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Abstract—Multi-party computation (MPC) allows distributed
machine learning to be performed in a privacy-preserving
manner so that end-hosts are unaware of the true models
on the clients. However, the standard MPC algorithm also
triggers additional communication and computation costs, due
to those expensive cryptography operations and protocols. In
this paper, instead of applying heavy MPC over the entire
local models for secure model aggregation, we propose to
encrypt critical part of model (gradients) parameters to reduce
communication cost, while maintaining MPC’s advantages on
privacy-preserving without sacrificing accuracy of the learnt
joint model. Theoretical analysis and experimental results are
provided to verify that our proposed method could prevent
deep leakage from gradients attacks from reconstructing orig-
inal data of individual participants. Experiments using deep
learning models over the MNIST and CIFAR-10 datasets
empirically demonstrate that our proposed partially encrypted
MPC method can reduce the communication and computation
cost significantly when compared with conventional MPC, and
it achieves as high accuracy as traditional distributed learning
which aggregates local models using plain text.

Index Terms—distributed machine learning, privacy-preserving
learning, federated learning, multi-party computation

1. Introduction

Machine learning, especially deep learning, has made
significant breakthroughs in many domains of science, busi-
ness and government, such as manufacturing, transporta-
tion, finance, and healthcare [1, 2]. The centralised learning
mainly contributes to these remarkable successes on large-
scale datasets. With the popularity of modern technologies
of edge computing [3] and the Internet of Things [4, 5], ma-
chine learning has witnessed a dramatic change in the way
it computes. Data in many real-world scenarios are naturally
distributed and owned by different organisations/users. Due
to the competition of different organisations, data privacy
security, and administrative regulations, it is almost impos-
sible to upload the data across countries and institutions for
centralised learning [2, 6].

To leverage the distributed confidential datasets, the
researchers in Google proposed the concept of federated
learning [7]. Federated learning enables multiple participants
to build a joint machine learning model collaboratively
without sharing data, i.e., no need to upload private data to
a centralised server or to exchange data across participants,
thus allowing to address the critical issues such as data
privacy and data security. However, there is a potential data
leakage in this framework; even the private data stay in the
local participant. Four majors types of information may be
leaked from federated learning: 1) membership leakage [8],
2) unintended feature leakage [9], 3) the representative of
the class of original data leakage [10], and 4) the original
data leakage [11, 12]. The last type of data leakage is the
most unacceptable for privacy-sensitive participants. Previ-
ous studies have shown a possible way of reconstructing
the original data of the private training datasets using the
algorithms of deep leakage from gradients [11, 12]. In
this case, one natural question would be how to develop
a privacy-preserving distributed machine learning approach,
while avoiding potential information leakage from gradients
during transmission and aggregation?

Cryptography-based methods have attracted the most
interest as they are designed to handle data privacy, integrity
and authentication issues by transforming information from
a readable state to almost nonsense. Specifically, Secure
Multi-Party Computation (MPC) [13] provides a generic
primitive that enables distributed parties to jointly compute
an arbitrary functionality without revealing their private
inputs and outputs [14], hence naturally suitable for privacy-
preserving model aggregation amongst trust-less parties.
It addresses the problem of cooperative computation in a
secure fashion so that local models are split and transformed
into multiple pieces of secret shares. The aggregated model
is calculated by exchanging these secrete shares amongst
participants, following well-designed MPC protocols. As
a result, no single party has sufficient pieces of secret
shares to reconstruct any specific local model and therefore
protect local models from leaking to certain parties, and the
aggregated server is applicable.

Compared with other cryptography-based methods, such
as Differential Privacy (DP) [15, 16] and Homomorphic En-
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cryption (HE) [17], MPC-based distributed learning [13, 18–
22] has several advantages. First of all, the MPC method
provides an almost accurate aggregation of the local models
and eliminates the trade-off between data privacy and model
performance. In contrast, DP-based distributed learning gen-
erally need to consider a case-by-case noise adding strategy,
and the performance of the global model relies on the
introduced noise level. Secondly, MPC protocol prevents
each party from reconstructing private data using secret
shares, only if it could collude with all (for additive secret
share MPC protocol [23]) or a certain number (for Shamir
secret share MPC protocol [24]) of other local participants 1.
In contract, HE-based distributed learning generally need to
assume computation peers or centralised coordinators are
trusted, which may not exist in real scenarios.

