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A B S T R A C T   

Automatic extraction of buildings from remote sensing images plays a critical role in urban planning and digital 
city construction applications. In real-world applications, however, real scenes can be highly complex (e.g., 
various building structures and shapes, presence of obstacles, and low contrast between buildings and sur-
rounding regions), making automatic building extraction extremely challenging. To conquer this challenge, we 
propose a novel method called Deep Automatic Building Extraction Network (DABE-Net). It adopts squeeze-and- 
excitation (SE) operations and the residual recurrent convolutional neural network (RRCNN) to construct 
building-blocks. Furthermore, an attention mechanism is introduced into the network to improve segmentation 
accuracy. Specifically, to handle small buildings, we highlight small buildings and develop a multi-scale seg-
mentation loss function. The theoretical analysis and experimental results show that the proposed method is 
effective in building extraction and outperforms several peer methods on the dataset of Mapping challenge 
competition.   

1. Introduction 

Automatic building extraction, which identifies buildings from the 
captured images, has been widely applied in many applications, such as 
urban planning [1,2], geographic information system (GIS) data 
updating [3,4], damage assessment [5,6] and digital city construction 
[7,8]. Early research studies on building extraction are usually done 
based on aerial imagery [9] due to its high spatial resolution. Never-
theless, it is time-consuming to obtain the images of a large area like the 
whole city. 

In recent decades, the availability of high-resolution satellite imag-
ing sensors provides a new data source for automatic building extrac-
tion. The high spatial resolution of remote sensing imagery reveals fine 
details in urban areas and greatly facilitates the automatic building 
extraction. A large number of methods have been developed using 
remote sensing imagery. For instance, based on traditional image pro-
cessing approaches [10–13], traditional methods consider spectra, 
shape, and texture as the input features. Then they take support vector 
machine (SVM), random forest (RF), or AdaBoost as the classifier 
[12–14] to extract buildings. However, designing the feature extractors 
requires high expertise in the area, and the obtained features may not be 

suitable for new datasets. 
Inspired by the great success of deep learning in image classification 

[15], speech recognition [16], and machine translation [17], some re-
searchers applied deep learning approaches to remote sensing segmen-
tation tasks [18–23]. There are also a few attempts on building 
extraction [1,24–27]. For example, Li et al. [3] proposed a U-Net-based 
semantic segmentation method for the extraction of building footprints 
from high-resolution multispectral satellite images and multi-source GIS 
data. Lu et al. [25] proposed a building edge detection model using a 
richer convolutional features (RCF) network. The RCF-building model 
could detect building edges more accurately and obtain a significant 
performance improvement over the baselines. Shrestha et al. [28] pro-
posed a fully connected network-based building extraction approach by 
combining the exponential linear unit (ELU) and conditional random 
fields (CRFs). Wu et al. [29] presented a boundary regulated network 
called BR-Net for accurate aerial image segmentation and building 
outline extraction. The BR-Net achieves significantly higher perfor-
mance than the U-Net model. 

Although these methods have achieved promising performance in 
simple scenarios, real-world applications usually involve in highly 
complex scenes. For instance, the structure and the shape of buildings 
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vary largely in different countries; the presence of obstacles posed by 
surrounding objects, like tress and billboards, and the contrast between 
buildings and surrounding regions may be extremely low. It makes 
automatic extraction of buildings from remote sensing images 

challenging, and the performance of existing methods deteriorates 
sharply. 

To conquer the challenges above, in this paper, we propose a novel 
method called Deep Automatic Building Extraction Network (DABE- 

Fig. 1. The flowchart of the proposed DABE-Net. It has a U-Net shape CNN structure and includes an encoder and a decoder, where A is the SERRCNN-block, B is the 
Attention gates, C is the SERRCNN-block with up-sampling operation, D is the up-sampling operation and E is a recurrent convolutional operation. 

