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Abstract

Cross-modal hashing provides an efficient solution for re-
trieval tasks across various modalities, such as images and
text. However, most existing methods are deterministic mod-
els, which overlook the reliability associated with the re-
trieved results. This omission renders them unreliable for de-
termining matches between data pairs based solely on Ham-
ming distance. To bridge the gap, in this paper, we propose
a novel method called Deep Evidential Cross-modal Hashing
(DECH). This method equips hashing models with the abil-
ity to quantify the reliability level of the association between
a query sample and each corresponding retrieved sample,
bringing a new dimension of reliability to the cross-modal
retrieval process. To achieve this, our method addresses two
key challenges: i) To leverage evidential theory in guiding the
model to learn hash codes, we design a novel evidence ac-
quisition module to collect evidence and place the evidence
captured by hash codes on a Beta distribution to derive a bino-
mial opinion. Unlike existing evidential learning approaches
that rely on classifiers, our method collects evidence directly
through hash codes. ii) To tackle the task-oriented challenge,
we first introduce a method to update the derived binomial
opinion, allowing it to present the uncertainty caused by con-
flicting evidence. Following this manner, we present a strat-
egy to precisely evaluate the reliability level of retrieved re-
sults, culminating in performance improvement. We validate
the efficacy of our DECH through extensive experimentation
on four benchmark datasets. The experimental results demon-
strate our superior performance compared to 12 state-of-the-
art methods.

Code — https://github.com/blackant-dev/DECH

Introduction
Cross-modal retrieval, a crucial task in information retrieval,
involves searching for semantically related data across het-
erogeneous modalities, such as images and texts (Hu et al.
2023b,a; Feng et al. 2023). To this end, cross-modal hash-
ing methods have gained popularity due to their computa-
tional and storage efficiency in handling large-scale multi-
modal data (Hu et al. 2021; Sun et al. 2023, 2024a,b). These
methods typically map high-dimensional data into compact
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Figure 1: An example of our observation and our basic idea.
The figure displays three image results retrieved from the
MS-COCO dataset using a sentence query. The Hamming
similarity between each image and the sentence, which is
the ranking criterion for retrieval, is shown in the lower-
left corner of the image. The reliability level, estimated by
our method, is shown below the image. From the figure,
one can see that the second image is the only one that truly
matches the query text, even though the other images have
higher Hamming similarity scores (i.e., smaller Hamming
distance). This shows the limitation of using similarity as
the only criterion for cross-modal retrieval. However, our
method can provide a reliability level for each retrieved re-
sult, which reflects the confidence/reliability of the match,
thereby embracing more reliable and accurate retrieval.

binary codes, enabling fast retrieval via simple logical op-
erations (e.g., XOR) (Jiang and Li 2017; Fang, Zhang, and
Ren 2019; Hu, Peng, and Peng 2024). Although these meth-
ods achieve promising performance, almost all of them are
deterministic, limiting their ability to account for retrieval
reliability. This limitation would lead to unreliable match-
ing results based solely on the Hamming distance as shown
in Figure 1, particularly in practical scenarios where deep
neural networks tend to overestimate their predictions (Guo
et al. 2017).

To address reliability estimation, numerous methods have
been presented by introducing various uncertainty model-
ing techniques into deep neural networks, such as Bayesian
networks (Sahlin, Helle, and Perepolkin 2021), deep ensem-
bles (Lakshminarayanan, Pritzel, and Blundell 2017), evi-
dential deep learning (EDL) (Sensoy, Kaplan, and Kandemir
2018; Jøsang 2016). Among these approaches, EDL has
gained attention due to its outstanding efficiency, as it views
the class predictions of neural networks as subjective opin-
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Figure 2: The overview of our Deep Evidential Cross-modal Hashing framework. It consists of four main components: feature
extraction, differentiable hashing, evidence acquisition module, and our proposed loss functions. First, image and text samples
are fed into modality-specific networks to obtain their continuous-valued representations, which are then binarized by our
differentiable hashing module. Next, positive evidence and negative evidence for each cross-modal pair are extracted and used
to update the parameters of a Beta distribution, which models the binomial opinion. Finally, DECH uses our proposed loss
functions to learn the parameters of the Beta distribution.