However, the aforementioned benefits do not come as a
free dinner. On the other side of the coin is the fact that
additive secrete share MPC protocol [23] generally requires
each participant to generate m secret shares of the local
model and distribute them to all computation peers, where
m represents the total number of distributed learning par-
ticipants. Considering the number of potential participants
is large in most cases, standard MPC will inevitably lead to
massive local computation and communication costs when
secrete shares are generated, transmitted and calculated
among participants.

In this paper, instead of applying MPC over the entire
local models for secure aggregation, we propose a partially
encrypted MPC solution by encrypting critical parts of
model parameters (gradients) that are vulnerable to privacy-
preserving attacks. Specifically, only the first layer of local
models is encrypted with MPC strategy, while the rest are
sent directly to the centralised node. Such a solution signif-
icantly reduces the extra computation and communication
overhead led by MPC, while inheriting MPC benefits in
both privacy-preserving and model accuracy perspectives.
We perform a series of experiments to verify that the
proposed solution achieves the merits of high prediction
accuracy (as Non-MPC counterpart), low communication
and computation costs, and high effectiveness of defending
attacks of deep leakage from gradients (DLG) [11] and the
improved DLG (iDLG) [12].

2. Related Work

MPC has been widely adopted in federated learning
frameworks for privacy-preserving model aggregation due
to the aforementioned advantages. CrypTen and OpenMined
enable MPC-based federated learning for neural network
models built on PyTorch. However, they provide a very
limited study on MPC overhead and performance evaluation
on the entire system. Google provides computation and
communication complexity analysis on its practical MPC
protocol and experimental evaluation over a large number
of mobile devices [25]. A two-phase MPC-enabled Feder-
ated Learning framework was proposed in [26] to reduce

1. This paper focuses on additive secret share MPC protocol only.

communication cost and improve system scalability via
electing no-colluding committee members for conducting
secure model aggregation. Different from the above efforts,
this paper looks into the network structure of complex deep
learning models and then apply privacy-preserving MPC-
based model aggregation over critical neural network layers
only.

Information leakage from gradients [11, 27, 28] has a
significant impact on the way distributed machine learning
works, especially for collaborative learning with multiple
parties. In classical distributed machine learning, partici-
pants generally trust the server and send their local models
as plain text to the server for aggregation. However, when
the server becomes a curious one, such a direct information
exchange step leaves the possibilities of reconstructing the
original images on the server. Lyn et al. [29] provided a
survey on threat models as well as poisoning and inference
attacks on Federated Learning.

To give a simple example, we consider the framework
proposed in [11]. It assumes that the local participants follow
the standard protocol rules and transfer the gradients as plain
text to the server. After receiving the gradient from the local
clients, the server initialises the input (x) and the labels
(y). The malicious server computes the dummy gradients
from dummy inputs (x, y) and calculates the difference
between dummy gradients and gradients calculated by a
victim. Next, the server updates the dummy inputs and labels
by the standard gradient-based method and stops when the
dummy gradient equal to the actual gradient. As a result,
when the batch size is one, the attacker can reconstruct the
images that are the same as or very similar to the ground
truth images [10]. However, the convergence speed of data
extraction in DLG is slow, and it cannot constantly obtain
accurate ground-truth labels. Zhao et al. [12] improved the
DLG method to steal the data and the corresponding labels
from the shared gradients in a distributed learning system.

3. The Proposed Method

3.1. Problem Formulation

In federated learning, we aim to learn a joint model
Mf on data X = {X1,X2, . . . ,Xm} that are lo-
cated on m respective distributed local nodes or devices
{P1,P2, . . . ,Pm}. The data will not be allowed to leave
the local nodes during the model learning and the inference
due to data privacy-preserving considerations. However, the
inference accuracy of the model Mf is desired to be
very close to that of the model Ms that trained on the
combination of all data in X . Furthermore, the data on
different nodes may have distinctive distributions, which
makes federated learning more challenging.