Fig. 2. The proposed SERRCNN-block that combines Squeeze-and-Excitation operations with Recurrent Convolutional Neural Networks on the residual model.  
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Net). It adopts squeeze-and-excitation (SE) operations and the residual 
recurrent convolutional neural network (RRCNN) to construct building- 
blocks. Furthermore, an attention mechanism is introduced into the 
network to improve segmentation accuracy. Specifically, to handle small 
buildings, we highlight small buildings and develop a multi-scale seg-
mentation loss function. As shown in Fig. 1, we design two loss functions 
for our proposed model, including the multi-scale segmentation loss and 
the segmentation loss. Following this learning strategy, our DABE-Net 
achieves promising performance on the building extraction dataset. 
The novelty and the main contribution of this work are two-fold: 1) A 
novel deep model is developed for automatic building extraction from 
remote sensing images. It includes SE and RRCNN blocks and involves 
attention gates to attach importance to network channel information 
and global information, and 2) Unlike existing methods, our method can 
effectively balance samples and focus on buildings of different scales. 
Extensive experiments on the Mapping challenge competition dataset 
have been conducted. The results demonstrate that our method out-
performs several peer methods for automatic building extraction, which 
indicates the effectiveness of the proposed method. 

The remainder of this paper is as follows. Section 2 presents our 
proposed method. Experimental results and discussion are provided in 
Section 3. We conclude this paper in Section 4. 

2. Method 

Our proposed deep automatic building extraction network (DABE- 
Net) has a U-Net shape CNN structure, which involves an encoder and a 
decoder. We introduce the SE and RRCNN (SERRCNN)-block and the 
attention gates into the encoder and the decoder. The SERRCNN-block 
can enhance the discriminative features, and the attention gates can 
extract semantic contextual information. Meanwhile, we improve the 
lovÃ¡sz hinge loss to balance the background and the building. 

2.1. SERRCNN-block 

Recently, the deep convolution neural network is used in the se-
mantic segmentation of high-resolution remote sensing images with 
excellent performance. However, the information on convolutional 
features among different channels is not effectively utilized. We intro-
duce the squeeze-and-excitation operations [30] to learn the attention 
weights of different feature channels automatically. According to the 
attention weights, discriminative features are enhanced while redun-
dant features for the target tasks are suppressed. Simultaneously, there 
are rich feature details in the remote sensing image. We further adopt 
the recurrent convolutional neural network (RCNN) [31] to extract the 
information about the details from image features. The operation im-
proves building boundary information. 

Including the Squeeze-and-Excitation operations and the recurrent 
convolutional neural networks, we develop the Squeeze-and-Excitation 
Residual RCNN (SERRCNN)-block, as shown in Fig. 2. RCNN and its 
variants have already shown superior performance on object recognition 
tasks using different benchmarks [31], we introduce it into DABE-Net, 

by following [31], we denote xl as the input of lth layer of SERRCNN- 
block and a pixel located at (i, j) in an input sample on the kth feature 
map in the Recurrent Convolutional Layers (RCL) [31]. The output of the 
network at the time step t, Oijk

l (t) can be expressed as Eq. (1) [31]: 

Ol
ijk(t) =

(
wf

k

)T
× xf (i,j)

l (t)+
(
wr

k

)T
× xr(i,j)

l (t − 1)+ bk (1)  

where xl
f(i,j)(t) and xl

r(i,j)(t − 1) are the inputs of the lth standard convo-
lution layers and the lth RCL, respectively. The values of (wk

f )T and (wk
r)T 

are the weights of the standard convolutional layer and the RCL of the kth 

feature map respectively, and bk is the corresponding bias. 
The output of lth RCL with the activations can be expressed as Eq. (2): 

u = F(xl,wl) = σ
(

Ol
ijk(t)

)
(2)  

where F is the recurrent operation, σ refers to the ReLU [32] function, 
and u is the output of lth RCL. 