ions and directly infers uncertainty (Sensoy, Kaplan, and
Kandemir 2018; Jøsang 2016). Although EDL has shown
considerable improvement in uncertainty estimation, it is
still challenging and less touched in cross-modal hashing
due to the difference between the tasks. Specifically, existing
EDL methods (Sensoy, Kaplan, and Kandemir 2018) mainly
focus on classification tasks, viewing the output as evidence
— a quantifiable metric derived from data, indicating the
amount of support for assigning a given sample to a partic-
ular class. In contrast, cross-modal hashing aims at learning
common binary representations for retrieval, which makes
it difficult for traditional EDL techniques to model the evi-
dence without a classifier. Furthermore, directly optimizing
binary representations is an NP-hard and non-differentiable
problem. Existing methods (Zhang, Peng, and Yuan 2018;
Zhang and Peng 2019; Kumar and Udupa 2011) often re-
lax the hash codes to continuous values to train the model,
which results in a gap between upstream training and down-
stream inference, leading to hashing performance degrada-
tion. As a result, these fundamental differences present sig-
nificant obstacles in applying EDL to cross-modal hashing.

To overcome these challenges, we present a novel frame-
work, as depicted in Figure 2, aimed at enhancing the learn-
ing of effective hash codes while quantifying the reliabil-
ity of retrieved results. Specifically, 1) We introduce an evi-
dence acquisition module that models cross-modal matching
as a binomial opinion, equivalent to a Beta distribution. This
module collects positive and negative evidence to train the
Beta distribution parameters, effectively guiding hash code
learning through evidential theory. 2) To address the task-
oriented challenges, we adjust the derived binomial opinion
associated with the cross-modal pair, enabling it to quantify
the uncertainty caused by conflicting evidence. Based on this
modified binomial opinion, we propose a novel approach
that allows us to estimate the reliability of retrieved results
both accurately and explicitly. 3) To handle the binarization
challenge, we propose a novel module called Differentiable
Hashing (DH), which enables the discrete optimization of
binary codes without continuous-value relaxation during the

network training process. Our contributions are summarized
as follows:

• We propose a novel framework to endow cross-modal
hashing with the ability to capture the reliability of re-
trieved results. To the best of our knowledge, our DECH
might serve as the first approach to explore trustworthy
retrieval by cross-modal hashing.

• We present a novel evidence acquisition module specifi-
cally designed to collect both positive and negative ev-
idence for cross-modal pairs, and use it to train the
Beta distribution, thus enabling evidence quantization in
cross-modal retrieval.

• We conduct extensive experiments on four widely recog-
nized datasets and rigorously compare our approach with
12 state-of-the-art approaches. The results demonstrate
that our proposed approach outperforms these methods
across various metrics.

Related Work
Cross-modal hashing methods are generally classified into
supervised and unsupervised types. A key challenge in un-
supervised cross-modal hashing is learning shared semantics
without class labels. To address this, Zhang et al. explore the
underlying manifold structure across modalities to facilitate
hashing learning (Zhang, Peng, and Yuan 2018). However,
the lack of semantic labels limits the potential of these meth-
ods. In contrast, supervised methods leverage labeled data to
improve performance. For example, Huang et al. design an
objective function to penalize samples that do not preserve
the consistency of the label (Huang et al. 2017). Despite
their effectiveness, they are almost all deterministic models
that cannot capture the reliability of trustworthy retrieval.
To measure the reliability of results, Evidential Deep Learn-
ing (EDL) has gained widespread attention for its ability to
explicitly quantify uncertainty (Sensoy, Kaplan, and Kan-
demir 2018; Han et al. 2021, 2022). However, these methods
typically rely on classifiers to achieve the objectives. In con-
trast, cross-modal hashing, which focuses on discrete rep-
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resentation learning, often lacks a specific classifier, posing
unique challenges in integrating EDL techniques.

Methodology
Problem Formulation
Consider a training dataset D, comprising n paired samples
(xi,yi) , i = 1, 2, . . . , n, drawn from different modalities.
In this paper, we focus on image-text pairs, where xi and
yi represent the i-th image and text samples, respectively.
Additionally, each pair is also associated with a multi-label
vector li = [li1, li2, . . . , lic] ∈ Rc, where c denotes the total
number of categories. Here, lik = 1 indicates that the i-th
pair belongs to the k-th category, while lik = 0 otherwise.