3.2. Partially Encrypted MPC-Based Federated
Learning System

In this work, we propose a partially encrypted MPC
(PEMPC) approach to encrypt the weights and train the
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joint model, as shown in Figure 1. In the system, the
m participants have the same neural network architecture
collaboratively learn the joint model with the help of a
model aggregation server. A typical assumption is that the
participants are honest, whereas the server is honest-but-
curious [2]. To prevent information leakage from the partic-
ipants to the server, we do not send the whole model of any
participant to the server. Specifically, we split the gradients
of the local model, Gi, into two types, which are associated
with the dash lines (Type A, GAi ) and the solid lines (Type
B, GBi ) in the network, respectively. Accordingly, the weight
parameters of the model are split into Type A (WA

i ) and
Type B (WB

i ).

Gateway Server 𝒮

𝑿# 𝑿$ 𝑿%

𝒢#'

𝒢#(

𝒢$'

𝒢$(

𝒢%'
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6

2

3

7

Figure 1. Framework for the partially encrypted MPC-based distributed
machine learning. In each network, the Type A gradients GAi are associated
with the dash lines and the Type B gradients GBi are associated with the
solid lines. Only the Type A gradients will be aggregated using the secure
MPC for encryption.

The training process of our proposed partially encrypted
MPC-based distributed machine learning contains the fol-
lowing main steps:

• Step 1: each participant Pi computes the gradients
of the model Mf locally based on its own dataset
Xi, denoted as Gi.

• Step 2: each participant Pi generates and sends the
secret shares of the Type A gradients GAi to other
local participants.

• Step 3: each participant Pj receives the secret shares
of the Type A gradients GA1 ,GA2 , . . . ,GAm from other
local participants, and Pj sums the secret shares up
to replace the values of GAj .

• Step 4: each participant Pi sends the Type A gradi-
ents GAi and the Type B gradients GBi to the server.

• Step 5: the server conducts the aggregation of the
gradients from the local participants as

GA =
1

m
GAi (1)

and
GB =

1

m
GBi . (2)

• Step 6: the server sends back the aggregated results
to the participants.

• Step 7: each participant Pi updates the weight pa-
rameters of the model as

W =W + αG, (3)

where α is the learning rate.

The above steps will continue iteratively until the termi-
nation condition is reached, and completing the entire train-
ing process. The termination condition can be the maximum
number of training epochs is reached, the loss function con-
verges, or other user-defined conditions. The neural network
architecture in our framework can be any one of deep neural
network architectures, such as LeNet-5 [30], VGG-16 [31],
ResNet-152 [32], and DenseNet-121 [33].

3.3. Partially Encrypted MPC Prevents Recovery
of Training Data

The adversarial attack approaches in [11] and [12] have
shown that the private training data may be obtained based
on the publicly shared gradients. As introduced previously
that the server may be honest-but-curious [2]. The server can
recover the original training set of all the participants using
the approaches like deep leakage from gradient (DLG) [11]
and its improved version iDLG [12]. We observe that the
gradients of the first hidden layer of Pi are calculated based
on the input data Xi and the back-propagation results from
the second hidden layer. Thus, we encrypted the first hidden
layer as the gradient type A to prevent the reconstructing of
the training data.

Denoting the weight parameters of the first hidden layer
as W ∈ Rd×n and the bias as b, we can obtain the output
of the first hidden layer for an input data point x as

y = f(z); z = Wx+ b, (4)

where f(·) is the activation function and typically sets as
the sigmoid, ReLu, or softmax function.

By using DLG or iDLG, the server can recover the
accurate results of y if the participant only encrypts the
weight parameters of the first hidden layer. Then, it can
also obtain z accurately if f(·) is absolutely monotonic. The
problem is now transformed to recover x in Equation (4)
under the condition that only z is known, which is a blind
source separation problem [34, 35].