To tackle the issue of exploiting channel dependencies, we consider 
the signal to each channel in the output features. We compress the 
feature along the spatial dimension by turning each two-dimensional 
feature channel into z ∈ ℝc. It has a global receptive field to some 
extent, and the output dimension matches the number of input feature 
channels. z is generated by shrinking u through spatial dimensions C ×
H × W into C × 1 × 1, where C is the number of channels and H × W is 
the size of feature map, the cth element of z is calculated via Eq. (3) by 
following [30]: 

Zc = Fsq(uc) =
1

H × W
∑H

i=1

∑W

j=1
uc(i, j) (3) 

To make use of the information aggregated in the squeeze operation, 
we adopt the following operation to capture channel-wise dependencies. 

s = Fex(z,W) = σ(g(z,W) ) = σ(W2σ(W1z) ) (4)  

where W1 ∈ ℝ C
16×C and W2 ∈ ℝC× C

16. 
The final output of the block can be obtained by rescaling the 

transformation output u with the activations as 

x̃ = Fscale(uc, sc) = sc⋅uc (5)  

and 

xl+1 = xl + x̃c (6) 

The activations act as channel weights adapted to the input. In this 
regard, SE blocks intrinsically introduce dynamics conditioned on the 
input, helping to boost feature discriminability [30]. 

2.2. Attention gates 

The complexity of the background and the diversity of the object 
structures make it easy to cause error extraction and inaccurate seg-
mentation of the semantic boundary of the ground objects. To capture a 
sufficiently large receptive field and semantic contextual information, 

Fig. 3. Schematic of the attention gate (AG). xl is the input features and α is attention coefficient computed in AG. g is the input of the encoder, xl is the decoder 
featuremaps as the same size as g. 
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researchers usually downsample the feature-map grid gradually in 
standard CNN architectures. Note that the shallow convolutional fea-
tures are important for extracting some low-level information like colors 
and edges. Discarding these detailed features may reduce false-positive 
predictions for building objects. Through attention operation, we pro-
gressively suppress feature responses in background regions, such as 
cars and roads, and improve the network’s attention to the building 
features. 

As shown in Fig. 3, we introduce attention coefficient, αi ∈ [0,1], 
identifies salient image regions and restrain feature responses to merely 
retain activations related to specific tasks. The output of AGs is the 
element multiplication of input feature mapping and attention coeffi-
cient: x̂l

i,c = xl
i,c⋅αl

i, from Fig. 3, where αi
l is a single scalar attention value 

and computed for each pixel vector xi
l ∈ ℝFl and Fl corresponds to the 

number of feature-maps in layer l. gi ∈ ℝFg is used for each pixel i to 
determine focused regions called gating vector that contains contextual 
information to prune lower-lever feature responses. Regarding the 
gating coefficient, we use additive attention in [33], which has been 
proved being effective in feature extraction. Additive attention is 
formulated as 

αl
i = σ2

(
WT

3

(
σ1
(
WT

1 sl
i +WT

2 gi + b1 + b2
) )

+ b3
)

(7)  

where σ1 refers to the ReLU [34] function and σ2 is a sigmoid [35] 
function, Wi, bi is the parameters and bias of Convi, respectively. W1 ∈

LFl×Fint, W2 ∈ ℝFg×Fint, W3 ∈ ℝFint×1, b1, 2 ∈ ℝFint, and b3 ∈ ℝ. 

2.3. Symmetric extension of the lovÃ¡sz hinge loss function 

In building extraction, largely different scales of input images may 
make the network hard to handle. The imbalance between the building 
and the background further worsens the effect of the network. To 
conquer this issue, we improve the lovÃ¡sz hinge loss to balance the 
background and buildings. 

Traditionally, the logic regression loss function is used to optimize 

cross-entropy loss for semantic segmentation. However, due to the 
measure of cross-entropy loss on a validation set is constantly a poor 
indicator of the quality of segmentation. The intersection-over-union 
(IoU) score, namely the Jaccard index is widely adopted to evaluate 
segmentation masks. According to definition in [36], Fi(x) is the i-th 
element of the output of the network, given a vector of ground truth 
labels y* and predicted labels ̃y, the Jaccard index of class c is defined as 

Jc(y*, ỹ) =
|{y* = c} ∩ {ỹ = c}|
|{y* = c} ∪ {ỹ = c}|

(8) 