The objective of cross-modal hashing is to learn two hash-
ing functions that map image and text samples to binary
codes. Specifically, the hash codes for the i-th image sam-
ple are denoted as bx

i ∈ {−1,+1}L, and the hash codes for
the j-th text sample are by

j ∈ {−1,+1}L, where L repre-
sents the length of the hash codes. The Hamming Distance is
used as an efficient metric for quantifying the similarity be-
tween different modalities. The Hamming Distance between
bx
i and by

j is computed as follows:

Hd

(
bx
i ,b

y
j

)
=

1

2

(
L− ⟨bx

i ,b
y
j ⟩
)
, (1)

Subsequently, the Hamming similarity between the i-th im-
age sample, represented by its hash code bx

i , and the j-th
text sample, represented by its hash code by

j , can be quanti-
tatively expressed through the inner product as follows:

Hs(b
x
i ,b

y
j ) =

1

L
⟨bx

i ,b
y
j ⟩ ∈ [−1, 1]. (2)

To learn the hashing functions and estimate the reliability,
we introduce a Generalized Deep Evidential Cross-modal
Hashing framework. This framework comprises two inde-
pendent networks for learning hash codes from the different
modalities, along with a network dedicated to evidence ac-
quisition. The overall objective function is:

argmin
Θx,Θy,Θz

(Le + λLkl + γLnzce) , (3)

where Le is the evidence hashing loss, Lkl is the evidence
correction loss, and Lnzce is the near-zero correct-evidence
loss. The parameters λ and γ are hyperparameters that con-
trol the trade-off between these loss functions, and Θx, Θy ,
and Θz represent the weight parameters of the networks. The
subsequent sections will provide a detailed explanation of
these loss functions.

Beta Evidential Learning
Inspired by the Dempster–Shafer Theory of Evi-
dence (Dempster 1968), we employ evidential theory
to form binomial opinions within cross-modal data pairs.
Cross-modal hashing seeks to learn common binary rep-
resentations for retrieval, a task that poses challenges
for traditional EDL techniques, which typically rely on
classifiers to quantify evidence. To address this, we design
a novel evidence acquisition module that can estimate

positive and negative evidence for any data pair without
using any classifier.

Specifically, we utilize the Hamming similarity between
data pairs to quantify the positive evidence, denoted as
PE(bx,by), representing the amount of support for the pair
(x,y) to match. Additionally, a subnetwork quantifies the
negative evidence, denoted as NE(bx,by), indicating the
degree of support for their non-matching. These are calcu-
lated as follows:

PE(bx,by) = e
Hs(bx,by)

τ ,

NE(bx,by) = e
g(bx,by ;Θz)

τ ,
(4)

where e(·) is an evidence activation function that ensures
the generated evidence is non-negative, and τ ∈ (0, 1] con-
trols the magnitude of the generated evidence. The functions
Hs(b

x,by) and g(bx,by; θz) are evidence generation func-
tions, with Hs(b

x,by) computing the Hamming similarity
between bx and by and g(bx,by; θz) being a parameterized
function with θz as its parameters.

Using the evidence, belief and disbelief masses are as-
signed to the binomial opinion:

b =
PE(bx,by)

ϕ
, d =

NE(bx,by)

ϕ
, and u =

2

ϕ
, (5)

where b is belief mass, d is disbelief mass, u is uncertainty
mass, and ϕ = PE(bx,by) +NE(bx,by) + 2. According
to subjective logic (Jøsang 2016) and EDL (Sensoy, Kaplan,
and Kandemir 2018), the belief assignment corresponds to
the Beta distribution Beta (p|α(bx,by), β(bx,by)), where
p ∈ [0, 1] represents the matching probability, parameterized
by the respective evidence. The correspondence between the
parameters of the Beta distribution and the evidence is as
follows:

α(bx,by) = PE(bx,by) + 1,

β(bx,by) = NE(bx,by) + 1,
(6)

For clarity, we abbreviate α(bx,by) as α, and β(bx,by)
as β. By collecting the positive and negative evidence, the
parameters of Beta (p|α, β) could be learned in a data-
driven manner, thereby quantifying the corresponding bino-
mial opinion in retrieval.

The matching measurement between two samples could
be simplified as a binary classification problem, where they
are either matched or unmatched. Therefore, this problem
could be modeled by a Bernoulli distribution, with its pa-
rameter representing the matching probability p between the
two points. The corresponding likelihood function is formu-
lated as follows:

Bernoulli(S|p) = pS ∗ (1− p)(1−S), (7)

where S is the matching ground truth of the two points.
Specifically, S = 1 when the points have a shared label, and
S = 0 otherwise. The Beta distribution Beta (p|α, β) could
model a probability distribution for the matching probabil-
ities p. Notably, the likelihood p is proportional to the dis-
crimination (similarity) between the two samples. That is to
say, p should be large when S = 1 and small when S = 0. To
this end, Beta (p|α, β) is treated as a prior on the likelihood
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Bernoulli(S|p), and the negative log-marginal-likelihood
is employed to maximize the discrimination by integrating
the matching probabilities as follows:

Le (b
x,by, S)

= − log

(∫
Bernoulli(S|p) Beta (p|α, β) dp

)
= S ∗ log

(
α+ β

α

)
+ (1− S) ∗ log

(
α+ β

β

)
.