Assumption 1. For each input vector x, there are more
than n non-zero elements.

Under the assumption 1, we have the conclusion:

Lemma 1. There exist an infinite number of solutions for
x in the linear system z = Wx+ b if d > n.

It provides a theoretical foundation to guarantee that the
attacker cannot recover the input vector when the dimension-
ality of the input data is more than the number of neurons
in the first hidden layer.
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3.4. Secure Multi-Party Computation

We will illustrate how to use secure MPC to aggregate
the Type A gradients GA1 ,GA2 , . . . ,GAm. Secure MPC is one of
the cryptography techniques, which aims to create methods
for participants to jointly compute a function over their
inputs while keeping those inputs private. A typical secret
sharing MPC protocol is as shown in Figure 2.

𝒢"#

Random 
number

MPC 
encoding

Secret share 𝒟"%#

Secret share 𝒟"&#

Secret share 𝒟"'#

…

𝒫"

𝒫% 𝒫'

…
Exchange secrete shares,
compute functions over 
secret shares & recon-

struct final results

…

Figure 2. Secure multi-party computation.

At Step 2 of our method, the matrix of Type A gradients
of each participant, GAi , is split into (m − 1) secret shares
DA

i1,DA
i2, . . . ,DA

i(i−1),D
A
i(i+1), . . . ,D

A
im, which in combina-

tion yield the original GAi . In this work, we consider the
additive secret sharing MPC protocol. At Step 3 of our
method, Pj receives the secret shares of Type A gradients as
{DA

ij}mi=1,i6=j and computes the initial result for the model
aggregation as

DA
j =

m∑
i=1,i6=j

DA
ij , (5)

and replaces the values of GAj as

GAj = DA
j . (6)

At Step 5 of our method, the server will conduct the
aggregation of the gradients based on the aggregated secret
shares, i.e., GA1 ,GA2 , . . . ,GAm, to obtain the final aggregated
result as Equation (1). Note that the MPC result is obtained
by conducting two stages of secret shares sum up at Step 3
and Step 5, respectively.

4. Experimental Study

The idea of the partially encrypted MPC strategy pro-
vides an alternative solution for encrypted peer-to-peer com-
munication. By design, it can protect local participants’
privacy by transforming local gradients into secrete shares

(integers) while at the same time enjoys the merits of high
accuracy, low communication and low computation require-
ments. These properties of partial MPC shall be validated
in this section by performing experiments on a system with
10 local participants and 1 central server.

4.1. Comparison of Prediction Accuracy

One of the key advantages of the standard MPC algo-
rithm is that it provides strong model protections while mini-
mally triggers accuracy drops. Therefore, before proceeding
to the communication reduction, the proposed partial en-
crypted MPC algorithm is firstly expected to inherit such
merits and obtain high accuracy in practice. To validate this
advantage, we apply LeNet-5 architecture [30] to classify
the images in the MNIST dataset. We investigate the loss
and accuracy curves during training and testing. The results
of the two different encryption strategies, namely MPC and
PEMPC, are shown in Figure 3. For better illustration, we
also plot the learning curves of standard distributed opti-
misation method without any encryption (denoted as “Non-
MPC”) and centralised learning, which act as our baselines.
The initialisation of the model, the optimisation method and
the learning rate are all set to be the same for fairness.

Results in Figure 3(a) show that the distributed learn-
ing methods, i.e., Non PMC, MPC, and PEMPC, share a
similar convergence speed in the training phase, but the
speed is slightly slower than the centralised training. From
the results in Figure 3(b), we can see that the accuracy
of the MPC-based strategies are almost identical to the
Non-MPC baseline (blue line), which demonstrates that the
extra MPC encryption step does not trigger accuracy drops
during the learning. The underlying reason is that the MPC
methods provide an unbiased aggregation for local models
and eliminate the trade-off between data privacy and model
performance. This is in contrast to other privacy-preserving
methods (e.g., differential privacy) that often suffer from
accuracy drops after adding noises to local gradients or
weights. Similar patterns can be observed for VGG-16 [31]
on the CIFAR-10 dataset [36], see Figure 3(c) and Fig-
ure 3(d).