The corresponding loss function used in empirical risk minimization 
to train the network as follows: 

ΔJc(y*, ỹ) = 1 − Jc(y*, ỹ) (9)  

where, 

ỹi = sign(Fi(x) ) (10) 

To use a max margin classifier, following [36], in the binary case, the 
original lovász hinge loss associated with the prediction of the pixel i is 
computed as 

mi = max
(
1 − Fi(x)y*

i , 0
)

(11) 

Considering the imbalance between the background and the build-
ing, we evolve it by symmetric extension into the new symmetric lovász 
hinge loss to solve the problem of data imbalance in the binary 
segmentation: 

m*
i =

(
max

(
1 − Fi(x)y*

i , 0
)
+max

(
Fi(x)

(
1 − y*

i

)
, 0
) )/

2 (12)  

where mi and mi* ∈ ℝ+ are the vector of hinge losses. 

3. Experiment and discussion 

In this section, we first introduce the used dataset. We then introduce 
the experiment setups and evaluation metrics. At last, we evaluate the 

Fig. 4. Dataset on CrowdAI Mapping Challenge, In the figure, Row A shows the remote sensing images, Row B shows the masks, Row C shows the ground-truths.  
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DABE-Net on the mapping challenge competition dataset and provide 
some discussions. 

3.1. Dataset and preprocessing 

The dataset is derived from the mapping challenge competition 
dataset on crowdai consisting of 280,741 training data and 60,317 
Validation data. The image includes 300 × 300 pixels; each pixel is 
divided into buildings and backgrounds. 

Since image segmentation is a data-driven algorithm, accurate re-
sults can be obtained according to the high diversity and quality of 
datasets. Data expansion is an effective method to improve performance 
by using the same amount of data. In this study, we take several specific 
methods to expand the training dataset, such as rotation, flipping, 
inserting random color jitter, and randomly clipping to preprocess each 
input image. Each image is zoomed to 256 × 256. Some examples of the 
original images and labels of the dataset are shown in Fig. 4. 

To improve the accuracy of extracting small buildings through the 
network, we design the attention weight of learning, and give larger 
weights to small buildings, so that the network can focus on small 
buildings. As shown in Fig. 5, we use the color to represent the weight of 
buildings, and the smaller buildings have larger weights, the darker the 
color. 

3.2. Training 

We implement our model in PyTorch. The network is randomly 
initialized under the default setting of PyTorch with no pretraining on 
any external dataset. All experiments are run on a desktop computer 
equipped with 2 Intel Xeon E5-2678v3 CPU, 64 GB memory, 4 NVIDIA 
2080Ti GPUs (with 11 GB*4 video memory) and Ubuntu 16.04 OS. We 
use the Adam optimization algorithm for training the network and set 
default learning parameters. The initial learning rate is 2e − 4 and de-
cays to 1e − 5 after 20 epochs. To fairly compare different methods, the 
batch size and epochs for training are fixed to 40 and 60, respectively. 

3.3. Evaluation metrics 

We adopt the evaluation metric of the COCO 2012 dataset, and the 
segmentation task is assessed by the precision and recall. Segmentations 
are determined as true or false positives according to the area of overlap 
with ground-truth. Eq. (13) shows the definition of IoU for evaluating 
whether a detected building polygon is accurate, which equals the 
overlap region of a detected building polygon (denoted by Bgt) and a 

ground truth building polygon (denoted by Bgt) divided by the union 
area of Bp and Bgt [3]. 

IoU =
aera

(
Bp ∩ Bgt

)

aera
(
Bp ∪ Bgt

) (13) 

If IoU between a detected building polygon and a ground truth 
building polygon is larger than 0.5, we consider the building polygon as 
correctly detected. Precision (Eq. (14)) and recall (Eq. (15)) are the 
common evaluation metrics for COCO dataset. The results of each image 
are evaluated independently, and the final F1-score is the average value 
of F1-scores (Eq. (16)) for each image. 