(8)

This loss function drives the model to generate more correct
evidence than incorrect ones, but it does not guarantee the
generation of zero incorrect evidence. To address this, fol-
lowing (Sensoy, Kaplan, and Kandemir 2018), we introduce
a Kullback-Leibler (KL) divergence term:

Lkl (b
x,by, S)

= KL
[
Beta

(
p | α̃, β̃

)
∥Beta (p | 1, 1)

]
= log

Γ
(
α̃+ β̃

)
Γ(β̃)Γ (α̃)

+ (α̃− 1)
[
ψ (α̃)− ψ

(
β̃ + α̃

)]
+
(
β̃ − 1

) [
ψ
(
β̃
)
− ψ

(
β̃ + α̃

)]
,

(9)
where α̃ = S + (1− S) ∗ α, β̃ = (1− S) + S ∗ β, α̃ and β̃
are the Beta parameters after removing the correct evidence,
and Γ(·) and ψ(·) are the gamma and digamma functions,
respectively.

Near-Zero Correct-Evidence Learning
Inspired by (Pandey and Yu 2023), we observe that the afore-
mentioned loss functions allow the model to learn effectively
from most training pairs, except for those with near-zero cor-
rect evidence, which would impair performance.

To overcome this issue, we propose three specialized loss
functions for near-zero correct-evidence learning to endow
our model with the ability to learn from near-zero correct-
evidence sample pairs:

Lnzce−RA (bx,by, S) =
1

Egt
,

Lnzce−CE (bx,by, S) = −log(tanh(Egt)),

Lnzce−RM (bx,by, S) = log(1 +
1

Egt
),

(10)

where Egt = eOgt , and Ogt is defined as Hs(b
x,by) when

two cross-modal samples match, and as g(bx,by; θ) other-
wise.

Differentiable Hashing
By minimizing the loss function, we could optimize the
parameters of the hashing functions (i.e., fx (·,Θx) and
fy (·,Θy)) using a gradient descent optimization algorithm,
where Θx and Θy represent the parameters of the image and
text networks, respectively. However, due to the discreteness
of the hash codes, directly optimizing the model with bx and
by is an NP-hard problem (Kong and Li 2012). To address

this problem, most existing methods relax the hash codes as
continuous representations to optimize the model (Zhang,
Peng, and Yuan 2018; Zhang and Peng 2019; Kumar and
Udupa 2011). However, this relaxation will unavoidably re-
sult in a gap between the continuous values used in training
and the binary codes required for inference, thus leading to
potential performance degradation.

To tackle this issue, we present a plug-and-play module,
termed Differentiable Hashing, to train the model without
relaxation. To be specific, during forward propagation, this
module enforces the network to generate binary codes by:

bx =
1√
L
sgn

(
fx(x)

||fx(x)||

)
,

by =
1√
L
sgn

(
fy(y)

||fy(y)||

)
,

(11)

where || · || denotes the ℓ2-norm function, and sgn is the
sign function. The binary codes generated by Equation (11)
are then used to compute the loss to train the model. How-
ever, the sign function is non-differentiable due to its dis-
creteness, which prevents the network from training through
gradient descent. To address this, we employ the Straight-
Through Estimator (STE) (Bengio, Léonard, and Courville
2013) to produce straight gradients during backward prop-
agation, thus enabling the network to update its parame-
ters. In other words, this module is treated as an identity
function with a derivative of 1, enabling the network to up-
date its parameters by gradient descent. Therefore, our mod-
ule could guarantee that the upstream training is consistent
with the downstream inference without continue-value re-
laxation, embracing superior performance.

Optimization
For a given mini-batch containing M image-text pairs, the
matching ground-truth between the i-th text xi and the j-th
image yj is denoted as Sij . Specifically, Sij = 1 if xi and
yj share one or more labels in common; otherwise, Sij = 0.
The corresponding hash codes generated for these samples
are represented by bx

i and by
j . To simplify the overall loss

function, we introduce the notation ζij to represent the pa-
rameters of the loss function. The overall loss for this mini-
batch is then formulated as follows:

Loverall=
1

M2

M∑
i=1

M∑
j=1

Le(ζij)+λLkl(ζij)+γLnzce(ζij),

(12)
where ζij represents a trio of parameters consisting of
bx
i ,b

x
j and Sij . The optimization process is detailed in Al-

gorithm 1.