To summarise, the MPC methods allow the distributed
machine learning to be performed in a secure way while
not incurring a loss. Note this conclusion is true for both
standard MPC and PEMPC, which represents an ideal sit-
uation where the proposed PEMPC method can protect the
participants’ privacy without sacrificing the overall learning
performance.

4.2. Communication and Computation Cost

As stated earlier, the secure updating scheme of standard
MPC does not come as a free dinner. One of the major
issues of the full MPC method is the extra communication
cost led by peer-to-peer model transmission. In general,
each local participant has first to split its model into m
parts and send (m− 1) fractions to the rest participants and
then transmits the aggregated model to the server. In other
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(a) Train loss on the MNIST dataset.

0 20 40 60 80 100
Round

0.95

0.96

0.97

0.98

0.99

Te
st

 A
cc

ur
ac

y

Centralized
Non-MPC
Full-MPC
PEMPC

(b) Test accuracy on the MNIST dataset.
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(c) Train loss on the CIFAR-10 dataset.
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(d) Test accuracy on the CIFAR-10 dataset.

Figure 3. Performance of LeNet-5 on the MNIST dataset and VGG-16 on the CIFAR-10 dataset. Samples are randomly distributed to the local participants.

Figure 4. Communication cost on CIFAR-10 dataset with various client numbers.

words, the extra communication costs are almost linear to
the clients on the network. Considering the facts that client
numbers can be large in practice and deep learning model
often consists of millions of parameters (e.g., VGG-16) ,
these extra communication costs are clearly non-trivial. The
proposed PEMPC algorithm provides an alternative solution
by only encrypting a small proportion of the models and is
expected to trigger minimal extra communication cost.

Figure 4 reports the communication costs on CIFAR-
10 datasets with various client numbers. On the left figure,
we observe that the communication requirements for the
full MPC algorithm are significantly higher than the Non-
MPC baseline, especially for systems with many clients.

In contrast, the curve of PEMPC almost coincides with
the Non-MPC, and only by zooming these two curves, we
can observe the additional costs triggered by peer-to-peer
model transmissions. Similar results can be obtained for the
MNIST dataset, hence omitted in this paper.

Along with the communication cost drops is the reduc-
tion of local MPC computation time. Since we are only
required to perform a local MPC for the first layer, the
computational time (CPU: Intel Xeon 5115, GPU: Nvidia
2080Ti) is reduced from 2.7081s for secret shares generation
and 0.6951s for secret shares aggregation in full MPC to
0.0019s and 0.0008s in PEMPC.
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(a) MSE of images on CIFAR10 with DLG.
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(b) MSE of images on CIFAR-10 with iDLG.

Figure 5. Performance of DLG and iDLG when the gradients of specific hidden layer are encrypted,so the adversaries replaced the encrypted layer with
the Gaussian distribution number (µ = 0, σ = 1).
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(a) MSE of images on MNIST with DLG.
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(b) MSE of images on MNIST with iDLG.

Figure 6. Performance of DLG and iDLG on MNIST when the gradients of first hidden layer are replaced with three methods (Gaussian distribution,
Laplace distribution, and PEMPC).

4.3. Performance of DLG and iDLG By Encrypting
Partial Weights

In the previous experiments, we propose a partial MPC
solution by encrypting only the first layer parameters and
obtain significant communication and computation reduc-
tions when compared with the full MPC algorithm. Yet, two
fundamental questions still await our answers: 1) why the
first hidden layer is chosen; 2) whether hiding the first layer
of the model is sufficient to prevent the DLG and iDLG
attacks.

