLAB, LaTeX, and Origin, 
respectively. Here, we use the example in 

Figure 1. Figure 23 also presents the graphs 
drawn by the four tools to that example. 
Finally, we would like to note that in this 
paper all of the parallel coordinates graphs 
of data examples were drawn by Origin, 
and these data examples are available at 
http://www.cs.bham.ac.uk/%7Elimx.

vii. conclusions
The Parallel coordinates plot has drawn 
increasing attention in many-objective 
optimization, but mapping a many-objec-
tive solution set onto a 2D parallel coor-
dinates plane may not be straightforward 
to reveal the information contained in the 

set. This paper has made some observa-
tions on the use of the parallel coordinates 
plot to present a solution set in many-
objective optimization. In particular,

 ❏ The parallel coordinates representa-
tion of a solution set can partly reflect 
its convergence, coverage and unifor-
mity. This suggests that the parallel 
coordinates plot can be an assistant 
tool (but not entirely replacing quali-
ty metrics) in assessing a many-
objective solution set.

 ❏ Although the clarity can be affected by 
overlapping polygonal lines, parallel coor-
dinates transform certain geometrical 
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figure 21 The solution set of SPEA2+SdE on the 5-objective dTlZ5(i,m) where i = 3, shown 
by different order of objectives in parallel coordinates.

figure 22 The solution set of SPEA2+SdE on the 4-objective ml-dmP, shown by different 
order of objectives in parallel coordinates.
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Table 1 Steps of creating a parallel coordinates plot in MS Excel.

1) inPuT ThE dATA AS A TAblE wiTh EACh Row AS A SoluTion And SElECT ThEm. 

2) CliCk inSERT - > RECommEndEd ChARTS. 

3)  on ThE RECommEndEd ChARTS TAb, SCRoll ThRough ThE liST of ChARTS ThAT EXCEl 
RECommEndS foR YouR dATA, CliCk linE ChART - > ok. 

4)  uSE ThE ChART ElEmEnTS, ChART STYlES, And ChART filTERS buTTonS nEXT To ThE uPPER-
RighT CoRnER of ThE ChART To Add ChART ElEmEnTS likE AXiS TiTlES oR dATA lAbElS, CuS-
TomiZE ThE look of YouR ChART, oR ChAngE ThE dATA Shown in ThE ChART. 

Table 2 Codes of creating a parallel 
coordinates plot in MATLAB.

X = [15 31 20 50; 10 18 2 30; 20 5 32 20]; 

groups = {’a’, ’b’, ’c’}; 

parallelcoords(X,’group’,groups); 

xlabel(’objective no.’); 

ylabel(’objective value’); 

Table 3 Instructions for plotting 
 parallel coordinates in LaTeX using 
the PGFPlots package.

1)  inCludE ThE PgfPloTS PACkAgE bY 
Adding ThE following linE To 
YouR PREAmblE: 

\usepackage{pgfplots} 

2)  PloT wiTh ThE following 
 CommAndS: 

\begin{tikzpicture} 
\begin{axis}[xlabel={objective no.}, 
ylabel={objective value}, xtick=data, 
symbolic x coords={1, 2, 3, 4}] 
\addplot+[mark=none,draw=black,sharp 
plot] 
plot coordinates {(1,15) (2,31) (3,20) 
(4,50)}; 
\addplot+[mark=none,draw=red,sharp 
plot] 
plot coordinates {(1,10) (2,18) (3,2) 
(4,30)}; 
\addplot+[mark=none,draw=blue,sharp 
plot] 
plot coordinates {(1,20) (2,5) (3,32) 
(4,20)}; 
\end{axis} 
\end{tikzpicture} 

Table 4 Steps of creating a parallel 
coordinates plot in Origin.

1)  CREATE A TAblE ConSiSTing of ThE 
fiRST Column bEing X AXiS fRom 1 
To m (whERE m iS ThE numbER of 
obJECTivES) And ThE REmAining 
ColumnS bEing Y AXiS wiTh EACh 
Column foR A SoluTion. 

2)  SElECT ThE TAblE And CliCk ThE linE 
buTTon AT ThE lowER-lEfT CoRnER 
of ThE PAnEl. 

3)  doublE CliCk ThE AXiS lAbElS And 
ThE PolYlinES of PARAllEl CooRdi-
nATES To CuSTomiZE ThE look of 
ThE ChART. 
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features of a many-objective solution set 
into easily seen 2D patterns.

 ❏ The order of objective axes matters in 
parallel coordinates. To better present 
the relationship between objectives, it 
may need to be rearranged according 
to features of the solution set at hand.
Our subsequent study is towards over-

coming/alleviating the difficulties of 
interpreting the parallel coordinates plot 
presented in this paper. Particularly, how to 
arrange the order of objectives will be the 
focus of our future work as it had presented 
its usefulness in the paper. In this regard, a 
straightforward thought is to place the most 
conflicting objectives or the most harmoni-
ous objectives together so that people could 
see some meaningful patterns (such as the 
examples in Figures 21 and 22). Another 
thought is to consider the coverage of the 
lines between objectives in a parallel coor-
dinates plot; people may acquire more 
information from less coverage of the lines, 
for example, after exchanging the order of 
objectives f1 and f2 in  Figure 8.
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their parameters, inputs, outputs and so 
on along with references to appropriate 
sections and equations. Before discussing 
computational complexities of the four 
families, it takes the readers through an 
informative tutorial on what computa
tional complexity means, how it is repre
sented and  computed, and this makes the 
book selfcontained. It discusses various 
important issues such as the implicit con
straint imposed by the Anorm on the 
shape of the clusters for the cmeans 
models and the fact that a better mini
mum of the objective function does not 
necessarily imply a better clustering of 
the data. In Chapter 6, a large number of 
internal validity indexes were discussed, 
which are summarized in a table in this 
Chapter. In addition, a number of exter
nal cluster validation indexes such as 
Adjusted Rand Index (ARI), Soft ARI, 
and Normalized Mutual Information, 

that use the class label information, are 
discussed. As done all throughout, 
wherever possible results/concepts are 
explained with figures. Many other issues 
relating to cluster validation including the 
use of both internal and external valida
tion indexes are also discussed.

In Chapters 6 and 7, alternative opti
mization (AO) methods were used but 
proofs of their convergence were not 
discussed. In Chapter 10 some theorems, 
along with sketches of their proofs, on 
the local convergence and global con
vergence of AO are provided. This chap
ter also provides pointers to the detailed 
proofs for the interested readers. 

In this era, a book on clustering can
not be complete without a discussion 
on clustering of big data. The conclud
ing Chapter, Chapter 11, does the same. 
It begins with a characterization of big 
data and then discusses ways of making 

the four algorithms run faster based on 
data transformations, approximate ver
sions of literal equations, better initial
izations, clever implementations, and 
different computational styles. Then sev
eral methods to deal with clustering of 
big data based on distributed processing, 
sampling, and sampling and extension 
are discussed. Visualization of big data is 
important but difficult. This issue has 
also been addressed in this chapter.

In addition, every chapter has a set of 
problems to work on, which further 
makes this book suitable as a text book 
for undergraduate/graduate courses in 
pattern recognition.

To conclude, I wholeheartedly con
gratulate Prof. Bezdek for this won
derful piece of work and recommend 
this book to anyone who is interested 
in clustering.
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