Reliability Estimation in Cross-Modal Hashing
Given that our model is based on binomial opinions, two sig-
nificant challenges arise: 1) Even with a well-trained model,
conflicting evidence may emerge, where both positive and
negative indicators are abundant and roughly equivalent in
quantity. In such scenarios, although the uncertainty mass
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Algorithm 1: The Optimization Procedure of DECH

Input: The data of n paired samples (xi,yi) from different
modalities, each corresponding to a multi-label vector
li, the bit lengthL of the generated hash codes, the num-
ber Nb of samples per mini-batch, the hyperparameters
τ , λ, γ, iteration number Nt and learning rate α.

Output: Optimized DECH model
1: Randomly initialize the network parameters Θx, Θy ,

and Θz of the DECH model.
2: repeat
3: Randomly sampleNb data pairs to form a mini-batch.
4: Use the corresponding hash function from Equa-

tion (11) to calculate the discrete hash code for each
sample in the mini-batch.

5: Use Equation (12) to calculate the overall loss.
6: Update the the network parameters by minimiz-

ing Loverall in Equation (12) with descending their
stochastic gradient:

Θ∗ = Θ∗ − α

(
∂Loverall

∂Θ∗

)
7: until Convergence

might be low, the model still struggles to accurately de-
termine whether the data pairs are a match. 2) The pri-
mary objective in cross-modal hashing retrieval is to identify
samples that match the query, rather than to retrieve non-
matching samples. Scenarios where positive evidence sub-
stantially outweighs negative evidence (indicating a match),
or vice versa (indicating a non-match), typically result in low
uncertainty mass. Consequently, we cannot directly employ
uncertainty mass as a reliable metric for uncertainty estima-
tion in cross-modal hashing retrieval.

To address the first issue, we adopt a method based on
the Relative Difference, which is extensively used to com-
pare the magnitude of differences between two quantities in
a normalized way. Based on this, we propose the following
definition to quantify the dissonance between PE and NE:
Definition 1 (Dissonance Uncertainty).

Diss(PE,NE) = 1− |PE −NE|
max(PE,NE)

∈ [0, 1]. (13)

When the values of PE and NE are close, it suggests that
the evidence generated is conflicting, leading Dissonance
Uncertainty to approach 1. Conversely, when PE and NE
values are not close, Dissonance Uncertainty tends to ap-
proach 0.

In the inference stage, we first use the evidence ob-
tained from the model to parameterize the Beta distribu-
tion and derive the corresponding binomial opinion. Follow-
ing (Cho et al. 2017; Josang, Cho, and Chen 2018), we use
Diss(PE,NE) to adjust the binomial opinion as follows:
Definition 2 (Correct Binomial Opinion).

bcor = b ∗ (1−Diss(PE,NE)),

dcor = d ∗ (1−Diss(PE,NE)),

ucor = 1− bcor − dcor.

(14)

As discussed earlier, the uncertainty mass in binomial
opinion merely quantifies whether the model has sufficient
evidence to determine if data pairs match. To estimate re-
trieval reliability, based on the projected probability (Jøsang
2016), we propose the following method to measure relia-
bility:

Definition 3 (Retrieval Reliability).

rcmh = 1− (dcor + 0.5 ∗ ucor). (15)

From Definition 3, one could observe that the model gen-
erates high dcor or ucor when it deems data pairs mis-
matched or uncertain, resulting in low reliability. Con-
versely, when the model determines sample pairs to be
matched, it produces high bcor, which reduces the sum of
dcor and ucor, thereby increasing the reliability level. Thus,
our proposed rcmh can effectively estimate the reliability of
data pair matching in cross-modal hashing.

Experiments
Datasets
We conduct our experiments on four benchmark datasets:
MIRFLICKR25K(Huiskes and Lew 2008), IAPR TC-
12(Escalante et al. 2010), NUS-WIDE(Rasiwasia et al.
2010), and MS-COCO(Lin et al. 2014). MIRFLICKR25K
contains 20,500 image-text pairs from 24 classes, with 2,000
pairs reserved for querying, 10,000 for training, and the rest
for retrieval. IAPR TC-12 comprises 20,000 pairs across
255 categories, with 2,000 pairs used for querying, 10,000
for training, and the remainder for retrieval. NUS-WIDE in-
cludes 195,834 pairs in 21 categories, with 2,000 pairs for
querying, 10,500 for training, and the rest for retrieval. MS-
COCO consists of 122,218 pairs in 80 classes, with 5,000
pairs for querying, 10,000 for training, and the remaining
pairs forming the retrieval database. In each dataset, images
and texts are represented by high-dimensional feature vec-
tors derived from pre-trained models or bag-of-words ap-
proaches.