A generic answer to the first question is that the first
layer is closest to the original image, but empirical val-
idations may require us to explore the mean-square-error
(MSE) of images during the reconstruction process of DLG
and iDLG. For better comparison, we reproduce the previous
DLG and iDLG methods with their released source codes
and use the same architectures as in the original paper.
For the MNIST dataset, we replace the layer weights with
Gaussian random numbers and test which layer can trigger
the largest image MSE, or in other words, hiding parameters
in that layer can lead to the best performance. Figure 5(a)
and 5(b) report the final performance with both DLG and
iDLG, and the results consistently show that encrypting the

first layer triggers the largest error. Moreover, the error keeps
increasing with the number of iterations.

With this, we can now proceed to the second problem
and test whether partial encrypted MPC is sufficient to
defend attacks from DLG and iDLG. We calculate the public
gradients of the network on a single image from the MNIST
dataset. Since our previous observation in Figure 5 suggests
that the gradients of the first layer should be hidden, we
replace the gradients of the first hidden layer (weight and
bias terms) with three methods to see the behavior of DLG
and iDLG: 1) Gaussian distribution (µ = 0, σ = 1) noise;
2) Laplace distribution (µ = 0, σ = 1) noise; 3) the secret
shares that generated from the additive secret sharing MPC
protocol. After we complete the hidden process, DLG, and
iDLG use those gradients to recover the reconstructed image
that creates the public shared gradients.

As can be seen in Figure 6, if the malicious server
receives the gradients of all hidden layers as a plain text,
the reconstruction process is able to obtain a most zero
gradient loss and MSE of images (pink line in Figure 6)
and reconstructs the training data accurately (Non-MPC row
in Figure 7). Yet, when the gradients of the first layer is
protected with the proposed method PEMPC, information
leakage can be effectively prevented. This can be observed
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(a) Results of DLG when the first hidden layer is not hidden and hidden by three
methods on MNIST.

(b) Results of iDLG when the first hidden layer is not hidden and hidden by three
methods on MNIST.

Figure 7. Reconstructed image from DLG and iDLG on MNIST when the gradients of first hidden layer are replaced with three methods (Gaussian
distribution, Laplace distribution, and PEMPC).

in Figure 6, in which the gradient loss and MSE of images
(blue, green, and red line do not converge to zero. Similarly,
when the gradient loss and MSE of images do not converge
to zero, the DLG and iDLG algorithms cannot reconstruct
the private images correctly as shonw in the EPMPC row
of Figure 7. We also compare PEMPC with the two other
baselines that adding the Laplacian and Gausian noises on
the original gradients with the magnitude of 10−4. From the
results in Figure 6, we can see that both DLG and iDLG
can converge and reconstruct the original training images.
It is also illustrated in Figure 7, from which we can see that
the DLG and iDLG can recovery the training data within
20 rounds.

Based on the above experimental results we verify that
PEMPC is an effective way to prevent the DLG and iDLG
attacks from reconstructing the original data, and encrypting
only the first layer is generally sufficient for against the DLG
and iDLG attacks.

4.4. Summary

The experimental results indicate that: 1) the PEMPC
strategy maintains a similar prediction accuracy as the
Non-MPC baseline while protecting privacy at the same
time; and 2) PEMPC requires significantly lower encryp-
tion time, inner-node computation and communication costs

when compared to the full MPC. These properties make the
partially encrypted MPC strategy a competitive encryption
solution when dealing with privacy issues in distributed
machine learning and prevent model attacks from DLG and
iDLG.

5. Conclusion

In this paper, we proposed a new approach (partially
encrypted MPC) to prevent indirect information leakage
from gradients in distributed machine learning systems. Our
proposed method only encrypt part of the gradients using
MPC during the model aggregation process. By analysing
the data flow of the model aggregation, we observed that the
proposed method can prevent recovering the original data
from gradients. The experimental results of two widely-used
deep learning models (i.e., LeNet-5 and VGG-16) on the
MNIST and CIFAR-10 datasets have demonstrated the ef-
fectiveness of the proposed partially encrypted MPC encryp-
tion strategy, leading to high prediction accuracy (as Non-
MPC counterpart), low communication costs and low local
computation requirements. In this work, we only provide
a raw theoretical foundation of preventing the recovery of
the training data. More theoretical analyses and explorations
about PEMPC will be the focus of our future work.
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