Precision =
TP

TP + FP
(14)  

Recall =
TP

TP + FN
(15)  

F1 − score =
2 × TP

2 × TP + FP + FN
(16)  

where true positive (TP) indicates the number of building polygons that 
are detected correctly, false positive (FP) is the number of other objects 
that are detected as building polygons by mistake, and false negative 
(FN) represents the number of building polygons not detected. 

3.4. Ablation experiment 

To verify the effectiveness of different components, we construct and 
evaluate the following variants: 

U-Net: U-Net + original loss function; 
U-Net_i: U-Net + improved loss function; 
DABE-Net: DABE-Net + original loss function; 
DABE-Net_i: DABE-Net + improved loss function. 

Fig. 5. The weights of different buildings. We use the color to represent the weights of buildings, and the smaller buildings have larger weights, the darker the color. 
Row A shows the masks and Row B displays the weights. 

Table 1 
Ablation study of DABE-Net on the Mapping challenge competition dataset. We 
compare the baseline and analyze the impact of each module and the combi-
nation of modules.  

Model DABE-Net Improved loss Precision Recall F1-score 

U-Net   92.1 92.5 92.3 
U-Net_i  ✓ 92.8 93.1 92.9 
DABE-Net ✓  93.1 93.2 93.1 
DABE-Net_i ✓ ✓ 94.1 95.2 94.6  
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Table 1 shows the precision, recall, and F1-scores of different tested 
methods in building extraction on validation datasets. In the four ex-
periments, the full proposed model achieves the highest scores. A 
comparison of the results of our DABE-Net and other methods on some 
examples are shown in Fig. 6, from which we can also see that the full 
model can achieve much better results. 

3.5. Dscussion 

From Table 1, by comparing between the U-Net model and the U- 
Net_i model, we can see that the precision value is increased by 0.7%, 
the recall rate is increased by 0.6%. From the result of DABE-Net and 
DABE-Net_i, we observe that the precision is increased by 1.0%, the 
recall rate is increased by 2.0%, and the advantage of symmetric 
extension lovÃ¡sz hinge loss is concluded. Similarly, the comparison 
between the results of U-Net and DABE-Net demonstrates the perfor-
mance of ARRSEU-Net by the increment of 1.0% for precision and 0.7% 
for recall. Meanwhile, the comparison between the results of U-Net_i and 
DABE-Net_i demonstrates the performance of ARRSEU-Net by the 
increment of 1.3% in terms of precision and 2.1% in terms of recall. 
Finally, the comparison between the results of U-Net and DABE-Net_i 
indicates that our proposed method raises precision by 2% and recall 
by 2.7%. 

As shown in Fig. 6, our method (last column) can enhance the details 
of the buildings. Furthermore, the proposed method visibly reduces the 
interference of aground vehicles and other buildings. To some extent, 
the method is even able to correct a few mistakenly marked areas in 

ground-truth labels. 

4. Conclusion 

In this paper, we proposed a new U-shaped network called DABE-Net 
to extract buildings from remote sensing images. We developed the 
SERCNN-block by integrating squeeze-and-excitation operations and 
RRCNN, which can extract image features more accurately and capture 
image details and network channel features. Furthermore, the attention 
gates are introduced into the network to enlarge the network’s weight 
for important features and improve symmetric extension lovÃ¡sz hinge 
loss function. To enhance the accuracy of the network to small buildings, 
we increased the attention weights of small buildings and developed 
multi-scale segmentation loss for the learning process. We used the 
Mapping challenge competition dataset on CrowdAi. The experimental 
results show that our network achieved 94.1% precision, 95.2% recall 
and 94.6% F1-score. Compared with U-Net, it increased 2.3% F1-score. 
Experimental results support our conclusions and prove the effective-
ness of the network. In the future, we will focus on accelerating our 
method’s speed and extending it to handle more complex remote sensing 
image segmentation tasks. 

Declaration of Competing Interest 

None. 

Fig. 6. Comparison of experimental results of four different models, our method (last column) can enrich enhance the details so that buildings in output have more 
distinct, margin and small buildings are easier to be detected. 
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