Baselines and Implementation
To evaluate the performance of our DECH, we compared
it against 12 state-of-the-art methods: DJSRH (Su, Zhong,
and Zhang 2019), JDSH (Liu et al. 2020), DGCPN (Yu
et al. 2021), DCMH (Jiang and Li 2017), DADH (Bai et al.
2020), MLSPH (Zou et al. 2021), HMAH (Tan et al. 2022),
SCCGDH (Shu et al. 2022), MESDCH (Zou et al. 2022),
MIAN (Zhang et al. 2022), DNPH (Qin et al. 2024), and
DHAPH (Huo et al. 2024).

In our experiments, we conduct two cross-modal retrieval
tasks: image-to-text (I → T) and text-to-image (T → I). To
ensure fair comparisons, all models employ an identical pre-
trained backbone for feature extraction, with the layers of
this backbone kept fixed during training. Each method is
tested using the same training, retrieval, and query sets. All
baselines are configured with the default settings provided
by their respective authors. For our DECH, we set τ to 0.2
and γ to 1. The parameter λ is empirically determined as
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Task Method MIRFLICKR25K NUS-WIDE IAPR TC-12 MS-COCO
16 32 64 128 16 32 64 128 16 32 64 128 16 32 64 128

I→
T

DJSRH 0.620 0.630 0.645 0.660 0.467 0.461 0.497 0.517 0.368 0.396 0.419 0.439 0.489 0.519 0.543 0.565
JDSH 0.711 0.711 0.708 0.717 0.538 0.536 0.559 0.574 0.435 0.459 0.473 0.484 0.611 0.635 0.648 0.651
DGCPN 0.714 0.722 0.726 0.735 0.569 0.574 0.594 0.602 0.463 0.473 0.481 0.481 0.608 0.637 0.637 0.634
DCMH 0.739 0.755 0.764 0.771 0.629 0.649 0.668 0.677 0.423 0.439 0.456 0.463 0.548 0.575 0.606 0.625
DADH 0.812 0.826 0.833 0.840 0.640 0.653 0.657 0.669 0.517 0.530 0.549 0.573 0.517 0.621 0.664 0.674
MLSPH 0.804 0.821 0.833 0.838 0.473 0.488 0.490 0.493 0.463 0.482 0.508 0.536 0.583 0.627 0.657 0.667
HMAH 0.783 0.813 0.821 0.825 0.522 0.561 0.571 0.598 0.472 0.493 0.511 0.523 0.508 0.572 0.598 0.607
SCCGDH 0.783 0.814 0.814 0.800 0.644 0.656 0.581 0.523 0.489 0.498 0.475 0.422 0.633 0.663 0.667 0.640
MESDCH 0.811 0.829 0.836 0.842 0.455 0.465 0.475 0.476 0.504 0.526 0.544 0.539 0.599 0.637 0.657 0.669
MIAN 0.815 0.824 0.834 0.835 0.637 0.647 0.643 0.651 0.485 0.510 0.534 0.543 0.587 0.603 0.599 0.627
DHAPH 0.782 0.791 0.793 0.796 0.666 0.671 0.675 0.679 0.491 0.508 0.520 0.525 0.652 0.673 0.683 0.688
DNPH 0.763 0.779 0.791 0.799 0.643 0.666 0.673 0.681 0.485 0.505 0.517 0.525 0.624 0.646 0.660 0.665
DECH 0.833 0.846 0.853 0.860 0.686 0.706 0.716 0.727 0.527 0.572 0.590 0.606 0.660 0.710 0.732 0.736
DECHr=0.5 0.869 0.880 0.885 0.891 0.802 0.835 0.849 0.867 0.623 0.664 0.685 0.694 0.763 0.813 0.835 0.845

T
→

I

DJSRH 0.620 0.626 0.645 0.649 0.449 0.473 0.480 0.487 0.371 0.400 0.424 0.437 0.472 0.524 0.549 0.566
JDSH 0.685 0.687 0.677 0.698 0.515 0.561 0.526 0.561 0.441 0.462 0.478 0.489 0.616 0.641 0.651 0.656
DGCPN 0.698 0.700 0.709 0.718 0.585 0.606 0.594 0.613 0.466 0.478 0.489 0.485 0.610 0.632 0.632 0.629
DCMH 0.752 0.760 0.763 0.770 0.653 0.656 0.685 0.703 0.449 0.464 0.476 0.481 0.571 0.594 0.642 0.664
DADH 0.791 0.796 0.805 0.816 0.632 0.628 0.663 0.668 0.506 0.539 0.564 0.591 0.522 0.617 0.662 0.675
MLSPH 0.772 0.788 0.798 0.800 0.484 0.504 0.511 0.521 0.465 0.485 0.506 0.527 0.580 0.624 0.648 0.658
HMAH 0.773 0.796 0.805 0.814 0.556 0.594 0.598 0.623 0.487 0.508 0.541 0.556 0.514 0.574 0.600 0.616
SCCGDH 0.749 0.783 0.761 0.772 0.608 0.629 0.554 0.520 0.480 0.506 0.487 0.435 0.631 0.668 0.672 0.631
MESDCH 0.767 0.782 0.791 0.795 0.477 0.482 0.487 0.494 0.503 0.511 0.515 0.507 0.594 0.624 0.643 0.657
MIAN 0.777 0.787 0.804 0.801 0.708 0.720 0.736 0.727 0.483 0.509 0.525 0.538 0.612 0.660 0.660 0.682
DHAPH 0.771 0.781 0.784 0.786 0.720 0.727 0.732 0.736 0.506 0.524 0.535 0.540 0.622 0.647 0.655 0.662
DNPH 0.764 0.782 0.792 0.801 0.700 0.710 0.724 0.726 0.505 0.527 0.542 0.551 0.630 0.655 0.667 0.672
DECH 0.812 0.825 0.831 0.833 0.731 0.755 0.763 0.766 0.531 0.575 0.600 0.615 0.666 0.704 0.724 0.735
DECHr=0.5 0.829 0.843 0.849 0.851 0.787 0.823 0.835 0.839 0.628 0.676 0.699 0.708 0.777 0.810 0.829 0.851

Table 1: mAP@ALL comparison of DECH and baselines on the four Datasets. Bold highlights the highest results; underlined
marks the second highest.

per (Sensoy, Kaplan, and Kandemir 2018). Additionally, we
also employ Lnzce−RM as the near-zero correct-evidence
loss during training. Our method is implemented with Py-
Torch(Paszke et al. 2019) on a single NVIDIA GEFORCE
RTX 3090 Ti GPU.

Comparison with State-of-the-Art Methods
Table 1 reports the mean Average Precision (mAP) results
for our DECH and other baselines on the four datasets.
DECHr=0.5 represents our model incorporating the confi-
dence assessment approach with a reliability level of 0.5.
The results lead to the following key observations: 1) Our
DECH consistently outperforms all other baselines in re-
trieval performance. This can be attributed to the effec-
tive use of evidential deep learning in cross-modal hash-
ing, which enables the model to generate discriminative hash
codes. 2) The proposed differentiable hashing, which learns
discrete codes directly without resorting to continuous-value
relaxation, remarkably enhances retrieval performance. 3)
The consistently superior performance across four different
bit settings and four diverse datasets further validates the
effectiveness of our approach. 4) When applying our pro-
posed reliability to filter out less trustworthy sample pairs,
we observe a marked improvement in retrieval performance.
This improvement underscores the efficacy of our proposed
reliability estimation method in enhancing the model’s re-
trieval capabilities, ultimately achieving more reliable and
trustworthy retrieval results.

Quantitative Analysis of Reliability Estimation

We quantitatively evaluate the impact of our DECH on re-
trieval performance using mAP scores. By setting various
reliability levels as thresholds, we filter out samples whose
reliability falls below these thresholds. As illustrated in
Figure 3, higher reliability consistently corresponds to im-
proved retrieval performance across all four datasets. These
results demonstrate that our reliability estimation approach
effectively eliminates mismatched sample pairs, thereby
leading to more reliable retrieval outcomes. Furthermore,
this finding indicates that our method maintains high per-
formance across various datasets.

(a) Image → Text (b) Text → Image

Figure 3: Quantitative analysis of four datasets at various
reliability levels with a code length of 128.
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Parameter Analysis
Our model primarily encompasses two key parameters: τ
in Equation (4), and γ in Equation (12). To investigate the
influence of these parameters on the performance of the
model, we conduct experiments by varying the values of τ
and γ on the IAPR TC-12 dataset, with a hash code length
of 128 bits. For τ , its value is varied from 0 to 1 while γ is
kept constant at 1. Conversely, when adjusting γ, τ is main-
tained at 0.2. The corresponding mAP scores are illustrated
in Figure 4. In the experiments varying γ, we observe that
the optimal retrieval performance occurs when γ = 1. If γ
is too small, the model struggles to learn from the near-zero
correct-evidence sample pairs, leading to a performance de-
cline. Conversely, if γ is too large, the influence of other
components is diminished, resulting in a performance drop.
This indicates that each component of our loss function con-
tributes to the overall performance of the model.

Regarding τ , we observe that when it is too small, the ev-
idence activation function grows exponentially, negatively
impacting performance. On the other hand, if τ is too large,
the activation of positive evidence becomes restricted to a
very narrow range, which also adversely affects retrieval
performance. The optimal retrieval performance is achieved
when τ is around 0.1.

(a) Image → Text (b) Text → Image

Figure 4: Parameter sensitivity analysis for γ and τ on IAPR
TC-12.

Ablation Analysis
We perform ablation experiments on the MIRFLICKR25K
and IAPR TC-12 datasets to investigate the impact of in-
dividual components on retrieval performance. To this end,
we compare our method with its three variants: DECH with-
out Lkl, DECH without Lnzce, and DECH without DH. The
experimental results, depicted in table Table 2, lead to the
following conclusions: 1) The model’s performance remark-
ably degrades when either Lkl or Lnzce is omitted, indi-
cating that both terms are instrumental for enhancing the
model’s ability to learn and acquire evidence, thereby im-
proving retrieval performance. 2) The DH module plays a
crucial role in improving performance by enabling discrete
optimization without sacrificing differentiability.

Additionally, we also evaluate the performance of three
different forms of near-zero correct-evidence loss on these
two datasets. The results, shown in Table 3, reveal that all
three loss functions achieve similar and excellent perfor-
mance. This is due to their ability to extract valuable infor-

mation from near-zero correct-evidence sample pairs, allow-
ing the model to learn effectively from all sample pairs and
thus ensure superior performance. These observations also
validate the effectiveness of all three loss functions.

Method Image → Text Text → Image

16 32 64 16 32 64

MIRFLICKR25K

w/o Lkl 0.800 0.817 0.823 0.777 0.793 0.798
w/o Lnzce 0.826 0.840 0.847 0.803 0.816 0.824
w/o DH 0.813 0.808 0.811 0.795 0.791 0.792
DECH 0.832 0.846 0.853 0.812 0.825 0.831

IAPR TC-12

w/o Lkl 0.489 0.507 0.513 0.497 0.511 0.522
w/o Lnzce 0.473 0.504 0.527 0.478 0.502 0.529
w/o DH 0.503 0.518 0.528 0.511 0.522 0.536
DECH 0.527 0.572 0.590 0.531 0.575 0.600

Table 2: Comparison of the mAP scores of DECH and its
variants.

Method Image → Text Text → Image

16 32 64 16 32 64

MIRFLICKR25K

Lnzce−CE 0.834 0.849 0.856 0.809 0.824 0.833
Lnzce−RA 0.833 0.847 0.853 0.809 0.824 0.830
Lnzce−RM 0.832 0.846 0.860 0.812 0.825 0.831

IAPR TC-12

Lnzce−CE 0.531 0.562 0.591 0.532 0.566 0.597
Lnzce−RA 0.527 0.564 0.595 0.531 0.568 0.598
Lnzce−RM 0.527 0.572 0.590 0.531 0.575 0.600

Table 3: mAP of various forms of Lnzce across different bit
lengths on the two datasets.

Conclusion

In this paper, we present a novel method termed Deep Evi-
dential Cross-modal Hashing (DECH), designed to quantify
the reliability between query samples and each retrieved re-
sult in cross-modal retrieval scenarios. Our approach con-
sists of three novel modules: 1) Deep Evidential Cross-
modal Hashing module that collects evidence and derives
a binomial opinion for each cross-modal pair, 2) Refined Bi-
nomial Opinion module that allows the model to quantify
dissonance uncertainty while specifically estimating relia-
bility for the cross-modal hashing task, and 3) Differentiable
Hashing module that enables the discrete optimization of bi-
nary codes without continuous-value relaxation. Extensive
experiments are conducted to verify the effectiveness of our
method.
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